Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Jupyter notebook Biocatalysis.ipynb

60 views
Kernel: Python 2
begin_line = -1 end_line = 500 with open('Data/Biocatalysis/biocatalysis.txt', 'r') as f: for n,line in enumerate(f): if ((n > begin_line) and (n < end_line)): print(line.rstrip()) f.close()
PMID- 26408050 OWN - NLM STAT- Publisher DA - 20150926 LR - 20150927 IS - 1742-4658 (Electronic) IS - 1742-464X (Linking) DP - 2015 Sep 26 TI - Theoretical Study of the Reaction Mechanism of Phenolic Acid Decarboxylase. LID - 10.1111/febs.13525 [doi] AB - The cofactor-free phenolic acid decarboxylases (PADs) catalyze the nonoxidative decarboxylation of phenolic acids to their corresponding p-vinyl derivatives. Phenolic acids are toxic to some organisms, and a number of them have evolved the ability to transform these compounds, including PAD-catalyzed reactions. Since the vinyl derivative products can be used as polymer precursors and are also of interest in the food-processing industry, PADs might have potential applications as biocatalysts. We have investigated the detailed reaction mechanism of PAD from Bacillus subtilis using quantum chemical methodology. A number of different mechanistic scenarios have been considered and evaluated on the basis of their energy profiles. The calculations support a mechanism in which a quinone methide intermediate is formed by protonation of the substrate double bond, followed by C-C bond cleavage. A different substrate orientation in the active site is suggested as compared to the literature proposal. This suggestion is analogous to other enzymes with p-hydroxylated aromatic compounds as substrates, such as hydroxycinnamoyl-CoA hydratase-lyase and vanillyl alcohol oxidase. Furthermore, on the basis of the calculations, a different active site residue compared to previous proposals is suggested to act as the general acid in the reaction. The mechanism put forward here is consistent with the available mutagenesis experiments and the calculated energy barrier is in agreement with measured rate constants. The detailed mechanistic understanding developed here might be extended to other members of the family of PAD-type enzymes. It could also be useful to rationalize the recently developed alternative promiscuous reactivities of these enzymes. This article is protected by copyright. All rights reserved. CI - This article is protected by copyright. All rights reserved. FAU - Sheng, Xiang AU - Sheng X AD - Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691, Stockholm, Sweden. FAU - Lind, Maria E S AU - Lind ME AD - Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691, Stockholm, Sweden. FAU - Himo, Fahmi AU - Himo F AD - Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691, Stockholm, Sweden. LA - ENG PT - JOURNAL ARTICLE DEP - 20150926 TA - FEBS J JT - The FEBS journal JID - 101229646 OTO - NOTNLM OT - biocatalysis OT - decarboxylation OT - density functional theory OT - phenolic acid decarboxylase OT - transition state EDAT- 2015/09/27 06:00 MHDA- 2015/09/27 06:00 CRDT- 2015/09/27 06:00 AID - 10.1111/febs.13525 [doi] PST - aheadofprint SO - FEBS J. 2015 Sep 26. doi: 10.1111/febs.13525. PMID- 26404386 OWN - NLM STAT- In-Data-Review DA - 20150925 IS - 2218-273X (Electronic) IS - 2218-273X (Linking) VI - 5 IP - 4 DP - 2015 TI - Uncommon Glycosidases for the Enzymatic Preparation of Glycosides. PG - 2160-83 LID - 10.3390/biom5042160 [doi] AB - Most of the reports in literature dedicated to the use of glycosyl hydrolases for the preparation of glycosides are about gluco- (alpha- and beta-form) and galacto-sidase (beta-form), reflecting the high-availability of both anomers of glucosides and of beta-galactosides and their wide-ranging applications. Hence, the idea of this review was to analyze the literature focusing on hardly-mentioned natural and engineered glycosyl hydrolases. Their performances in the synthetic mode and natural hydrolytic potential are examined. Both the choice of articles and their discussion are from a biomolecular and a biotechnological perspective of the biocatalytic process, shedding light on new applicative ideas and on the assortment of biomolecular diversity. The hope is to elicit new interest for the development of biocatalysis and to gather attention of biocatalyst practitioners for glycosynthesis. FAU - Trincone, Antonio AU - Trincone A AD - Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei, 34, Pozzuoli 80078, Naples, Italy. [email protected]. LA - eng PT - Journal Article PT - Review DEP - 20150924 PL - Switzerland TA - Biomolecules JT - Biomolecules JID - 101596414 SB - IM OTO - NOTNLM OT - biocatalysis OT - enzymatic synthesis OT - glycosides OT - glycosyl hydrolases OT - glycosynthases EDAT- 2015/09/26 06:00 MHDA- 2015/09/26 06:00 CRDT- 2015/09/26 06:00 PHST- 2015/05/20 [received] PHST- 2015/09/08 [revised] PHST- 2015/09/09 [accepted] AID - biom5042160 [pii] AID - 10.3390/biom5042160 [doi] PST - epublish SO - Biomolecules. 2015 Sep 24;5(4):2160-83. doi: 10.3390/biom5042160. PMID- 26399851 OWN - NLM STAT- Publisher DA - 20150924 LR - 20150925 IS - 1860-7314 (Electronic) IS - 1860-6768 (Linking) DP - 2015 Sep 24 TI - Incorporating unnatural amino acids to engineer biocatalysts for industrial bioprocess applications. LID - 10.1002/biot.201500153 [doi] AB - The bioprocess engineering with biocatalysts broadly spans its development and actual application of enzymes in an industrial context. Recently, both the use of bioprocess engineering and the development and employment of enzyme engineering techniques have been increasing rapidly. Importantly, engineering techniques that incorporate unnatural amino acids (UAAs) in vivo has begun to produce enzymes with greater stability and altered catalytic properties. Despite the growth of this technique, its potential value in bioprocess applications remains to be fully exploited. In this review, we explore the methodologies involved in UAA incorporation as well as ways to synthesize these UAAs. In addition, we summarize recent efforts to increase the yield of UAA engineered proteins in Escherichia coli and also the application of this tool in enzyme engineering. Furthermore, this protein engineering tool based on the incorporation of UAA can be used to develop immobilized enzymes that are ideal for bioprocess applications. Considering the potential of this tool and by exploiting these engineered enzymes, we expect the field of bioprocess engineering to open up new opportunities for biocatalysis in the near future. CI - Copyright (c) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. FAU - Ravikumar, Yuvaraj AU - Ravikumar Y AD - School of Biotechnology, Department of Biochemistry, Yeungnam University, Gyeongsan, Gyeongbuk, Korea. [email protected]. FAU - Nadarajan, Saravanan Prabhu AU - Nadarajan SP AD - Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea. FAU - HyeonYoo, Tae AU - HyeonYoo T AD - Department of Molecular science and Technology, Ajou University, Suwon, Korea. FAU - Lee, Chong-Soon AU - Lee CS AD - School of Biotechnology, Department of Biochemistry, Yeungnam University, Gyeongsan, Gyeongbuk, Korea. FAU - Yun, Hyungdon AU - Yun H AD - Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea. LA - ENG PT - REVIEW PT - JOURNAL ARTICLE DEP - 20150924 TA - Biotechnol J JT - Biotechnology journal JID - 101265833 OTO - NOTNLM OT - Biocatalysis OT - Bioprocess engineering OT - Enzyme engineering OT - Unnatural amino acid incorporation OT - Unnatural amino acids EDAT- 2015/09/25 06:00 MHDA- 2015/09/25 06:00 CRDT- 2015/09/25 06:00 PHST- 2015/06/29 [received] PHST- 2015/08/13 [revised] PHST- 2015/09/02 [accepted] AID - 10.1002/biot.201500153 [doi] PST - aheadofprint SO - Biotechnol J. 2015 Sep 24. doi: 10.1002/biot.201500153. PMID- 26396372 OWN - NLM STAT- PubMed-not-MEDLINE DA - 20150923 DCOM- 20150923 LR - 20150925 IS - 0022-1155 (Print) IS - 0022-1155 (Linking) VI - 52 IP - 10 DP - 2015 Oct TI - Effects of yeast, carboxymethylcellulose, yoghurt, transglutaminase and cyclodextrinase on mixing properties of oat dough. PG - 6266-77 LID - 10.1007/s13197-015-1776-5 [doi] AB - The effects of yeast, carboxylmethylcellulose (CMC), plain yoghurt (YG), transglutaminase (TG) and cyclodextrinase (CG) on the mixing properties of oat dough were investigated through the use of DoughLab. A 2(5-2)fractional factorial design resolution III with yeast (1.25, 3.25 %), CMC (1, 2 %), YG (10.75, 33.75 %), TG (0.5, 1.5 %) and CG (10, 40 mul) as independent variables was implemented. The parameters measured were water absorption, arrival time, stability, energy at peak, peak resistance, development time, departure time, softening and bandwith at peak. CMC significantly (p < 0.05) increased stability, energy at peak, development and departure times, but significantly (p < 0.05) decreased water absorption, peak resistance, softening and bandwidth at peak. TG signficantly increased water absorption, peak resistance and softening, but significantly decreased energy and development time. YG significantly (p < 0.05) decreased all the parameters measured, with the exception of softening, which was significantly increased. In contrast, yeast and cyclodextrinase did not significantly affect the oat dough during mixing. Principal component analysis indicated that 85.5 % of the variation in the data could be explained by two components. Component 1 explaining 52.3 % of the variation loaded highly on dough strength (stability and departure time). Component 2 contributing 33.2 % of the variation loaded on dough resistance (water absorption and peak resistance). CMC significantly increased dough strength while yoghurt reduced it significantly. TG significantly (p < 0.05) increased the resistance of the dough to mixing while CMC and yoghurt reduced it significantly (p < 0.05). Hence, CMC, TG and yoghurt are ingredients of choice when modifying oat dough mixing properties. FAU - Nitcheu Ngemakwe, Patrick Hermaan AU - Nitcheu Ngemakwe PH AD - Department of Food Technology, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, 7535 South Africa. FAU - Le Roes-Hill, Marilize AU - Le Roes-Hill M AD - Biocatalysis & Technical Biology Research Group, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, 7535 South Africa. FAU - Jideani, Victoria AU - Jideani V AD - Department of Food Technology, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, 7535 South Africa. LA - eng PT - Journal Article DEP - 20150308 PL - India TA - J Food Sci Technol JT - Journal of food science and technology JID - 0056471 PMC - PMC4573129 OID - NLM: PMC4573129 [Available on 10/01/16] OTO - NOTNLM OT - CarboxyMethyCellulose OT - Cyclodextrinase OT - Mixing properties OT - Oat dough OT - Response surface methodology OT - Transglutaminase OT - Yeast OT - Yoghurt EDAT- 2015/09/24 06:00 MHDA- 2015/09/24 06:01 CRDT- 2015/09/24 06:00 PMCR- 2016/10/01 00:00 PHST- 2015/02/11 [revised] PHST- 2015/02/19 [accepted] PHST- 2015/03/08 [epublish] AID - 10.1007/s13197-015-1776-5 [doi] AID - 1776 [pii] PST - ppublish SO - J Food Sci Technol. 