Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Jupyter notebook Final Project Equations.ipynb

25 views
Kernel: Python 3

P=?εB(nn,np)εlepton(ne,nμ)+nnμn+npμp+neμe+nμμμP\overset{?}{=}-{\varepsilon_B}(n_n,n_p)-{\varepsilon_{lepton}}(n_e,n_{\mu})+n_n{\mu}_n+n_p{\mu}_p+n_e{\mu}_e+n_{\mu}{\mu}_{\mu}

εB(nn,np){\varepsilon_B}(n_n,n_p) is given by equations 23 and 28 in Phys 554 lecture notes

μn=εB(nn,np)nn{\mu_n}=\Large\frac{\partial{\varepsilon_B}(n_n,n_p)}{\partial n_n}\normalsize

μp=εB(nn,np)np{\mu_p}=\Large\frac{\partial{\varepsilon_B}(n_n,n_p)}{\partial n_p}\normalsize

μe=μnμp=εB(nn,np)nnεB(nn,np)np=?μμ{\mu_e}={\mu_n}-{\mu_p}=\Large\frac{\partial{\varepsilon_B}(n_n,n_p)}{\partial n_n}\normalsize-\Large\frac{\partial{\varepsilon_B}(n_n,n_p)}{\partial n_p}\normalsize\overset{?}{=}{\mu_{\mu}}

εlepton(ne,nμ)=?35pF2emene+35pF2μmμnμ{\varepsilon_{lepton}}(n_e,n_{\mu})\overset{?}{=}\large \frac{3}{5}\frac{p_F^{_2}{_e}}{m_e}n_e+\frac{3}{5}\frac{p_F^{_2}{_{\mu}}}{m_{\mu}}n_{\mu}\normalsize

ne=npn_e=n_p

pF2e=μe2me2p_F^{_2}{_e}={\mu^{_2}_e}-m^{_2}_e

pF2μ=μμ2mμ2=?μe2mμ2p_F^{_2}{_{\mu}}={\mu^{_2}_{\mu}}-m^{_2}_{\mu}\overset{?}{=}{\mu^{_2}_e}-m^{_2}_{\mu}

nμ=?pF3μ3π2n_{\mu}\overset{?}{=}\large\frac{p_F^{_3}{_{\mu}}}{3{\pi^2}}