GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
<Chapter Label="Example">1<Heading>A sample computation with &Circle;</Heading>23Here we give an example to give the reader an idea4what &Circle; is able to compute.5<P/>67It was proved in <Cite Key="Kazarin-Soules-2004" /> that8if <M>R</M> is a finite nilpotent two-generated algebra over a9field of characteristic <M>p>3</M> whose adjoint group has at10most three generators, then the dimension of <M>R</M>11is not greater than 9. Also, an example12of the 6-dimensional such algebra with the 3-generated adjoint13group was given there. We will construct the algebra from this14example and investigate it using &Circle;. First we create two15matrices that determine its generators:1617<Example>18<![CDATA[19gap> x:=[ [ 0, 1, 0, 0, 0, 0, 0 ],20> [ 0, 0, 0, 1, 0, 0, 0 ],21> [ 0, 0, 0, 0, 1, 0, 0 ],22> [ 0, 0, 0, 0, 0, 0, 1 ],23> [ 0, 0, 0, 0, 0, 1, 0 ],24> [ 0, 0, 0, 0, 0, 0, 0 ],25> [ 0, 0, 0, 0, 0, 0, 0 ] ];;26gap> y:=[ [ 0, 0, 1, 0, 0, 0, 0 ],27> [ 0, 0, 0, 0,-1, 0, 0 ],28> [ 0, 0, 0, 1, 0, 1, 0 ],29> [ 0, 0, 0, 0, 0, 1, 0 ],30> [ 0, 0, 0, 0, 0, 0,-1 ],31> [ 0, 0, 0, 0, 0, 0, 0 ],32> [ 0, 0, 0, 0, 0, 0, 0 ] ];;33]]>34</Example>3536Now we construct this algebra in characteristic five and37check its basic properties:3839<Example>40<![CDATA[41gap> R := Algebra( GF(5), One(GF(5))*[x,y] );42<algebra over GF(5), with 2 generators>43gap> Dimension( R );44645gap> Size( R );461562547gap> RadicalOfAlgebra( R ) = R;48true49]]>50</Example>5152Then we compute the adjoint group of <C>R</C>:5354<Example>55<![CDATA[56gap> G := AdjointGroup( R );;57gap> Size(G);581562559]]>60</Example>6162Now we can find the generating set of minimal possible order for63the group <C>G</C>, and check that <C>G</C> it is 3-generated.64To do this, first we need to convert it to the isomorphic PcGroup:6566<Example>67<![CDATA[68gap> f := IsomorphismPcGroup( G );;69gap> H := Image( f );70Group([ f1, f2, f3, f4, f5, f6 ])71gap> gens := MinimalGeneratingSet( H );;72gap> Length( gens );73374]]>75</Example>7677One can also use <C>UnderlyingRingElement(PreImage(f,x))</C> to78find the preimage of <C>x</C> in <C>G</C>.79<P/>8081It appears that the adjoint group of the algebra from example82will be 3-generated in characteristic 3 as well:8384<Example>85<![CDATA[86gap> R := Algebra( GF(3), One(GF(3))*[x,y] );87<algebra over GF(3), with 2 generators>88gap> G := AdjointGroup( R );;89gap> H := Image( IsomorphismPcGroup( G ) );90Group([ f1, f2, f3, f4, f5, f6 ])91gap> Length( MinimalGeneratingSet( H ) );92393]]>94</Example>9596But this is not the case in characteristic 2, where97the adjoint group is 4-generated:9899<Example>100<![CDATA[101gap> R := Algebra( GF(2), One(GF(2))*[x,y] );102<algebra over GF(2), with 2 generators>103gap> G := AdjointGroup( R );;104gap> Size(G);10564106gap> H := Image( IsomorphismPcGroup( G ) );107Group([ f1, f2, f3, f4, f5, f6 ])108gap> Length( MinimalGeneratingSet( H ) );1094110]]>111</Example>112113</Chapter>114115116