2015 Oct;52(10):6266-77. doi: 10.1007/s13197-015-1776-5. Epub 2015 Mar 8. PMID- 26394862 OWN - NLM STAT- Publisher DA - 20150923 LR - 20150924 IS - 1432-0614 (Electronic) IS - 0175-7598 (Linking) DP - 2015 Sep 22 TI - Construction of a linker library with widely controllable flexibility for fusion protein design. AB - Flexibility or rigidity of the linker between two fused proteins is an important parameter that affects the function of fusion proteins. In this study, we constructed a linker library with five elementary units based on the combination of the flexible (GGGGS) and the rigid (EAAAK) units. Molecular dynamics (MD) simulation showed that more rigid units in the linkers lead to more helical conformation and hydrogen bonds, and less distance fluctuation between the N- and C-termini of the linker. The diversity of linker flexibility of the linker library was then studied by fluorescence resonance energy transfer (FRET) of cyan fluorescent protein (CFP)-yellow fluorescent protein (YFP) fusion proteins, which showed that there is a wide range of distribution of the FRET efficiency. Dissipative particle dynamics (DPD) simulation of CFP-YFP with different linkers also gave identical results with that of FRET efficiency analysis, and we further found that the combination manner of the linker peptide had a remarkable effect on the orientation of CFP and YFP domains. Our studies demonstrated that the construction of the linker library with the widely controllable flexibility could provide appropriate linkers with the desirable characteristics to engineer the fusion proteins with the expected functions. FAU - Li, Gang AU - Li G AD - Department of Chemical Engineering, Tsinghua University, Beijing, 10084, China. AD - Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, China. FAU - Huang, Ziliang AU - Huang Z AD - Department of Chemical Engineering, Tsinghua University, Beijing, 10084, China. AD - Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, China. FAU - Zhang, Chong AU - Zhang C AD - Department of Chemical Engineering, Tsinghua University, Beijing, 10084, China. [email protected]. AD - Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, China. [email protected]. FAU - Dong, Bo-Jun AU - Dong BJ AD - Department of Chemical Engineering, Tsinghua University, Beijing, 10084, China. AD - Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, China. FAU - Guo, Ruo-Hai AU - Guo RH AD - Department of Chemical Engineering, Tsinghua University, Beijing, 10084, China. AD - Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, China. FAU - Yue, Hong-Wei AU - Yue HW AD - Department of Chemical Engineering, Tsinghua University, Beijing, 10084, China. AD - Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, China. FAU - Yan, Li-Tang AU - Yan LT AD - Department of Chemical Engineering, Tsinghua University, Beijing, 10084, China. AD - Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, China. FAU - Xing, Xin-Hui AU - Xing XH AD - Department of Chemical Engineering, Tsinghua University, Beijing, 10084, China. [email protected]. AD - Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, China. [email protected]. LA - ENG PT - JOURNAL ARTICLE DEP - 20150922 TA - Appl Microbiol Biotechnol JT - Applied microbiology and biotechnology JID - 8406612 OTO - NOTNLM OT - DPD simulation OT - FRET OT - Flexibility/rigidity OT - Fusion protein OT - Linker OT - Molecular dynamics EDAT- 2015/09/24 06:00 MHDA- 2015/09/24 06:00 CRDT- 2015/09/24 06:00 PHST- 2015/04/28 [received] PHST- 2015/09/04 [accepted] PHST- 2015/08/25 [revised] PHST- 2015/09/22 [aheadofprint] AID - 10.1007/s00253-015-6985-3 [doi] AID - 10.1007/s00253-015-6985-3 [pii] PST - aheadofprint SO - Appl Microbiol Biotechnol. 2015 Sep 22. PMID- 26393942 OWN - NLM STAT- Publisher DA - 20150922 LR - 20150924 IS - 1439-0221 (Electronic) IS - 0032-0943 (Linking) DP - 2015 Sep 21 TI - Expanding the Chemical Diversity of the Antitumoral Compound Mithramycin by Combinatorial Biosynthesis and Biocatalysis: The Quest for Mithralogs with Improved Therapeutic Window. AB - Mithramycin is an antitumor compound of the aureolic acid family produced by Streptomyces argillaceus. It has been used to treat several types of cancer including testicular carcinoma, chronic and acute myeloid leukemia as well as hypercalcemias and Paget's disease. Although the use of mithramycin in humans has been limited because its side effects, in recent years a renewed interest has arisen since new uses and activities have been ascribed to it. Chemically, mithramycin is characterized by a tricyclic aglycone bearing two aliphatic side chains attached at C3 and C7, and disaccharide and trisaccharide units attached at positions 2 and 6, respectively. The mithramycin gene cluster has been characterized. This has allowed for the development of several mithramycin analogs ("mithralogs") by combinatorial biosynthesis and/or biocatalysis. The combinatorial biosynthesis strategies include gene inactivation and/or the use of sugar biosynthesis plasmids for sugar modification. In addition, lipase-based biocatalysis enabled selective modifications of the hydroxyl groups, providing further mithramycin analogs. As a result, new mithramycin analogs with higher antitumor activity and/or less toxicity have been generated. One, demycarosyl-3D-beta-D-digitoxosyl-mithramycin SK (EC-8042), is being tested in regulatory preclinical assays, representing an opportunity to open the therapeutic window of this promising molecular scaffold. CI - Georg Thieme Verlag KG Stuttgart . New York. FAU - Mendez, Carmen AU - Mendez C AD - Departamento de Biologia Funcional e Instituto Universitario de Oncologia del Principado de Asturias (I. U. O. P.A), Universidad de Oviedo, Oviedo, Spain. FAU - Gonzalez-Sabin, Javier AU - Gonzalez-Sabin J AD - EntreChem S. L., Edificio Cientifico Tecnologico, Campus El Cristo, Oviedo, Spain. FAU - Moris, Francisco AU - Moris F AD - EntreChem S. L., Edificio Cientifico Tecnologico, Campus El Cristo, Oviedo, Spain. FAU - Salas, Jose A AU - Salas JA AD - Departamento de Biologia Funcional e Instituto Universitario de Oncologia del Principado de Asturias (I. U. O. P.A), Universidad de Oviedo, Oviedo, Spain. LA - ENG PT - JOURNAL ARTICLE DEP - 20150921 TA - Planta Med JT - Planta medica JID - 0066751 EDAT- 2015/09/24 06:00 MHDA- 2015/09/24 06:00 CRDT- 2015/09/23 06:00 PHST- 2015/09/21 [epublish] AID - 10.1055/s-0035-1557876 [doi] PST - aheadofprint SO - Planta Med. 2015 Sep 21. PMID- 26393601 OWN - NLM STAT- Publisher DA - 20150922 LR - 20150924 IS - 1424-8220 (Electronic) IS - 1424-8220 (Linking) VI - 15 IP - 9 DP - 2015 TI - "Stable-on-the-Table" Biosensors: Hemoglobin-Poly (Acrylic Acid) Nanogel BioElectrodes with High Thermal Stability and Enhanced Electroactivity. PG - 23868-23885 AB - In our efforts toward producing environmentally responsible but highly stable bioelectrodes with high electroactivities, we report here a simple, inexpensive, autoclavable high sensitivity biosensor based on enzyme-polymer nanogels. Met-hemoglobin (Hb) is stabilized by wrapping it in high molecular weight poly(acrylic acid) (PAA, MW 450k), and the resulting nanogels abbreviated as Hb-PAA-450k, withstood exposure to high temperatures for extended periods under steam sterilization conditions (122 degrees C, 10 min, 17-20 psi) without loss of Hb structure or its peroxidase-like activities. The bioelectrodes prepared by coating Hb-PAA-450k nanogels on glassy carbon showed well-defined quasi-reversible redox peaks at -0.279 and -0.334 V in cyclic voltammetry (CV) and retained >95% electroactivity after storing for 14 days at room temperature. Similarly, the bioelectrode showed ~90% retention in electrochemical properties after autoclaving under steam sterilization conditions. The ultra stable bioelectrode was used to detect hydrogen peroxide and demonstrated an excellent detection limit of 0.5 muM, the best among the Hb-based electrochemical biosensors. This is the first electrochemical demonstration of steam-sterilizable, storable, modular bioelectrode that undergoes reversible-thermal denaturation and retains electroactivity for protein based electrochemical applications. FAU - Ghimire, Ananta AU - Ghimire A AD - Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA. [email protected]. FAU - Zore, Omkar V AU - Zore OV AD - Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA. [email protected]. FAU - Thilakarathne, Vindya K AU - Thilakarathne VK AD - Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA. [email protected]. FAU - Briand, Victoria A AU - Briand VA AD - Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA. [email protected]. FAU - Lenehan, Patrick J AU - Lenehan PJ AD - Department of Molecular and Cell Biology, University of Connecticut Storrs, Storrs, CT 06269, USA. [email protected]. FAU - Lei, Yu AU - Lei Y AD - Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA. [email protected]. FAU - Kasi, Rajeswari M AU - Kasi RM AD - Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA. [email protected]. AD - Institute of Materials Science, U-3136, University of Connecticut, Storrs, CT 06269, USA. [email protected]. FAU - Kumar, Challa V AU - Kumar CV AD - Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA. [email protected]. AD - Institute of Materials Science, U-3136, University of Connecticut, Storrs, CT 06269, USA. [email protected]. AD - Department of Molecular and Cell Biology, University of Connecticut Storrs, Storrs, CT 06269, USA. [email protected]. LA - ENG PT - JOURNAL ARTICLE DEP - 20150918 TA - Sensors (Basel) JT - Sensors (Basel, Switzerland) JID - 101204366 OTO - NOTNLM OT - biocatalysis OT - electrochemistry OT - hemoglobin OT - high temperature catalysis OT - polyacrylic acid
with open('Data/Biocatalysis/biocatalysis.txt', 'r') as f: record={} corpus={} end_of_record = 'SO ' unique_id = 'PMID' for line in f: line = line.rstrip() tag = line[0:4] content = line[6:] if (tag == " "): tag = lasttag lasttag = tag short_tag = tag.rstrip() if (len(content)>0): if short_tag in record: record[short_tag]=record[short_tag]+"; "+content else: record[short_tag]=content if (tag == unique_id): record = {} article_id = content if (tag == end_of_record): corpus[article_id]=record if (len(corpus)%100 == 0): print("Stored article number",len(corpus)) print(record) print() f.close()
('Stored article number', 100) {'LID': '10.1002/anie.201502925 [doi]', 'STAT': 'In-Process', 'IP': '30', 'DEP': '20150611', 'CI': '(c) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.', 'DA': '20150715', 'AID': '10.1002/anie.201502925 [doi]', 'CRDT': '2015/06/23 06:00', 'DP': '2015 Jul 20', 'OWN': 'NLM', 'PT': 'Journal Article', 'LA': 'eng', 'FAU': 'Dennig, Alexander; Kuhn, Miriam; Tassoti, Sebastian; Thiessenhusen, Anja; Gilch, Stefan; Bulter, Thomas; Haas, Thomas; Hall, Melanie; Faber, Kurt', 'JT': 'Angewandte Chemie (International ed. in English)', 'PG': '8819-22', 'TI': 'Oxidative Decarboxylation of Short-Chain Fatty Acids to 1-Alkenes.', 'PL': 'Germany', 'TA': 'Angew Chem Int Ed Engl', 'JID': '0370543', 'AB': 'The enzymatic oxidative decarboxylation of linear short-chain fatty acids; (C4:0-C9:0) employing the P450 monooxygenase OleT, O2 as the oxidant, and NAD(P)H; as the electron donor gave the corresponding terminal C3 to C8 alkenes with; product titers of up to 0.93 g L(-1) and TTNs of >2000. Key to this process was; the construction of an efficient electron-transfer chain employing putidaredoxin; CamAB in combination with NAD(P)H recycling at the expense of glucose, formate,; or phosphite. This system allows for the biocatalytic production of industrially; important 1-alkenes, such as propene and 1-octene, from renewable resources for; the first time.', 'AD': 'Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz; (Austria).; Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz; (Austria).; Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz; (Austria).; Creavis, Evonik Industries, Bau 1420, Paul Baumann Strasse 1, 45772 Marl; (Germany).; Creavis, Evonik Industries, Bau 1420, Paul Baumann Strasse 1, 45772 Marl; (Germany).; Creavis, Evonik Industries, Bau 1420, Paul Baumann Strasse 1, 45772 Marl; (Germany).; Creavis, Evonik Industries, Bau 1420, Paul Baumann Strasse 1, 45772 Marl; (Germany).; Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz; (Austria).; Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz; (Austria). [email protected].', 'VI': '54', 'IS': '1521-3773 (Electronic); 1433-7851 (Linking)', 'AU': 'Dennig A; Kuhn M; Tassoti S; Thiessenhusen A; Gilch S; Bulter T; Haas T; Hall M; Faber K', 'MHDA': '2015/06/23 06:00', 'PHST': '2015/03/30 [received]; 2015/06/11 [aheadofprint]', 'OTO': 'NOTNLM', 'EDAT': '2015/06/23 06:00', 'SO': 'Angew Chem Int Ed Engl. 2015 Jul 20;54(30):8819-22. doi: 10.1002/anie.201502925.', 'SB': 'IM', 'OT': '1-alkenes; OleT; biocatalysis; fatty acids; oxidative decarboxylation', 'PST': 'ppublish'} () ('Stored article number', 100) {'LID': '10.1002/anie.201502925 [doi]', 'STAT': 'In-Process', 