Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

563570 views
1
<Chapter Label="Example">
2
<Heading>A sample computation with &Circle;</Heading>
3
4
Here we give an example to give the reader an idea
5
what &Circle; is able to compute.
6
<P/>
7
8
It was proved in <Cite Key="Kazarin-Soules-2004" /> that
9
if <M>R</M> is a finite nilpotent two-generated algebra over a
10
field of characteristic <M>p>3</M> whose adjoint group has at
11
most three generators, then the dimension of <M>R</M>
12
is not greater than 9. Also, an example
13
of the 6-dimensional such algebra with the 3-generated adjoint
14
group was given there. We will construct the algebra from this
15
example and investigate it using &Circle;. First we create two
16
matrices that determine its generators:
17
18
<Example>
19
<![CDATA[
20
gap> x:=[ [ 0, 1, 0, 0, 0, 0, 0 ],
21
> [ 0, 0, 0, 1, 0, 0, 0 ],
22
> [ 0, 0, 0, 0, 1, 0, 0 ],
23
> [ 0, 0, 0, 0, 0, 0, 1 ],
24
> [ 0, 0, 0, 0, 0, 1, 0 ],
25
> [ 0, 0, 0, 0, 0, 0, 0 ],
26
> [ 0, 0, 0, 0, 0, 0, 0 ] ];;
27
gap> y:=[ [ 0, 0, 1, 0, 0, 0, 0 ],
28
> [ 0, 0, 0, 0,-1, 0, 0 ],
29
> [ 0, 0, 0, 1, 0, 1, 0 ],
30
> [ 0, 0, 0, 0, 0, 1, 0 ],
31
> [ 0, 0, 0, 0, 0, 0,-1 ],
32
> [ 0, 0, 0, 0, 0, 0, 0 ],
33
> [ 0, 0, 0, 0, 0, 0, 0 ] ];;
34
]]>
35
</Example>
36
37
Now we construct this algebra in characteristic five and
38
check its basic properties:
39
40
<Example>
41
<![CDATA[
42
gap> R := Algebra( GF(5), One(GF(5))*[x,y] );
43
<algebra over GF(5), with 2 generators>
44
gap> Dimension( R );
45
6
46
gap> Size( R );
47
15625
48
gap> RadicalOfAlgebra( R ) = R;
49
true
50
]]>
51
</Example>
52
53
Then we compute the adjoint group of <C>R</C>:
54
55
<Example>
56
<![CDATA[
57
gap> G := AdjointGroup( R );;
58
gap> Size(G);
59
15625
60
]]>
61
</Example>
62
63
Now we can find the generating set of minimal possible order for
64
the group <C>G</C>, and check that <C>G</C> it is 3-generated.
65
To do this, first we need to convert it to the isomorphic PcGroup:
66
67
<Example>
68
<![CDATA[
69
gap> f := IsomorphismPcGroup( G );;
70
gap> H := Image( f );
71
Group([ f1, f2, f3, f4, f5, f6 ])
72
gap> gens := MinimalGeneratingSet( H );;
73
gap> Length( gens );
74
3
75
]]>
76
</Example>
77
78
One can also use <C>UnderlyingRingElement(PreImage(f,x))</C> to
79
find the preimage of <C>x</C> in <C>G</C>.
80
<P/>
81
82
It appears that the adjoint group of the algebra from example
83
will be 3-generated in characteristic 3 as well:
84
85
<Example>
86
<![CDATA[
87
gap> R := Algebra( GF(3), One(GF(3))*[x,y] );
88
<algebra over GF(3), with 2 generators>
89
gap> G := AdjointGroup( R );;
90
gap> H := Image( IsomorphismPcGroup( G ) );
91
Group([ f1, f2, f3, f4, f5, f6 ])
92
gap> Length( MinimalGeneratingSet( H ) );
93
3
94
]]>
95
</Example>
96
97
But this is not the case in characteristic 2, where
98
the adjoint group is 4-generated:
99
100
<Example>
101
<![CDATA[
102
gap> R := Algebra( GF(2), One(GF(2))*[x,y] );
103
<algebra over GF(2), with 2 generators>
104
gap> G := AdjointGroup( R );;
105
gap> Size(G);
106
64
107
gap> H := Image( IsomorphismPcGroup( G ) );
108
Group([ f1, f2, f3, f4, f5, f6 ])
109
gap> Length( MinimalGeneratingSet( H ) );
110
4
111
]]>
112
</Example>
113
114
</Chapter>
115
116