Jupyter notebook Final Project Equations.ipynb
P=?−εB(nn,np)−εlepton(ne,nμ)+nnμn+npμp+neμe+nμμμP\overset{?}{=}-{\varepsilon_B}(n_n,n_p)-{\varepsilon_{lepton}}(n_e,n_{\mu})+n_n{\mu}_n+n_p{\mu}_p+n_e{\mu}_e+n_{\mu}{\mu}_{\mu}P=?−εB(nn,np)−εlepton(ne,nμ)+nnμn+npμp+neμe+nμμμ
εB(nn,np){\varepsilon_B}(n_n,n_p)εB(nn,np) is given by equations 23 and 28 in Phys 554 lecture notes
μn=∂εB(nn,np)∂nn{\mu_n}=\Large\frac{\partial{\varepsilon_B}(n_n,n_p)}{\partial n_n}\normalsizeμn=∂nn∂εB(nn,np)
μp=∂εB(nn,np)∂np{\mu_p}=\Large\frac{\partial{\varepsilon_B}(n_n,n_p)}{\partial n_p}\normalsizeμp=∂np∂εB(nn,np)
μe=μn−μp=∂εB(nn,np)∂nn−∂εB(nn,np)∂np=?μμ{\mu_e}={\mu_n}-{\mu_p}=\Large\frac{\partial{\varepsilon_B}(n_n,n_p)}{\partial n_n}\normalsize-\Large\frac{\partial{\varepsilon_B}(n_n,n_p)}{\partial n_p}\normalsize\overset{?}{=}{\mu_{\mu}}μe=μn−μp=∂nn∂εB(nn,np)−∂np∂εB(nn,np)=?μμ
εlepton(ne,nμ)=?35pF2emene+35pF2μmμnμ{\varepsilon_{lepton}}(n_e,n_{\mu})\overset{?}{=}\large \frac{3}{5}\frac{p_F^{_2}{_e}}{m_e}n_e+\frac{3}{5}\frac{p_F^{_2}{_{\mu}}}{m_{\mu}}n_{\mu}\normalsizeεlepton(ne,nμ)=?53mepF2ene+53mμpF2μnμ
ne=npn_e=n_pne=np
pF2e=μe2−me2p_F^{_2}{_e}={\mu^{_2}_e}-m^{_2}_epF2e=μe2−me2
pF2μ=μμ2−mμ2=?μe2−mμ2p_F^{_2}{_{\mu}}={\mu^{_2}_{\mu}}-m^{_2}_{\mu}\overset{?}{=}{\mu^{_2}_e}-m^{_2}_{\mu}pF2μ=μμ2−mμ2=?μe2−mμ2
nμ=?pF3μ3π2n_{\mu}\overset{?}{=}\large\frac{p_F^{_3}{_{\mu}}}{3{\pi^2}}nμ=?3π2pF3μ