'IP': '30', 'DEP': '20150611', 'CI': '(c) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.', 'DA': '20150715', 'AID': '10.1002/anie.201502925 [doi]', 'CRDT': '2015/06/23 06:00', 'DP': '2015 Jul 20', 'OWN': 'NLM', 'PT': 'Journal Article', 'LA': 'eng', 'FAU': 'Dennig, Alexander; Kuhn, Miriam; Tassoti, Sebastian; Thiessenhusen, Anja; Gilch, Stefan; Bulter, Thomas; Haas, Thomas; Hall, Melanie; Faber, Kurt', 'JT': 'Angewandte Chemie (International ed. in English)', 'PG': '8819-22', 'TI': 'Oxidative Decarboxylation of Short-Chain Fatty Acids to 1-Alkenes.', 'PL': 'Germany', 'TA': 'Angew Chem Int Ed Engl', 'JID': '0370543', 'AB': 'The enzymatic oxidative decarboxylation of linear short-chain fatty acids; (C4:0-C9:0) employing the P450 monooxygenase OleT, O2 as the oxidant, and NAD(P)H; as the electron donor gave the corresponding terminal C3 to C8 alkenes with; product titers of up to 0.93 g L(-1) and TTNs of >2000. Key to this process was; the construction of an efficient electron-transfer chain employing putidaredoxin; CamAB in combination with NAD(P)H recycling at the expense of glucose, formate,; or phosphite. This system allows for the biocatalytic production of industrially; important 1-alkenes, such as propene and 1-octene, from renewable resources for; the first time.', 'AD': 'Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz; (Austria).; Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz; (Austria).; Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz; (Austria).; Creavis, Evonik Industries, Bau 1420, Paul Baumann Strasse 1, 45772 Marl; (Germany).; Creavis, Evonik Industries, Bau 1420, Paul Baumann Strasse 1, 45772 Marl; (Germany).; Creavis, Evonik Industries, Bau 1420, Paul Baumann Strasse 1, 45772 Marl; (Germany).; Creavis, Evonik Industries, Bau 1420, Paul Baumann Strasse 1, 45772 Marl; (Germany).; Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz; (Austria).; Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz; (Austria). [email protected].', 'VI': '54', 'IS': '1521-3773 (Electronic); 1433-7851 (Linking)', 'AU': 'Dennig A; Kuhn M; Tassoti S; Thiessenhusen A; Gilch S; Bulter T; Haas T; Hall M; Faber K', 'MHDA': '2015/06/23 06:00', 'PHST': '2015/03/30 [received]; 2015/06/11 [aheadofprint]', 'OTO': 'NOTNLM', 'EDAT': '2015/06/23 06:00', 'SO': 'Angew Chem Int Ed Engl. 2015 Jul 20;54(30):8819-22. doi: 10.1002/anie.201502925.; Epub 2015 Jun 11.', 'SB': 'IM', 'OT': '1-alkenes; OleT; biocatalysis; fatty acids; oxidative decarboxylation', 'PST': 'ppublish'} () ('Stored article number', 200) {'LID': '10.1155/2015/325905 [doi]', 'STAT': 'In-Process', 'DEP': '20150319', 'DA': '20150413', 'AID': '10.1155/2015/325905 [doi]', 'CRDT': '2015/04/14 06:00', 'DP': '2015', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'FAU': 'Heredia-Olea, Erick; Perez-Carrillo, Esther; Montoya-Chiw, Manuel; Serna-Saldivar, Sergio O', 'JT': 'BioMed research international', 'LR': '20150416', 'PG': '325905', 'TI': 'Effects of extrusion pretreatment parameters on sweet sorghum bagasse enzymatic; hydrolysis and its subsequent conversion into bioethanol.', 'PL': 'United States', 'TA': 'Biomed Res Int', 'JID': '101600173', 'AB': 'Second-generation bioethanol production from sweet sorghum bagasse first extruded; at different conditions and then treated with cell wall degrading enzymes and; fermented with I. orientalis was determined. The twin extruder parameters tested; were barrel temperature, screws speed, and feedstock moisture content using; surface response methodology. The best extrusion conditions were 100 degrees C,; 200 rpm, and 30% conditioning moisture content. This nonchemical and continuous; pretreatment did not generate inhibitory compounds. The extruded feedstocks were; saccharified varying the biocatalysis time and solids loading. The best; conditions were 20% solids loading and 72 h of enzymatic treatment. These; particular conditions converted 70% of the total fibrous carbohydrates into total; fermentable C5 and C6 sugars. The extruded enzymatically hydrolyzed sweet sorghum; bagasse was fermented with the strain I. orientalis at 12% solids obtaining a; yield of 198.1 mL of ethanol per kilogram of bagasse (dw).', 'AD': 'Centro de Biotecnologia FEMSA, Escuela de Ingenieria y Ciencias, Tecnologico de; Monterrey, Avenida Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico.; Centro de Biotecnologia FEMSA, Escuela de Ingenieria y Ciencias, Tecnologico de; Monterrey, Avenida Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico.; Centro de Biotecnologia FEMSA, Escuela de Ingenieria y Ciencias, Tecnologico de; Monterrey, Avenida Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico.; Centro de Biotecnologia FEMSA, Escuela de Ingenieria y Ciencias, Tecnologico de; Monterrey, Avenida Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico.', 'PHST': '2014/06/04 [received]; 2014/08/28 [revised]; 2014/08/28 [accepted]; 2015/03/19 [epublish]', 'VI': '2015', 'IS': '2314-6141 (Electronic)', 'PMC': 'PMC4383157', 'AU': 'Heredia-Olea E; Perez-Carrillo E; Montoya-Chiw M; Serna-Saldivar SO', 'MHDA': '2015/04/14 06:00', 'AUID': 'ORCID: 0000-0002-1047-5785', 'OID': 'NLM: PMC4383157', 'EDAT': '2015/04/14 06:00', 'SO': 'Biomed Res Int. 2015;2015:325905. doi: 10.1155/2015/325905. Epub 2015 Mar 19.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 300) {'LID': '10.1016/j.biotechadv.2015.02.005 [doi]; S0734-9750(15)00030-0 [pii]', 'STAT': 'In-Process', 'IP': '2', 'DEP': '20150216', 'CI': 'Copyright (c) 2015 Elsevier Inc. All rights reserved.', 'DA': '20150309', 'AID': 'S0734-9750(15)00030-0 [pii]; 10.1016/j.biotechadv.2015.02.005 [doi]', 'CRDT': '2015/02/21 06:00', 'DP': '2015 Mar-Apr', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't; Review", 'LA': 'eng', 'FAU': 'De Bruyn, Frederik; Maertens, Jo; Beauprez, Joeri; Soetaert, Wim; De Mey, Marjan', 'JT': 'Biotechnology advances', 'PG': '288-302', 'TI': 'Biotechnological advances in UDP-sugar based glycosylation of small molecules.', 'PL': 'England', 'TA': 'Biotechnol Adv', 'JID': '8403708', 'AB': 'Glycosylation of small molecules like specialized (secondary) metabolites has a; profound impact on their solubility, stability or bioactivity, making glycosides; attractive compounds as food additives, therapeutics or nutraceuticals. The; subsequently growing market demand has fuelled the development of various; biotechnological processes, which can be divided in the in vitro (using enzymes); or in vivo (using whole cells) production of glycosides. In this context, uridine; glycosyltransferases (UGTs) have emerged as promising catalysts for the regio-; and stereoselective glycosylation of various small molecules, hereby using; uridine diphosphate (UDP) sugars as activated glycosyldonors. This review gives; an extensive overview of the recently developed in vivo production processes; using UGTs and discusses the major routes towards UDP-sugar formation.; Furthermore, the use of interconverting enzymes and glycorandomization is; highlighted for the production of unusual or new-to-nature glycosides. Finally,; the technological challenges and future trends in UDP-sugar based glycosylation; are critically evaluated and summarized.', 'AD': 'Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of; Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000; Ghent, Belgium.; Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of; Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000; Ghent, Belgium.; Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of; Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000; Ghent, Belgium.; Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of; Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000; Ghent, Belgium.; Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of; Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000; Ghent, Belgium. Electronic address: [email protected].', 'VI': '33', 'IS': '1873-1899 (Electronic); 0734-9750 (Linking)', 'AU': 'De Bruyn F; Maertens J; Beauprez J; Soetaert W; De Mey M', 'MHDA': '2015/02/24 06:00', 'PHST': '2014/08/12 [received]; 2014/12/19 [revised]; 2015/02/09 [accepted]; 2015/02/16 [aheadofprint]', 'OTO': 'NOTNLM', 'EDAT': '2015/02/24 06:00', 'SO': 'Biotechnol Adv. 2015 Mar-Apr;33(2):288-302. doi:', 'SB': 'IM', 'OT': 'Glycorandomization; Glycosides; Glycosylation; Glycosyltransferases; In vitro; In vivo; Metabolic engineering; Small molecules; UDP-sugars; UGT', 'PST': 'ppublish'} () ('Stored article number', 300) {'LID': '10.1016/j.biotechadv.2015.02.005 [doi]; S0734-9750(15)00030-0 [pii]', 'STAT': 'In-Process', 'IP': '2', 'DEP': '20150216', 'CI': 'Copyright (c) 2015 Elsevier Inc. All rights reserved.', 'DA': '20150309', 'AID': 'S0734-9750(15)00030-0 [pii]; 10.1016/j.biotechadv.2015.02.005 [doi]', 'CRDT': '2015/02/21 06:00', 'DP': '2015 Mar-Apr', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't; Review", 'LA': 'eng', 'FAU': 'De Bruyn, Frederik; Maertens, Jo; Beauprez, Joeri; Soetaert, Wim; De Mey, Marjan', 'JT': 'Biotechnology advances', 'PG': '288-302', 'TI': 'Biotechnological advances in UDP-sugar based glycosylation of small molecules.', 'PL': 'England', 'TA': 'Biotechnol Adv', 'JID': '8403708', 'AB': 'Glycosylation of small molecules like specialized (secondary) metabolites has a; profound impact on their solubility, stability or bioactivity, making glycosides; attractive compounds as food additives, therapeutics or nutraceuticals. The; subsequently growing market demand has fuelled the development of various; biotechnological processes, which can be divided in the in vitro (using enzymes); or in vivo (using whole cells) production of glycosides. In this context, uridine; glycosyltransferases (UGTs) have emerged as promising catalysts for the regio-; and stereoselective glycosylation of various small molecules, hereby using; uridine diphosphate (UDP) sugars as activated glycosyldonors. This review gives; an extensive overview of the recently developed in vivo production processes; using UGTs and discusses the major routes towards UDP-sugar formation.; Furthermore, the use of interconverting enzymes and glycorandomization is; highlighted for the production of unusual or new-to-nature glycosides. Finally,; the technological challenges and future trends in UDP-sugar based glycosylation; are critically evaluated and summarized.', 'AD': 'Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of; Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000; Ghent, Belgium.; Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of; Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000; Ghent, Belgium.; Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of; Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000; Ghent, Belgium.; Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of; Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000; Ghent, Belgium.; Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of; Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000; Ghent, Belgium. Electronic address: [email protected].', 'VI': '33', 'IS': '1873-1899 (Electronic); 0734-9750 (Linking)', 'AU': 'De Bruyn F; Maertens J; Beauprez J; Soetaert W; De Mey M', 'MHDA': '2015/02/24 06:00', 'PHST': '2014/08/12 [received]; 2014/12/19 [revised]; 2015/02/09 [accepted]; 2015/02/16 [aheadofprint]', 'OTO': 'NOTNLM', 'EDAT': '2015/02/24 06:00', 'SO': 'Biotechnol Adv. 2015 Mar-Apr;33(2):288-302. doi:; 10.1016/j.biotechadv.2015.02.005. Epub 2015 Feb 16.', 'SB': 'IM', 'OT': 'Glycorandomization; Glycosides; Glycosylation; Glycosyltransferases; In vitro; In vivo; Metabolic engineering; Small molecules; UDP-sugars; UGT', 'PST': 'ppublish'} () ('Stored article number', 400) {'LID': '10.1371/journal.pone.0116152 [doi]', 'STAT': 'MEDLINE', 'IP': '12', 'DEP': '20141229', 'DA': '20141230', 'AID': '10.1371/journal.pone.0116152 [doi]; PONE-D-14-36856 [pii]', 'FAU': 'Lewis, Jennifer D; Wilton, Mike; Mott, G Adam; Lu, Wenwan; Hassan, Jana A; Guttman, David S; Desveaux, Darrell', 'DP': '2014', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.", 'LA': 'eng', 'CRDT': '2014/12/30 