GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
12[1XReferences[101X34[[20XAI97[120X] [16XArtemovych, O. D. and Ishchuk, Y. B.[116X, [17XOn semiperfect rings determined5by adjoint groups[117X, [18XMat. Stud.[118X, [19X8[119X, 2 (1997), 162--170, 237.67[[20XAK00[120X] [16XAmberg, B. and Kazarin, L. S.[116X, [17XOn the adjoint group of a finite8nilpotent p-algebra[117X, [18XJ. Math. Sci. (New York)[118X, [19X102[119X, 3 (2000), 3979--3997.910[[20XAS01[120X] [16XAmberg, B. and Sysak, Y. P.[116X, [17XRadical rings and their adjoint groups[117X,11in Topics in infinite groups, Dept. Math., Seconda Univ. Napoli, Caserta,12Quad. Mat., [19X8[119X (2001), 21--43.1314[[20XAS02[120X] [16XAmberg, B. and Sysak, Y. P.[116X, [17XRadical rings with soluble adjoint15groups[117X, [18XJ. Algebra[118X, [19X247[119X, 2 (2002), 692--702.1617[[20XAS04[120X] [16XAmberg, B. and Sysak, Y. P.[116X, [17XAssociative rings with metabelian18adjoint group[117X, [18XJ. Algebra[118X, [19X277[119X, 2 (2004), 456--473.1920[[20XGor95[120X] [16XGorlov, V. O.[116X, [17XFinite nilpotent algebras with a metacyclic21quasiregular group[117X, [18XUkra\"\i n. Mat. Zh.[118X, [19X47[119X, 10 (1995), 1426--1431.2223[[20XKS04[120X] [16XKazarin, L. S. and Soules, P.[116X, [17XFinite nilpotent p-algebras whose24adjoint group has three generators[117X, [18XJP J. Algebra Number Theory Appl.[118X, [19X4[119X, 125(2004), 113--127.2627[[20XPS97[120X] [16XPopovich, S. V. and Sysak, Y. P.[116X, [17XRadical algebras whose subgroups of28adjoint groups are subalgebras[117X, [18XUkra\"\i n. Mat. Zh.[118X, [19X49[119X, 12 (1997),291646--1652.30313233[32X343536