06:00', 'DCOM': '20150908', 'JT': 'PloS one', 'LR': '20150113', 'PG': 'e116152', 'TI': 'Immunomodulation by the Pseudomonas syringae HopZ type III effector family in; Arabidopsis.', 'RN': '0 (Bacterial Proteins); 0 (Reactive Oxygen Species); EC 2.7.11.24 (Mitogen-Activated Protein Kinases); K848JZ4886 (Cysteine)', 'PL': 'United States', 'TA': 'PLoS One', 'JID': '101285081', 'AB': 'Pseudomonas syringae employs a type III secretion system to inject 20-30; different type III effector (T3SE) proteins into plant host cells. A major role; of T3SEs is to suppress plant immune responses and promote bacterial infection.; The YopJ/HopZ acetyltransferases are a superfamily of T3SEs found in both plant; and animal pathogenic bacteria. In P. syringae, this superfamily includes the; evolutionarily diverse HopZ1, HopZ2 and HopZ3 alleles. To investigate the roles; of the HopZ family in immunomodulation, we generated dexamethasone-inducible T3SE; transgenic lines of Arabidopsis for HopZ family members and characterized them; for immune suppression phenotypes. We show that all of the HopZ family members; can actively suppress various facets of Arabidopsis immunity in a catalytic; residue-dependent manner. HopZ family members can differentially suppress the; activation of mitogen-activated protein (MAP) kinase cascades or the production; of reactive oxygen species, whereas all members can promote the growth of; non-virulent P. syringae. Localization studies show that four of the HopZ family; members containing predicted myristoylation sites are localized to the vicinity; of the plasma membrane while HopZ3 which lacks the myristoylation site is at; least partially nuclear localized, suggesting diversification of; immunosuppressive mechanisms. Overall, we demonstrate that despite significant; evolutionary diversification, all HopZ family members can suppress immunity in; Arabidopsis.', 'AD': 'Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario,; Canada; Plant Gene Expression Center, United States Department of Agriculture,; Albany, California, United States of America; Department of Plant and Microbial; Biology, University of California, Berkeley, California, United States of; America.; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario,; Canada.; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario,; Canada.; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario,; Canada.; Department of Plant and Microbial Biology, University of California, Berkeley,; California, United States of America.; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario,; Canada; Centre for the Analysis of Genome Evolution and Function, University of; Toronto, Toronto, Ontario, Canada.; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario,; Canada; Centre for the Analysis of Genome Evolution and Function, University of; Toronto, Toronto, Ontario, Canada.', 'VI': '9', 'IS': '1932-6203 (Electronic); 1932-6203 (Linking)', 'PMC': 'PMC4278861', 'AU': 'Lewis JD; Wilton M; Mott GA; Lu W; Hassan JA; Guttman DS; Desveaux D', 'MHDA': '2015/09/09 06:00', 'PHST': '2014 [ecollection]; 2014/08/15 [received]; 2014/12/04 [accepted]; 2014/12/29 [epublish]', 'OID': 'NLM: PMC4278861', 'MH': 'Arabidopsis/genetics/*immunology/*microbiology; Bacterial Proteins/*metabolism; *Bacterial Secretion Systems; Biocatalysis; Cell Membrane/metabolism; Cell Nucleus/metabolism; Cysteine/metabolism; Disease Resistance/immunology; Enzyme Activation; *Immunomodulation; Mitogen-Activated Protein Kinases/metabolism; Phosphorylation; Plant Diseases/microbiology; Plant Immunity; Plant Leaves/microbiology; Plants, Genetically Modified; Pseudomonas syringae/*immunology; Reactive Oxygen Species/metabolism', 'EDAT': '2014/12/30 06:00', 'SO': 'PLoS One. 2014 Dec 29;9(12):e116152. doi: 10.1371/journal.pone.0116152.', 'SB': 'IM', 'PST': 'epublish'} () ('Stored article number', 400) {'LID': '10.1371/journal.pone.0116152 [doi]', 'STAT': 'MEDLINE', 'IP': '12', 'DEP': '20141229', 'DA': '20141230', 'AID': '10.1371/journal.pone.0116152 [doi]; PONE-D-14-36856 [pii]', 'FAU': 'Lewis, Jennifer D; Wilton, Mike; Mott, G Adam; Lu, Wenwan; Hassan, Jana A; Guttman, David S; Desveaux, Darrell', 'DP': '2014', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.", 'LA': 'eng', 'CRDT': '2014/12/30 06:00', 'DCOM': '20150908', 'JT': 'PloS one', 'LR': '20150113', 'PG': 'e116152', 'TI': 'Immunomodulation by the Pseudomonas syringae HopZ type III effector family in; Arabidopsis.', 'RN': '0 (Bacterial Proteins); 0 (Reactive Oxygen Species); EC 2.7.11.24 (Mitogen-Activated Protein Kinases); K848JZ4886 (Cysteine)', 'PL': 'United States', 'TA': 'PLoS One', 'JID': '101285081', 'AB': 'Pseudomonas syringae employs a type III secretion system to inject 20-30; different type III effector (T3SE) proteins into plant host cells. A major role; of T3SEs is to suppress plant immune responses and promote bacterial infection.; The YopJ/HopZ acetyltransferases are a superfamily of T3SEs found in both plant; and animal pathogenic bacteria. In P. syringae, this superfamily includes the; evolutionarily diverse HopZ1, HopZ2 and HopZ3 alleles. To investigate the roles; of the HopZ family in immunomodulation, we generated dexamethasone-inducible T3SE; transgenic lines of Arabidopsis for HopZ family members and characterized them; for immune suppression phenotypes. We show that all of the HopZ family members; can actively suppress various facets of Arabidopsis immunity in a catalytic; residue-dependent manner. HopZ family members can differentially suppress the; activation of mitogen-activated protein (MAP) kinase cascades or the production; of reactive oxygen species, whereas all members can promote the growth of; non-virulent P. syringae. Localization studies show that four of the HopZ family; members containing predicted myristoylation sites are localized to the vicinity; of the plasma membrane while HopZ3 which lacks the myristoylation site is at; least partially nuclear localized, suggesting diversification of; immunosuppressive mechanisms. Overall, we demonstrate that despite significant; evolutionary diversification, all HopZ family members can suppress immunity in; Arabidopsis.', 'AD': 'Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario,; Canada; Plant Gene Expression Center, United States Department of Agriculture,; Albany, California, United States of America; Department of Plant and Microbial; Biology, University of California, Berkeley, California, United States of; America.; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario,; Canada.; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario,; Canada.; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario,; Canada.; Department of Plant and Microbial Biology, University of California, Berkeley,; California, United States of America.; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario,; Canada; Centre for the Analysis of Genome Evolution and Function, University of; Toronto, Toronto, Ontario, Canada.; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario,; Canada; Centre for the Analysis of Genome Evolution and Function, University of; Toronto, Toronto, Ontario, Canada.', 'VI': '9', 'IS': '1932-6203 (Electronic); 1932-6203 (Linking)', 'PMC': 'PMC4278861', 'AU': 'Lewis JD; Wilton M; Mott GA; Lu W; Hassan JA; Guttman DS; Desveaux D', 'MHDA': '2015/09/09 06:00', 'PHST': '2014 [ecollection]; 2014/08/15 [received]; 2014/12/04 [accepted]; 2014/12/29 [epublish]', 'OID': 'NLM: PMC4278861', 'MH': 'Arabidopsis/genetics/*immunology/*microbiology; Bacterial Proteins/*metabolism; *Bacterial Secretion Systems; Biocatalysis; Cell Membrane/metabolism; Cell Nucleus/metabolism; Cysteine/metabolism; Disease Resistance/immunology; Enzyme Activation; *Immunomodulation; Mitogen-Activated Protein Kinases/metabolism; Phosphorylation; Plant Diseases/microbiology; Plant Immunity; Plant Leaves/microbiology; Plants, Genetically Modified; Pseudomonas syringae/*immunology; Reactive Oxygen Species/metabolism', 'EDAT': '2014/12/30 06:00', 'SO': 'PLoS One. 2014 Dec 29;9(12):e116152. doi: 10.1371/journal.pone.0116152.; eCollection 2014.', 'SB': 'IM', 'PST': 'epublish'} () ('Stored article number', 500) {'LID': '10.1016/j.biochi.2014.10.024 [doi]; S0300-9084(14)00310-1 [pii]', 'STAT': 'MEDLINE', 'DEP': '20141105', 'CI': 'Copyright (c) 2014 Elsevier B.V. and Societe francaise de biochimie et biologie; Moleculaire (SFBBM). All rights reserved.', 'DA': '20141229', 'AID': 'S0300-9084(14)00310-1 [pii]; 10.1016/j.biochi.2014.10.024 [doi]', 'DCOM': '20150819', 'DP': '2015 Jan', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2014/12/03 06:00', 'FAU': 'Reisse, Steven; Garbe, Daniel; Bruck, Thomas', 'JT': 'Biochimie', 'PG': '76-84', 'TI': 'Identification and optimization of a novel thermo- and solvent stable ketol-acid; reductoisomerase for cell free isobutanol biosynthesis.', 'RN': '0 (Butanols); 0 (Solvents); 56F9Z98TEM (isobutyl alcohol); EC 1.1.1.86 (Ketol-Acid Reductoisomerase)', 'PL': 'France', 'TA': 'Biochimie', 'JID': '1264604', 'AB': 'Due to its enhanced energy content and hydrophobicity, isobutanol is flagged as a; next generation biofuel and chemical building block. For cellular and cell-free; isobutanol production, NADH dependent (over NADPH dependent) enzyme systems are; desired. To improve cell-free isobutanol processes, we characterized and; catalytically optimized a NADH dependent, thermo- and solvent stable ketol-acid; reductoisomerase (KARI) derived from the bacterium Meiothermus ruber (Mr). The; wild type Mr-KARI has the most temperature tolerant KARI specific activity; reported to date. The KARI screening procedure developed in this study allows; accelerated molecular optimization. Thus, a KARI variant with a 350% improved; activity and enhanced NADH cofactor specificity was identified. Other KARI; variants gave insights into Mr-KARI structure-function relationships.', 'AD': 'Fachgebiet Industrielle Biokatalyse, Technische Universitat Munchen,; Lichtenbergstr. 4, 85748 Garching, Germany. Electronic address:; [email protected].; Fachgebiet Industrielle Biokatalyse, Technische Universitat Munchen,; Lichtenbergstr. 4, 85748 Garching, Germany. Electronic address:; [email protected].; Fachgebiet Industrielle Biokatalyse, Technische Universitat Munchen,; Lichtenbergstr. 4, 85748 Garching, Germany. Electronic address: [email protected].', 'VI': '108', 'IS': '1638-6183 (Electronic); 0300-9084 (Linking)', 'AU': 'Reisse S; Garbe D; Bruck T', 'MHDA': '2015/08/20 06:00', 'PHST': '2014/09/18 [received]; 2014/10/27 [accepted]; 2014/11/05 [aheadofprint]', 'OTO': 'NOTNLM', 'MH': 'Amino Acid Sequence; Biocatalysis; Butanols/*metabolism; Deinococcus/enzymology; Enzyme Stability; Ketol-Acid Reductoisomerase/*chemistry/genetics/*metabolism; Kinetics; Models, Molecular; Molecular Sequence Data; *Mutagenesis; Protein Conformation; Solvents/*chemistry; *Temperature', 'EDAT': '2014/12/03 06:00', 'SO': 'Biochimie. 2015 Jan;108:76-84. doi: 10.1016/j.biochi.2014.10.024. Epub 2014 Nov', 'SB': 'IM', 'OT': 'Biocatalysis; Cell-free; Isobutanol; Ketol-acid reductoisomerase; Meiothermus ruber; Thermophilic enzymes', 'PST': 'ppublish'} () ('Stored article number', 500) {'LID': '10.1016/j.biochi.2014.10.024 [doi]; S0300-9084(14)00310-1 [pii]', 'STAT': 'MEDLINE', 'DEP': '20141105', 'CI': 'Copyright (c) 2014 Elsevier B.V. and Societe francaise de biochimie et biologie; Moleculaire (SFBBM). All rights reserved.', 'DA': '20141229', 'AID': 'S0300-9084(14)00310-1 [pii]; 10.1016/j.biochi.2014.10.024 [doi]', 'DCOM': '20150819', 'DP': '2015 Jan', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2014/12/03 06:00', 'FAU': 'Reisse, Steven; Garbe, Daniel; Bruck, Thomas', 'JT': 'Biochimie', 'PG': '76-84', 'TI': 'Identification and optimization of a novel thermo- and solvent stable ketol-acid; reductoisomerase for cell free isobutanol biosynthesis.', 'RN': '0 (Butanols); 0 (Solvents); 56F9Z98TEM (isobutyl alcohol); EC 1.1.1.86 (Ketol-Acid Reductoisomerase)', 'PL': 'France', 'TA': 'Biochimie', 'JID': '1264604', 'AB': 'Due to its enhanced energy content and hydrophobicity, isobutanol is flagged as a; next generation biofuel and chemical building block. For cellular and cell-free; isobutanol production, NADH dependent (over NADPH dependent) enzyme systems are; desired. To improve cell-free isobutanol processes, we characterized and; catalytically optimized a NADH dependent, thermo- and solvent stable ketol-acid; reductoisomerase (KARI) derived from the bacterium Meiothermus ruber (Mr). The; wild type Mr-KARI has the most temperature tolerant KARI specific activity; reported to date. The KARI screening procedure developed in this study allows; accelerated molecular optimization. Thus, a KARI variant with a 350% improved; activity and enhanced NADH cofactor specificity was identified. Other KARI; variants gave insights into Mr-KARI structure-function relationships.', 'AD': 'Fachgebiet Industrielle Biokatalyse, Technische Universitat Munchen,; Lichtenbergstr. 4, 85748 Garching, Germany. Electronic address:; [email protected].; Fachgebiet Industrielle Biokatalyse, Technische Universitat Munchen,; Lichtenbergstr. 4, 85748 Garching, Germany. Electronic address:; [email protected].; Fachgebiet Industrielle Biokatalyse, Technische Universitat Munchen,; Lichtenbergstr. 4, 85748 Garching, Germany. Electronic address: [email protected].', 'VI': '108', 'IS': '1638-6183 (Electronic); 0300-9084 (Linking)', 'AU': 'Reisse S; Garbe D; Bruck T', 'MHDA': '2015/08/20 06:00', 'PHST': '2014/09/18 [received]; 2014/10/27 [accepted]; 2014/11/05 [aheadofprint]', 'OTO': 'NOTNLM', 'MH': 'Amino Acid Sequence; Biocatalysis; Butanols/*metabolism; Deinococcus/enzymology; Enzyme Stability; Ketol-Acid Reductoisomerase/*chemistry/genetics/*metabolism; Kinetics; Models, Molecular; Molecular Sequence Data; *Mutagenesis; Protein Conformation; Solvents/*chemistry; *Temperature', 'EDAT': '2014/12/03 06:00', 'SO': 'Biochimie. 2015 Jan;108:76-84. doi: 10.1016/j.biochi.2014.10.024. Epub 2014 Nov; 5.', 'SB': 'IM', 'OT': 'Biocatalysis; Cell-free; Isobutanol; Ketol-acid reductoisomerase; Meiothermus ruber; Thermophilic enzymes', 'PST': 'ppublish'} () ('Stored article number', 600) {'LID': '10.1073/pnas.1404736111 [doi]', 'STAT': 'MEDLINE', 'IP': '43', 'DEP': '20141013', 'DA': '20141029', 'AID': '1404736111 [pii]; 10.1073/pnas.1404736111 [doi]', 'FAU': 'Liu, Daniel S; Nivon, Lucas G; Richter, Florian; Goldman, Peter J; Deerinck, Thomas J; Yao, Jennifer Z; Richardson, Douglas; Phipps, William S; Ye, Anne Z; Ellisman, Mark H; Drennan, Catherine L; Baker, David; Ting, Alice Y', 'DP': '2014 Oct 28', 'GR': 'DP1 OD003961/OD/NIH HHS/United States; GM103412/GM/NIGMS NIH HHS/United States; P41 GM103412/GM/NIGMS NIH HHS/United States; R01 GM072670/GM/NIGMS NIH HHS/United States; R01 GM086197/GM/NIGMS NIH HHS/United States; RR-15301/RR/NCRR NIH HHS/United States; Howard Hughes Medical Institute/United States', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.", 'LA': 'eng', 'CRDT': '2014/10/15 06:00', 'DCOM': '20150417', 'JT': 'Proceedings of the National Academy of Sciences of the United States of America', 'LR': '20150611', 'PG': 'E4551-9', 'TI': 'Computational design of a red fluorophore ligase for site-specific protein; labeling in living cells.', 'RN': '0 (Coumarins); 0 (Fluorescent Dyes); 0 (Oxazines); 147336-22-9 (Green Fluorescent Proteins); 635-78-9 (resorufin); A4VZ22K1WT (coumarin); EC 6.- (Ligases)', 'PL': 'United States', 'TA': 'Proc Natl Acad Sci U S A', 'JID': '7505876', 'AB': 'Chemical fluorophores offer tremendous size and photophysical advantages over; fluorescent proteins but are much more challenging to target to specific cellular; proteins. Here, we used Rosetta-based computation to design a fluorophore ligase; that accepts the red dye resorufin, starting from Escherichia coli lipoic acid; ligase. X-ray crystallography showed that the design closely matched the; experimental structure. Resorufin ligase catalyzed the site-specific and covalent; attachment of resorufin to various cellular proteins genetically fused to a 13-aa; recognition peptide in multiple mammalian cell lines and in primary cultured; neurons. We used resorufin ligase to perform superresolution imaging of the; intermediate filament protein vimentin by stimulated emission depletion and; electron microscopies. This work illustrates the power of Rosetta for major; redesign of enzyme specificity and introduces a tool for minimally invasive,; highly specific imaging of cellular proteins by both conventional and; superresolution microscopies.', 'AD': 'Departments of Chemistry and.; Department of Biochemistry.; Department of Biochemistry, Graduate Program in Biological Physics, Structure and; Design, University of Washington, Seattle, WA 98195;; Departments of Chemistry and.; National Center for Microscopy and Imaging Research, Center for Research on; Biological Systems and.; Departments of Chemistry and.; Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry,; 37077 Gottingen, Germany.; Departments of Chemistry and.; Departments of Chemistry and.; National Center for Microscopy and Imaging Research, Center for Research on; Biological Systems and Department of Neurosciences, University of California, San; Diego, La Jolla, CA 92093; and.; Departments of Chemistry and Biology and Howard Hughes Medical Institute,; Massachusetts Institute of Technology, Cambridge, MA 02139;; Department of Biochemistry, Howard Hughes Medical Institute, and.; Departments of Chemistry and [email protected].', 'VI': '111', 'IS': '1091-6490 (Electronic); 0027-8424 (Linking)', 'PMC': 'PMC4217414', 'AU': 'Liu DS; Nivon LG; Richter F; Goldman PJ; Deerinck TJ; Yao JZ; Richardson D; Phipps WS; Ye AZ; Ellisman MH; Drennan CL; Baker D; Ting AY', 'MHDA': '2015/04/18 06:00', 'PHST': '2014/10/13 [aheadofprint]', 'OTO': 'NOTNLM', 'OID': 'NLM: PMC4217414', 'MH': 'Animals; Biocatalysis; COS Cells; Cell Survival; Cercopithecus aethiops; Computational Biology/*methods; Coumarins; Crystallography, X-Ray; Fluorescent Dyes/*metabolism; Green Fluorescent Proteins/*metabolism; HEK293 Cells; HeLa Cells; Humans; Imaging, Three-Dimensional; Ligases/*metabolism; Microscopy, Electron; Models, Molecular; Mutagenesis; Oxazines/chemical synthesis/chemistry/*metabolism; Rats; *Staining and Labeling', 'EDAT': '2014/10/15 06:00', 'SI': 'PDB/4TVW; PDB/4TVY', 'SO': 'Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):E4551-9. doi:', 'SB': 'IM', 'OT': 'LplA; PRIME; chemical probe targeting; enzyme redesign; fluorescence microscopy', 'PST': 'ppublish'} () ('Stored article number', 600) {'LID': '10.1073/pnas.1404736111 [doi]', 'STAT': 'MEDLINE', 'IP': '43', 'DEP': '20141013', 'DA': '20141029', 'AID': '1404736111 [pii]; 10.1073/pnas.1404736111 [doi]', 'FAU': 'Liu, Daniel S; Nivon, Lucas G; Richter, Florian; Goldman, Peter J; Deerinck, Thomas J; Yao, Jennifer Z; Richardson, Douglas; Phipps, William S; Ye, Anne Z; Ellisman, Mark H; Drennan, Catherine L; Baker, David; Ting, Alice Y', 'DP': '2014 Oct 28', 'GR': 'DP1 OD003961/OD/NIH HHS/United States; GM103412/GM/NIGMS NIH HHS/United States; P41 GM103412/GM/NIGMS NIH HHS/United States; R01 GM072670/GM/NIGMS NIH HHS/United States; R01 GM086197/GM/NIGMS NIH HHS/United States; RR-15301/RR/NCRR NIH HHS/United States; Howard Hughes Medical Institute/United States', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.", 'LA': 'eng', 'CRDT': '2014/10/15 06:00', 'DCOM': '20150417', 'JT': 'Proceedings of the National Academy of Sciences of the United States of America', 'LR': '20150611', 'PG': 'E4551-9', 'TI': 'Computational design of a red fluorophore ligase for site-specific protein; labeling in living cells.', 'RN': '0 (Coumarins); 0 (Fluorescent Dyes); 0 (Oxazines); 147336-22-9 (Green Fluorescent Proteins); 635-78-9 (resorufin); A4VZ22K1WT (coumarin); EC 6.- (Ligases)', 'PL': 'United States', 'TA': 'Proc Natl Acad Sci U S A', 'JID': '7505876', 'AB': 'Chemical fluorophores offer tremendous size and photophysical advantages over; fluorescent proteins but are much more challenging to target to specific cellular; proteins. Here, we used Rosetta-based computation to design a fluorophore ligase; that accepts the red dye resorufin, starting from Escherichia coli lipoic acid; ligase. X-ray crystallography showed that the design closely matched the; experimental structure. Resorufin ligase catalyzed the site-specific and covalent; attachment of resorufin to various cellular proteins genetically fused to a 13-aa; recognition peptide in multiple mammalian cell lines and in primary cultured; neurons. We used resorufin ligase to perform superresolution imaging of the; intermediate filament protein vimentin by stimulated emission depletion and; electron microscopies. This work illustrates the power of Rosetta for major; redesign of enzyme specificity and introduces a tool for minimally invasive,; highly specific imaging of cellular proteins by both conventional and; superresolution microscopies.', 'AD': 'Departments of Chemistry and.; Department of Biochemistry.; Department of Biochemistry, Graduate Program in Biological Physics, Structure and; Design, University of Washington, Seattle, WA 98195;; Departments of Chemistry and.; National Center for Microscopy and Imaging Research, Center for Research on; Biological Systems and.; Departments of Chemistry and.; Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry,; 37077 Gottingen, Germany.; Departments of Chemistry and.; Departments of Chemistry and.; National Center for Microscopy and Imaging Research, Center for Research on; Biological Systems and Department of Neurosciences, University of California, San; Diego, La Jolla, CA 92093; and.; Departments of Chemistry and Biology and Howard Hughes Medical Institute,; Massachusetts Institute of Technology, Cambridge, MA 02139;; Department of Biochemistry, Howard Hughes Medical Institute, and.; Departments of Chemistry and [email protected].', 'VI': '111', 'IS': '1091-6490 (Electronic); 0027-8424 (Linking)', 'PMC': 'PMC4217414', 'AU': 'Liu DS; Nivon LG; Richter F; Goldman PJ; Deerinck TJ; Yao JZ; Richardson D; Phipps WS; Ye AZ; Ellisman MH; Drennan CL; Baker D; Ting AY', 'MHDA': '2015/04/18 06:00', 'PHST': '2014/10/13 [aheadofprint]', 'OTO': 'NOTNLM', 'OID': 'NLM: PMC4217414', 'MH': 'Animals; Biocatalysis; COS Cells; Cell Survival; Cercopithecus aethiops; Computational Biology/*methods; Coumarins; Crystallography, X-Ray; Fluorescent Dyes/*metabolism; Green Fluorescent Proteins/*metabolism; HEK293 Cells; HeLa Cells; Humans; Imaging, Three-Dimensional; Ligases/*metabolism; Microscopy, Electron; Models, Molecular; Mutagenesis; Oxazines/chemical synthesis/chemistry/*metabolism; Rats; *Staining and Labeling', 'EDAT': '2014/10/15 06:00', 'SI': 'PDB/4TVW; PDB/4TVY', 'SO': 'Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):E4551-9. doi:; 10.1073/pnas.1404736111. Epub 2014 Oct 13.', 'SB': 'IM', 'OT': 'LplA; PRIME; chemical probe targeting; enzyme redesign; fluorescence microscopy', 'PST': 'ppublish'} () ('Stored article number', 700) {'LID': '10.1021/bi5009529 [doi]', 'STAT': 'MEDLINE', 'IP': '39', 'DEP': '20140924', 'DA': '20141007', 'AID': '10.1021/bi5009529 [doi]', 'FAU': 'Montebello, Aubrey N; Brecht, Ryan M; Turner, Remington D; Ghali, Miranda; Pu, Xinzhu; Nagarajan, Rajesh', 'DP': '2014 Oct 7', 'GR': 'P20 GM103408/GM/NIGMS NIH HHS/United States; P20 GM103408/GM/NIGMS NIH HHS/United States; P20 RR016454/RR/NCRR NIH HHS/United States', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.", 'LA': 'eng', 'CRDT': '2014/09/13 06:00', 'DCOM': '20150420', 'JT': 'Biochemistry', 'LR': '20150912', 'PG': '6231-42', 'TI': 'Acyl-ACP substrate recognition in Burkholderia mallei BmaI1 acyl-homoserine; lactone synthase.', 'RN': '0 (Acyl Carrier Protein); 0 (Acyl-Butyrolactones); 0 (Bacterial Proteins); EC 6.- (Ligases)', 'PL': 'United States', 'TA': 'Biochemistry', 'JID': '0370623', 'AB': 'The acyl-homoserine lactone (AHL) autoinducer mediated quorum sensing regulates; virulence in several pathogenic bacteria. The hallmark of an efficient quorum; sensing system relies on the tight specificity in the signal generated by each; bacterium. Since AHL signal specificity is derived from the acyl-chain of the; acyl-ACP (ACP = acyl carrier protein) substrate, AHL synthase enzymes must; recognize and react with the native acyl-ACP with high catalytic efficiency while; keeping reaction rates with non-native acyl-ACPs low. The mechanism of acyl-ACP; substrate recognition in these enzymes, however, remains elusive. In this study,; we investigated differences in catalytic efficiencies for shorter and longer; chain acyl-ACP substrates reacting with an octanoyl-homoserine lactone synthase; Burkholderia mallei BmaI1. With the exception of two-carbon shorter hexanoyl-ACP,; the catalytic efficiencies of butyryl-ACP, decanoyl-ACP, and octanoyl-CoA; reacting with BmaI1 decreased by greater than 20-fold compared to the native; octanoyl-ACP substrate. Furthermore, we also noticed kinetic cooperativity when; BmaI1 reacted with non-native acyl-donor substrates. Our kinetic data suggest; that non-native acyl-ACP substrates are unable to form a stable and productive; BmaI1.acyl-ACP.SAM ternary complex and are thus effectively discriminated by the; enzyme. These results offer insights into the molecular basis of substrate; recognition for the BmaI1 enzyme.', 'AD': 'Department of Chemistry and Biochemistry, Boise State University , 1910; University Drive, Boise, Idaho 83725, United States.', 'VI': '53', 'IS': '1520-4995 (Electronic); 0006-2960 (Linking)', 'PMC': 'PMC4188261', 'AU': 'Montebello AN; Brecht RM; Turner RD; Ghali M; Pu X; Nagarajan R', 'MHDA': '2015/04/22 06:00', 'PHST': '2014/09/24 [aheadofprint]', 'OID': 'NLM: PMC4188261', 'MH': 'Acyl Carrier Protein/*metabolism; Acyl-Butyrolactones/*metabolism; Bacterial Proteins/genetics/*metabolism; Biocatalysis; Burkholderia mallei/enzymology/genetics/metabolism; Chromatography, High Pressure Liquid; Kinetics; Ligases/genetics/*metabolism; Substrate Specificity', 'EDAT': '2014/09/13 06:00', 'SO': 'Biochemistry. 2014 Oct 7;53(39):6231-42. doi: 10.1021/bi5009529. Epub 2014 Sep', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 700) {'LID': '10.1021/bi5009529 [doi]', 'STAT': 'MEDLINE', 'IP': '39', 'DEP': '20140924', 'DA': '20141007', 'AID': '10.1021/bi5009529 [doi]', 'FAU': 'Montebello, Aubrey N; Brecht, Ryan M; Turner, Remington D; Ghali, Miranda; Pu, Xinzhu; Nagarajan, Rajesh', 'DP': '2014 Oct 7', 'GR': 'P20 GM103408/GM/NIGMS NIH HHS/United States; P20 GM103408/GM/NIGMS NIH HHS/United States; P20 RR016454/RR/NCRR NIH HHS/United States', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.", 'LA': 'eng', 'CRDT': '2014/09/13 06:00', 'DCOM': '20150420', 'JT': 'Biochemistry', 'LR': '20150912', 'PG': '6231-42', 'TI': 'Acyl-ACP substrate recognition in Burkholderia mallei BmaI1 acyl-homoserine; lactone synthase.', 'RN': '0 (Acyl Carrier Protein); 0 (Acyl-Butyrolactones); 0 (Bacterial Proteins); EC 6.- (Ligases)', 'PL': 'United States', 'TA': 'Biochemistry', 'JID': '0370623', 'AB': 'The acyl-homoserine lactone (AHL) autoinducer mediated quorum sensing regulates; virulence in several pathogenic bacteria. The hallmark of an efficient quorum; sensing system relies on the tight specificity in the signal generated by each; bacterium. Since AHL signal specificity is derived from the acyl-chain of the; acyl-ACP (ACP = acyl carrier protein) substrate, AHL synthase enzymes must; recognize and react with the native acyl-ACP with high catalytic efficiency while; keeping reaction rates with non-native acyl-ACPs low. The mechanism of acyl-ACP; substrate recognition in these enzymes, however, remains elusive. In this study,; we investigated differences in catalytic efficiencies for shorter and longer; chain acyl-ACP substrates reacting with an octanoyl-homoserine lactone synthase; Burkholderia mallei BmaI1. With the exception of two-carbon shorter hexanoyl-ACP,; the catalytic efficiencies of butyryl-ACP, decanoyl-ACP, and octanoyl-CoA; reacting with BmaI1 decreased by greater than 20-fold compared to the native; octanoyl-ACP substrate. Furthermore, we also noticed kinetic cooperativity when; BmaI1 reacted with non-native acyl-donor substrates. Our kinetic data suggest; that non-native acyl-ACP substrates are unable to form a stable and productive; BmaI1.acyl-ACP.SAM ternary complex and are thus effectively discriminated by the; enzyme. These results offer insights into the molecular basis of substrate; recognition for the BmaI1 enzyme.', 'AD': 'Department of Chemistry and Biochemistry, Boise State University , 1910; University Drive, Boise, Idaho 83725, United States.', 'VI': '53', 'IS': '1520-4995 (Electronic); 0006-2960 (Linking)', 'PMC': 'PMC4188261', 'AU': 'Montebello AN; Brecht RM; Turner RD; Ghali M; Pu X; Nagarajan R', 'MHDA': '2015/04/22 06:00', 'PHST': '2014/09/24 [aheadofprint]', 'OID': 'NLM: PMC4188261', 'MH': 'Acyl Carrier Protein/*metabolism; Acyl-Butyrolactones/*metabolism; Bacterial Proteins/genetics/*metabolism; Biocatalysis; Burkholderia mallei/enzymology/genetics/metabolism; Chromatography, High Pressure Liquid; Kinetics; Ligases/genetics/*metabolism; Substrate Specificity', 'EDAT': '2014/09/13 06:00', 'SO': 'Biochemistry. 2014 Oct 7;53(39):6231-42. doi: 10.1021/bi5009529. Epub 2014 Sep; 24.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 800) {'LID': '10.1002/anie.201405696 [doi]', 'STAT': 'MEDLINE', 'IP': '41', 'DEP': '20140821', 'JID': '0370543', 'DA': '20140930', 'AID': '10.1002/anie.201405696 [doi]', 'FAU': 'Diethelm, Stefan; Teufel, Robin; Kaysser, Leonard; Moore, Bradley S', 'DP': '2014 Oct 6', 'GR': 'R01 AI047818/AI/NIAID NIH HHS/United States; R01-AI047818/AI/NIAID NIH HHS/United States', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2014/08/23 06:00', 'DCOM': '20150528', 'JT': 'Angewandte Chemie (International ed. in English)', 'PG': '11023-6', 'TI': 'A multitasking vanadium-dependent chloroperoxidase as an inspiration for the; chemical synthesis of the merochlorins.', 'RN': '0 (Sesterterpenes); 0 (merochlorin A); 0 (merochlorin B); EC 1.11.1.- (vanadium chloroperoxidase); EC 1.11.1.10 (Chloride Peroxidase)', 'PMCR': '2015/10/06 00:00', 'PL': 'Germany', 'TA': 'Angew Chem Int Ed Engl', 'CI': '(c) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.', 'AB': 'The vanadium-dependent chloroperoxidase Mcl24 was discovered to mediate a complex; series of unprecedented transformations in the biosynthesis of the merochlorin; meroterpenoid antibiotics. In particular, a site-selective naphthol chlorination; is followed by an oxidative dearomatization/terpene cyclization sequence to build; up the stereochemically complex carbon framework of the merochlorins in one step.; Inspired by the enzyme reactivity, a chemical chlorination protocol paralleling; the biocatalytic process was developed. These chemical studies led to the; identification of previously overlooked merochlorin natural products.', 'AD': 'Center for Marine Biotechnology and Biomedicine, Scripps Institution of; Oceanography, University of California San Diego, La Jolla, CA 92093 (USA); http://scrippsscholars.ucsd.edu/bsmoore.', 'VI': '53', 'IS': '1521-3773 (Electronic); 1433-7851 (Linking)', 'PMC': 'PMC4226426', 'MID': 'NIHMS639785', 'AU': 'Diethelm S; Teufel R; Kaysser L; Moore BS', 'MHDA': '2015/05/29 06:00', 'PHST': '2014/05/27 [received]; 2014/08/21 [aheadofprint]', 'OTO': 'NOTNLM', 'OID': 'NLM: NIHMS639785 [Available on 10/06/15]; NLM: PMC4226426 [Available on 10/06/15]', 'MH': 'Biocatalysis; Chloride Peroxidase/*metabolism; Cyclization; Oxidation-Reduction; Sesterterpenes/*biosynthesis/chemistry; Stereoisomerism', 'EDAT': '2014/08/26 06:00', 'SO': 'Angew Chem Int Ed Engl. 2014 Oct 6;53(41):11023-6. doi: 10.1002/anie.201405696.', 'SB': 'IM', 'OT': 'biomimetic synthesis; chlorine; enzymes; oxidation; vanadium', 'PST': 'ppublish'} () ('Stored article number', 800) {'LID': '10.1002/anie.201405696 [doi]', 'STAT': 'MEDLINE', 'IP': '41', 'DEP': '20140821', 'JID': '0370543', 'DA': '20140930', 'AID': '10.1002/anie.201405696 [doi]', 'FAU': 'Diethelm, Stefan; Teufel, Robin; Kaysser, Leonard; Moore, Bradley S', 'DP': '2014 Oct 6', 'GR': 'R01 AI047818/AI/NIAID NIH HHS/United States; R01-AI047818/AI/NIAID NIH HHS/United States', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2014/08/23 06:00', 'DCOM': '20150528', 'JT': 'Angewandte Chemie (International ed. in English)', 'PG': '11023-6', 'TI': 'A multitasking vanadium-dependent chloroperoxidase as an inspiration for the; chemical synthesis of the merochlorins.', 'RN': '0 (Sesterterpenes); 0 (merochlorin A); 0 (merochlorin B); EC 1.11.1.- (vanadium chloroperoxidase); EC 1.11.1.10 (Chloride Peroxidase)', 'PMCR': '2015/10/06 00:00', 'PL': 'Germany', 'TA': 'Angew Chem Int Ed Engl', 'CI': '(c) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.', 'AB': 'The vanadium-dependent chloroperoxidase Mcl24 was discovered to mediate a complex; series of unprecedented transformations in the biosynthesis of the merochlorin; meroterpenoid antibiotics. In particular, a site-selective naphthol chlorination; is followed by an oxidative dearomatization/terpene cyclization sequence to build; up the stereochemically complex carbon framework of the merochlorins in one step.; Inspired by the enzyme reactivity, a chemical chlorination protocol paralleling; the biocatalytic process was developed. These chemical studies led to the; identification of previously overlooked merochlorin natural products.', 'AD': 'Center for Marine Biotechnology and Biomedicine, Scripps Institution of; Oceanography, University of California San Diego, La Jolla, CA 92093 (USA); http://scrippsscholars.ucsd.edu/bsmoore.', 'VI': '53', 'IS': '1521-3773 (Electronic); 1433-7851 (Linking)', 'PMC': 'PMC4226426', 'MID': 'NIHMS639785', 'AU': 'Diethelm S; Teufel R; Kaysser L; Moore BS', 'MHDA': '2015/05/29 06:00', 'PHST': '2014/05/27 [received]; 2014/08/21 [aheadofprint]', 'OTO': 'NOTNLM', 'OID': 'NLM: NIHMS639785 [Available on 10/06/15]; NLM: PMC4226426 [Available on 10/06/15]', 'MH': 'Biocatalysis; Chloride Peroxidase/*metabolism; Cyclization; Oxidation-Reduction; Sesterterpenes/*biosynthesis/chemistry; Stereoisomerism', 'EDAT': '2014/08/26 06:00', 'SO': 'Angew Chem Int Ed Engl. 2014 Oct 6;53(41):11023-6. doi: 10.1002/anie.201405696.; Epub 2014 Aug 21.', 'SB': 'IM', 'OT': 'biomimetic synthesis; chlorine; enzymes; oxidation; vanadium', 'PST': 'ppublish'} () ('Stored article number', 900) {'LID': '10.1002/cbic.201402160 [doi]', 'STAT': 'MEDLINE', 'IP': '11', 'DEP': '20140708', 'JID': '100937360', 'DA': '20140721', 'AID': '10.1002/cbic.201402160 [doi]', 'FAU': 'Li, Jianhua; Chen, Ridao; Wang, Ruishan; Liu, Xiao; Xie, Dan; Zou, Jianhua; Dai, Jungui', 'DP': '2014 Jul 21', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2014/07/22 06:00', 'DCOM': '20150330', 'JT': 'Chembiochem : a European journal of chemical biology', 'PG': '1673-81', 'TI': 'GuA6DT, a regiospecific prenyltransferase from Glycyrrhiza uralensis, catalyzes; the 6-prenylation of flavones.', 'RN': '0 (Flavones); EC 2.5.1.1 (Dimethylallyltranstransferase)', 'PL': 'Germany', 'TA': 'Chembiochem', 'CI': '(c) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.', 'AB': 'GuA6DT, a flavonoid prenyltransferase, was identified from Glycyrrhiza uralensis,; and it was found that this enzyme regiospecifically transfers a dimethylallyl; moiety to apigenin at the C-6 position. A further substrate specificity; investigation indicated that the existence of hydroxyls at both the C-5 and C-7; positions of the flavone skeleton is critical for the prenylation. However,; substitutions on the B-ring had negligible influence on the prenylation. A; comparison of GuA6DT expression in different organs revealed that mRNA is mainly; expressed in the aerial parts. Moreover, the GuA6DT mRNA was found to be; regulated at the transcriptional level, because methyl jasmonate induced; upregulation in cultured cells. GuA6DT is the first identified flavone; prenyltransferase to exhibit strict substrate specificity and regiospecificity.', 'AD': 'State Key Laboratory of Bioactive Substance and Function of Natural Medicines,; Institute of Materia Medica, Peking Union Medical College and Chinese Academy of; Medical Sciences, Xian Nong Tan Street 1, 100050, Beijing (China).', 'VI': '15', 'IS': '1439-7633 (Electronic); 1439-4227 (Linking)', 'AU': 'Li J; Chen R; Wang R; Liu X; Xie D; Zou J; Dai J', 'MHDA': '2015/03/31 06:00', 'PHST': '2014/04/10 [received]; 2014/07/08 [aheadofprint]', 'OTO': 'NOTNLM', 'MH': '*Biocatalysis; Chromatography, High Pressure Liquid; Dimethylallyltranstransferase/chemistry/*metabolism; Flavones/*chemistry/*metabolism; Glycyrrhiza uralensis/*enzymology; *Prenylation', 'EDAT': '2014/07/22 06:00', 'SO': 'Chembiochem. 2014 Jul 21;15(11):1673-81. doi: 10.1002/cbic.201402160. Epub 2014', 'SB': 'IM', 'OT': 'Glycyrrhiza uralensis; enzyme catalysis; flavone-specificity; prenyltransferases; regioselectivity', 'PST': 'ppublish'} () ('Stored article number', 900) {'LID': '10.1002/cbic.201402160 [doi]', 'STAT': 'MEDLINE', 'IP': '11', 'DEP': '20140708', 'JID': '100937360', 'DA': '20140721', 'AID': '10.1002/cbic.201402160 [doi]', 'FAU': 'Li, Jianhua; Chen, Ridao; Wang, Ruishan; Liu, Xiao; Xie, Dan; Zou, Jianhua; Dai, Jungui', 'DP': '2014 Jul 21', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2014/07/22 06:00', 'DCOM': '20150330', 'JT': 'Chembiochem : a European journal of chemical biology', 'PG': '1673-81', 'TI': 'GuA6DT, a regiospecific prenyltransferase from Glycyrrhiza uralensis, catalyzes; the 6-prenylation of flavones.', 'RN': '0 (Flavones); EC 2.5.1.1 (Dimethylallyltranstransferase)', 'PL': 'Germany', 'TA': 'Chembiochem', 'CI': '(c) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.', 'AB': 'GuA6DT, a flavonoid prenyltransferase, was identified from Glycyrrhiza uralensis,; and it was found that this enzyme regiospecifically transfers a dimethylallyl; moiety to apigenin at the C-6 position. A further substrate specificity; investigation indicated that the existence of hydroxyls at both the C-5 and C-7; positions of the flavone skeleton is critical for the prenylation. However,; substitutions on the B-ring had negligible influence on the prenylation. A; comparison of GuA6DT expression in different organs revealed that mRNA is mainly; expressed in the aerial parts. Moreover, the GuA6DT mRNA was found to be; regulated at the transcriptional level, because methyl jasmonate induced; upregulation in cultured cells. GuA6DT is the first identified flavone; prenyltransferase to exhibit strict substrate specificity and regiospecificity.', 'AD': 'State Key Laboratory of Bioactive Substance and Function of Natural Medicines,; Institute of Materia Medica, Peking Union Medical College and Chinese Academy of; Medical Sciences, Xian Nong Tan Street 1, 100050, Beijing (China).', 'VI': '15', 'IS': '1439-7633 (Electronic); 1439-4227 (Linking)', 'AU': 'Li J; Chen R; Wang R; Liu X; Xie D; Zou J; Dai J', 'MHDA': '2015/03/31 06:00', 'PHST': '2014/04/10 [received]; 2014/07/08 [aheadofprint]', 'OTO': 'NOTNLM', 'MH': '*Biocatalysis; Chromatography, High Pressure Liquid; Dimethylallyltranstransferase/chemistry/*metabolism; Flavones/*chemistry/*metabolism; Glycyrrhiza uralensis/*enzymology; *Prenylation', 'EDAT': '2014/07/22 06:00', 'SO': 'Chembiochem. 2014 Jul 21;15(11):1673-81. doi: 10.1002/cbic.201402160. Epub 2014; Jul 8.', 'SB': 'IM', 'OT': 'Glycyrrhiza uralensis; enzyme catalysis; flavone-specificity; prenyltransferases; regioselectivity', 'PST': 'ppublish'} () ('Stored article number', 1000) {'LID': '10.1021/bi500020r [doi]', 'STAT': 'MEDLINE', 'IP': '27', 'DEP': '20140703', 'DA': '20140715', 'AID': '10.1021/bi500020r [doi]', 'FAU': 'Sheng, Xiang; Liu, Yongjun', 'DP': '2014 Jul 15', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2014/06/26 06:00', 'DCOM': '20140909', 'JT': 'Biochemistry', 'PG': '4455-66', 'TI': 'QM/MM study of the reaction mechanism of the carboxyl transferase domain of; pyruvate carboxylase from Staphylococcus aureus.', 'RN': '0 (Bacterial Proteins); 0 (Cations, Divalent); 0 (Coordination Complexes); 42Z2K6ZL8P (Manganese); 8558G7RUTR (Pyruvic Acid); EC 2.1.3.- (Carboxyl and Carbamoyl Transferases); EC 6.4.1.1 (Pyruvate Carboxylase); J41CSQ7QDS (Zinc)', 'PL': 'United States', 'TA': 'Biochemistry', 'JID': '0370623', 'AB': 'Pyruvate carboxylase (PC) catalyzes the carboxylation of pyruvate to produce; oxaloacetate. Its activity is directly related to insulin release and thus PC has; recently attracted great interest as a potential target for diabetes treatment.; In this article, the catalytic mechanism of the carboxyl transferase domain of PC; from Staphylococcus aureus was investigated by using a combined; quantum-mechanical/molecular-mechanical approach. Our calculation results; indicate that the catalytic reaction starts from the decarboxylation of; carboxybiotin to generate an enol-BTI intermediate, followed by two consecutive; proton-transfer processes (from T908 to enol-BTI and from PYR to T908). During; the catalytic reaction, the main-chain amide of T908 plays a key role in catching; CO2 and preventing its diffusion from the active center. A triad of residues,; R571, Q575, and K741, contributes both to substrate binding and enol-pyruvate; stabilization. The oxyanion hole, consisting of the side-chain hydroxyl of S911; and the side-chain amino of Q870, plays an important role in stabilizing the; hydroxyl anion of BTI. The coordination of the metal cation by pyruvate is a; second sphere, rather than an inner sphere, interaction, and the metal cation; stabilizes the species through the medium of residue K741. The decarboxylation of; carboxybiotin corresponds to the highest free energy barrier of 21.7 kcal/mol.; Our results may provide useful information for both the regulation of enzyme; activity and the development of related biocatalytic applications.', 'AD': 'School of Chemistry and Chemical Engineering, Shandong University , Jinan,; Shandong 250100, China.', 'VI': '53', 'IS': '1520-4995 (Electronic); 0006-2960 (Linking)', 'AU': 'Sheng X; Liu Y', 'MHDA': '2014/09/10 06:00', 'PHST': '2014/07/03 [aheadofprint]', 'MH': 'Bacterial Proteins/*chemistry; Biocatalysis; Carboxyl and Carbamoyl Transferases/*chemistry; Cations, Divalent; Coordination Complexes/chemistry; Manganese/chemistry; Models, Molecular; Protein Binding; Protein Structure, Tertiary; Pyruvate Carboxylase/*chemistry; Pyruvic Acid/chemistry; Quantum Theory; Staphylococcus aureus/*enzymology; Thermodynamics; Zinc/chemistry', 'EDAT': '2014/06/26 06:00', 'SO': 'Biochemistry. 2014 Jul 15;53(27):4455-66. doi: 10.1021/bi500020r. Epub 2014 Jul', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 1000) {'LID': '10.1021/bi500020r [doi]', 'STAT': 'MEDLINE', 'IP': '27', 'DEP': '20140703', 'DA': '20140715', 'AID': '10.1021/bi500020r [doi]', 'FAU': 'Sheng, Xiang; Liu, Yongjun', 'DP': '2014 Jul 15', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2014/06/26 06:00', 'DCOM': '20140909', 'JT': 'Biochemistry', 'PG': '4455-66', 'TI': 'QM/MM study of the reaction mechanism of the carboxyl transferase domain of; pyruvate carboxylase from Staphylococcus aureus.', 'RN': '0 (Bacterial Proteins); 0 (Cations, Divalent); 0 (Coordination Complexes); 42Z2K6ZL8P (Manganese); 8558G7RUTR (Pyruvic Acid); EC 2.1.3.- (Carboxyl and Carbamoyl Transferases); EC 6.4.1.1 (Pyruvate Carboxylase); J41CSQ7QDS (Zinc)', 'PL': 'United States', 'TA': 'Biochemistry', 'JID': '0370623', 'AB': 'Pyruvate carboxylase (PC) catalyzes the carboxylation of pyruvate to produce; oxaloacetate. Its activity is directly related to insulin release and thus PC has; recently attracted great interest as a potential target for diabetes treatment.; In this article, the catalytic mechanism of the carboxyl transferase domain of PC; from Staphylococcus aureus was investigated by using a combined; quantum-mechanical/molecular-mechanical approach. Our calculation results; indicate that the catalytic reaction starts from the decarboxylation of; carboxybiotin to generate an enol-BTI intermediate, followed by two consecutive; proton-transfer processes (from T908 to enol-BTI and from PYR to T908). During; the catalytic reaction, the main-chain amide of T908 plays a key role in catching; CO2 and preventing its diffusion from the active center. A triad of residues,; R571, Q575, and K741, contributes both to substrate binding and enol-pyruvate; stabilization. The oxyanion hole, consisting of the side-chain hydroxyl of S911; and the side-chain amino of Q870, plays an important role in stabilizing the; hydroxyl anion of BTI. The coordination of the metal cation by pyruvate is a; second sphere, rather than an inner sphere, interaction, and the metal cation; stabilizes the species through the medium of residue K741. The decarboxylation of; carboxybiotin corresponds to the highest free energy barrier of 21.7 kcal/mol.; Our results may provide useful information for both the regulation of enzyme; activity and the development of related biocatalytic applications.', 'AD': 'School of Chemistry and Chemical Engineering, Shandong University , Jinan,; Shandong 250100, China.', 'VI': '53', 'IS': '1520-4995 (Electronic); 0006-2960 (Linking)', 'AU': 'Sheng X; Liu Y', 'MHDA': '2014/09/10 06:00', 'PHST': '2014/07/03 [aheadofprint]', 'MH': 'Bacterial Proteins/*chemistry; Biocatalysis; Carboxyl and Carbamoyl Transferases/*chemistry; Cations, Divalent; Coordination Complexes/chemistry; Manganese/chemistry; Models, Molecular; Protein Binding; Protein Structure, Tertiary; Pyruvate Carboxylase/*chemistry; Pyruvic Acid/chemistry; Quantum Theory; Staphylococcus aureus/*enzymology; Thermodynamics; Zinc/chemistry', 'EDAT': '2014/06/26 06:00', 'SO': 'Biochemistry. 2014 Jul 15;53(27):4455-66. doi: 10.1021/bi500020r. Epub 2014 Jul; 3.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 1100) {'LID': '10.1074/jbc.M113.543702 [doi]', 'STAT': 'MEDLINE', 'IP': '27', 'DEP': '20140527', 'JID': '2985121R', 'DA': '20140729', 'AID': 'M113.543702 [pii]; 10.1074/jbc.M113.543702 [doi]', 'FAU': 'Thom, Stephen R; Bhopale, Veena M; Yang, Ming', 'DP': '2014 Jul 4', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, U.S. Gov't, Non-P.H.S.", 'LA': 'eng', 'CRDT': '2014/05/29 06:00', 'DCOM': '20141014', 'JT': 'The Journal of biological chemistry', 'LR': '20150704', 'PG': '18831-45', 'TI': 'Neutrophils generate microparticles during exposure to inert gases due to; cytoskeletal oxidative stress.', 'RN': '0 (Actins); 0 (Noble Gases); 17778-80-2 (Singlet Oxygen); EC 1.14.13.39 (Nitric Oxide Synthase)', 'PL': 'United States', 'TA': 'J Biol Chem', 'CI': '(c) 2014 by The American Society for Biochemistry and Molecular Biology, Inc.', 'AB': 'This investigation was to elucidate the mechanism for microparticle (MP); formation triggered by exposures to high pressure inert gases. Human neutrophils; generate MPs at a threshold of approximately 186 kilopascals with exposures of 30; min or more. Murine cells are similar, but MP production occurs at a slower rate; and continues for approximately 4 h, whether or not cells remain under pressure.; Neutrophils exposed to elevated gas but not hydrostatic pressure produce MPs; according to the potency series: argon approximately nitrogen > helium. Following; a similar pattern, gases activate type-2 nitric-oxide synthase (NOS-2) and NADPH; oxidase (NOX). MP production does not occur with neutrophils exposed to a NOX; inhibitor (Nox2ds) or a NOS-2 inhibitor (1400W) or with cells from mice lacking; NOS-2. Reactive species cause S-nitrosylation of cytosolic actin that enhances; actin polymerization. Protein cross-linking and immunoprecipitation studies; indicate that increased polymerization occurs because of associations involving; vasodilator-stimulated phosphoprotein, focal adhesion kinase, the H(+)/K(+); ATPase beta (flippase), the hematopoietic cell multidrug resistance protein ABC; transporter (floppase), and protein-disulfide isomerase in proximity to short; actin filaments. Using chemical inhibitors or reducing cell concentrations of any; of these proteins with small inhibitory RNA abrogates NOS-2 activation, reactive; species generation, actin polymerization, and MP production. These effects were; also inhibited in cells exposed to UV light, which photoreverses S-nitrosylated; cysteine residues and by co-incubations with the antioxidant ebselen or; cytochalasin D. The autocatalytic cycle of protein activation is initiated by; inert gas-mediated singlet O2 production.', 'AD': 'From the Department of Emergency Medicine, University of Maryland, Baltimore,; Maryland 21201 [email protected].; From the Department of Emergency Medicine, University of Maryland, Baltimore,; Maryland 21201.; From the Department of Emergency Medicine, University of Maryland, Baltimore,; Maryland 21201.', 'VI': '289', 'IS': '1083-351X (Electronic); 0021-9258 (Linking)', 'PMC': 'PMC4081925', 'AU': 'Thom SR; Bhopale VM; Yang M', 'MHDA': '2014/10/15 06:00', 'PHST': '2014/05/27 [aheadofprint]', 'OTO': 'NOTNLM', 'OID': 'NLM: PMC4081925', 'MH': 'Actins/chemistry/metabolism; Animals; Biocatalysis/drug effects; Cytoskeleton/*drug effects/*metabolism; Enzyme Activation/drug effects; Humans; Mice; *Microspheres; Neutrophils/*cytology/*drug effects/metabolism; Nitric Oxide Synthase/metabolism; Noble Gases/*pharmacology; Oxidative Stress/*drug effects; Permeability/drug effects; Pressure; Protein Multimerization/drug effects; Protein Structure, Quaternary; Singlet Oxygen/metabolism', 'EDAT': '2014/05/29 06:00', 'SO': 'J Biol Chem. 2014 Jul 4;289(27):18831-45. doi: 10.1074/jbc.M113.543702. Epub 2014', 'SB': 'IM', 'OT': 'Actin; Decompression; Focal Adhesion Kinase; NADPH Oxidase; Nitrosative Stress; Reactive Nitrogen Species (RNS); Reactive Oxygen Species (ROS); S-Nitrosylation; Singlet Oxygen', 'PST': 'ppublish'} () ('Stored article number', 1100) {'LID': '10.1074/jbc.M113.543702 [doi]', 'STAT': 'MEDLINE', 'IP': '27', 'DEP': '20140527', 'JID': '2985121R', 'DA': '20140729', 'AID': 'M113.543702 [pii]; 10.1074/jbc.M113.543702 [doi]', 'FAU': 'Thom, Stephen R; Bhopale, Veena M; Yang, Ming', 'DP': '2014 Jul 4', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, U.S. Gov't, Non-P.H.S.", 'LA': 'eng', 'CRDT': '2014/05/29 06:00', 'DCOM': '20141014', 'JT': 'The Journal of biological chemistry', 'LR': '20150704', 'PG': '18831-45', 'TI': 'Neutrophils generate microparticles during exposure to inert gases due to; cytoskeletal oxidative stress.', 'RN': '0 (Actins); 0 (Noble Gases); 17778-80-2 (Singlet Oxygen); EC 1.14.13.39 (Nitric Oxide Synthase)', 'PL': 'United States', 'TA': 'J Biol Chem', 'CI': '(c) 2014 by The American Society for Biochemistry and Molecular Biology, Inc.', 'AB': 'This investigation was to elucidate the mechanism for microparticle (MP); formation triggered by exposures to high pressure inert gases. Human neutrophils; generate MPs at a threshold of approximately 186 kilopascals with exposures of 30; min or more. Murine cells are similar, but MP production occurs at a slower rate; and continues for approximately 4 h, whether or not cells remain under pressure.; Neutrophils exposed to elevated gas but not hydrostatic pressure produce MPs; according to the potency series: argon approximately nitrogen > helium. Following; a similar pattern, gases activate type-2 nitric-oxide synthase (NOS-2) and NADPH; oxidase (NOX). MP production does not occur with neutrophils exposed to a NOX; inhibitor (Nox2ds) or a NOS-2 inhibitor (1400W) or with cells from mice lacking; NOS-2. Reactive species cause S-nitrosylation of cytosolic actin that enhances; actin polymerization. Protein cross-linking and immunoprecipitation studies; indicate that increased polymerization occurs because of associations involving; vasodilator-stimulated phosphoprotein, focal adhesion kinase, the H(+)/K(+); ATPase beta (flippase), the hematopoietic cell multidrug resistance protein ABC; transporter (floppase), and protein-disulfide isomerase in proximity to short; actin filaments. Using chemical inhibitors or reducing cell concentrations of any; of these proteins with small inhibitory RNA abrogates NOS-2 activation, reactive; species generation, actin polymerization, and MP production. These effects were; also inhibited in cells exposed to UV light, which photoreverses S-nitrosylated; cysteine residues and by co-incubations with the antioxidant ebselen or; cytochalasin D. The autocatalytic cycle of protein activation is initiated by; inert gas-mediated singlet O2 production.', 'AD': 'From the Department of Emergency Medicine, University of Maryland, Baltimore,; Maryland 21201 [email protected].; From the Department of Emergency Medicine, University of Maryland, Baltimore,; Maryland 21201.; From the Department of Emergency Medicine, University of Maryland, Baltimore,; Maryland 21201.', 'VI': '289', 'IS': '1083-351X (Electronic); 0021-9258 (Linking)', 'PMC': 'PMC4081925', 'AU': 'Thom SR; Bhopale VM; Yang M', 'MHDA': '2014/10/15 06:00', 'PHST': '2014/05/27 [aheadofprint]', 'OTO': 'NOTNLM', 'OID': 'NLM: PMC4081925', 'MH': 'Actins/chemistry/metabolism; Animals; Biocatalysis/drug effects; Cytoskeleton/*drug effects/*metabolism; Enzyme Activation/drug effects; Humans; Mice; *Microspheres; Neutrophils/*cytology/*drug effects/metabolism; Nitric Oxide Synthase/metabolism; Noble Gases/*pharmacology; Oxidative Stress/*drug effects; Permeability/drug effects; Pressure; Protein Multimerization/drug effects; Protein Structure, Quaternary; Singlet Oxygen/metabolism', 'EDAT': '2014/05/29 06:00', 'SO': 'J Biol Chem. 2014 Jul 4;289(27):18831-45. doi: 10.1074/jbc.M113.543702. Epub 2014; May 27.', 'SB': 'IM', 'OT': 'Actin; Decompression; Focal Adhesion Kinase; NADPH Oxidase; Nitrosative Stress; Reactive Nitrogen Species (RNS); Reactive Oxygen Species (ROS); S-Nitrosylation; Singlet Oxygen', 'PST': 'ppublish'} () ('Stored article number', 1200) {'LID': '10.1016/j.cbpa.2013.12.010 [doi]; S1367-5931(13)00237-8 [pii]', 'STAT': 'MEDLINE', 'DEP': '20140104', 'JID': '9811312', 'DA': '20140430', 'AID': 'S1367-5931(13)00237-8 [pii]; 10.1016/j.cbpa.2013.12.010 [doi]', 'DCOM': '20140827', 'DP': '2014 Apr', 'GR': 'BB/F01614X/1/Biotechnology and Biological Sciences Research Council/United; Kingdom', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't; Review", 'LA': 'eng', 'CRDT': '2014/05/01 06:00', 'FAU': 'Windle, Claire L; Muller, Marion; Nelson, Adam; Berry, Alan', 'JT': 'Current opinion in chemical biology', 'LR': '20141111', 'PG': '25-33', 'TI': 'Engineering aldolases as biocatalysts.', 'RN': 'EC 4.1.2.- (Aldehyde-Lyases)', 'PL': 'England', 'TA': 'Curr Opin Chem Biol', 'CI': 'Copyright (c) 2013 Authors. Published by Elsevier Ltd.. All rights reserved.', 'AB': 'Aldolases are seen as an attractive route to the production of biologically; important compounds due to their ability to form carbon-carbon bonds. However,; for many industrial reactions there are no naturally occurring enzymes, and so; many different engineering approaches have been used to address this problem.; Engineering methods have been used to alter the stability, substrate specificity; and stereospecificity of aldolases to produce excellent enzymes for biocatalytic; processes. Recently greater understanding of the aldolase mechanism has allowed; many successes with both rational engineering approaches and computational design; of aldolases. Rational engineering approaches have produced desired enzymes; quickly and efficiently while combination of computational design with laboratory; methods has created enzymes with activity approaching that of natural enzymes.', 'AD': 'Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2; 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2; 9JT, UK.; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2; 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2; 9JT, UK.; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2; 9JT, UK; School of Chemistry, University of Leeds, Leeds LS2 9JT, UK.; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2; 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2; 9JT, UK. Electronic address: [email protected].', 'VI': '19', 'IS': '1879-0402 (Electronic); 1367-5931 (Linking)', 'PMC': 'PMC4012138', 'AU': 'Windle CL; Muller M; Nelson A; Berry A', 'MHDA': '2014/08/29 06:00', 'PHST': '2013/11/18 [received]; 2013/12/10 [revised]; 2013/12/11 [accepted]; 2014/01/04 [aheadofprint]', 'OID': 'NLM: PMC4012138', 'MH': 'Aldehyde-Lyases/chemistry/*metabolism; *Biocatalysis; Catalytic Domain; Enzyme Stability; Humans; *Protein Engineering; Substrate Specificity', 'EDAT': '2014/05/02 06:00', 'SO': 'Curr Opin Chem Biol. 2014 Apr;19:25-33. doi: 10.1016/j.cbpa.2013.12.010. Epub', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 1200) {'LID': '10.1016/j.cbpa.2013.12.010 [doi]; S1367-5931(13)00237-8 [pii]', 'STAT': 'MEDLINE', 'DEP': '20140104', 'JID': '9811312', 'DA': '20140430', 'AID': 'S1367-5931(13)00237-8 [pii]; 10.1016/j.cbpa.2013.12.010 [doi]', 'DCOM': '20140827', 'DP': '2014 Apr', 'GR': 'BB/F01614X/1/Biotechnology and Biological Sciences Research Council/United; Kingdom', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't; Review", 'LA': 'eng', 'CRDT': '2014/05/01 06:00', 'FAU': 'Windle, Claire L; Muller, Marion; Nelson, Adam; Berry, Alan', 'JT': 'Current opinion in chemical biology', 'LR': '20141111', 'PG': '25-33', 'TI': 'Engineering aldolases as biocatalysts.', 'RN': 'EC 4.1.2.- (Aldehyde-Lyases)', 'PL': 'England', 'TA': 'Curr Opin Chem Biol', 'CI': 'Copyright (c) 2013 Authors. Published by Elsevier Ltd.. All rights reserved.', 'AB': 'Aldolases are seen as an attractive route to the production of biologically; important compounds due to their ability to form carbon-carbon bonds. However,; for many industrial reactions there are no naturally occurring enzymes, and so; many different engineering approaches have been used to address this problem.; Engineering methods have been used to alter the stability, substrate specificity; and stereospecificity of aldolases to produce excellent enzymes for biocatalytic; processes. Recently greater understanding of the aldolase mechanism has allowed; many successes with both rational engineering approaches and computational design; of aldolases. Rational engineering approaches have produced desired enzymes; quickly and efficiently while combination of computational design with laboratory; methods has created enzymes with activity approaching that of natural enzymes.', 'AD': 'Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2; 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2; 9JT, UK.; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2; 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2; 9JT, UK.; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2; 9JT, UK; School of Chemistry, University of Leeds, Leeds LS2 9JT, UK.; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2; 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2; 9JT, UK. Electronic address: [email protected].', 'VI': '19', 'IS': '1879-0402 (Electronic); 1367-5931 (Linking)', 'PMC': 'PMC4012138', 'AU': 'Windle CL; Muller M; Nelson A; Berry A', 'MHDA': '2014/08/29 06:00', 'PHST': '2013/11/18 [received]; 2013/12/10 [revised]; 2013/12/11 [accepted]; 2014/01/04 [aheadofprint]', 'OID': 'NLM: PMC4012138', 'MH': 'Aldehyde-Lyases/chemistry/*metabolism; *Biocatalysis; Catalytic Domain; Enzyme Stability; Humans; *Protein Engineering; Substrate Specificity', 'EDAT': '2014/05/02 06:00', 'SO': 'Curr Opin Chem Biol. 2014 Apr;19:25-33. doi: 10.1016/j.cbpa.2013.12.010. Epub; 2014 Jan 4.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 1300) {'LID': '10.1021/bi4016633 [doi]', 'STAT': 'MEDLINE', 'IP': '15', 'DEP': '20140409', 'DA': '20140423', 'AID': '10.1021/bi4016633 [doi]', 'FAU': 'Jensen, Kristine Steen; Pedersen, Jeppe T; Winther, Jakob R; Teilum, Kaare', 'DP': '2014 Apr 22', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2014/03/29 06:00', 'DCOM': '20140609', 'JT': 'Biochemistry', 'PG': '2533-40', 'TI': 'The pKa value and accessibility of cysteine residues are key determinants for; protein substrate discrimination by glutaredoxin.', 'RN': '0 (Glutaredoxins); K848JZ4886 (Cysteine)', 'PL': 'United States', 'TA': 'Biochemistry', 'JID': '0370623', 'AB': 'The enzyme glutaredoxin catalyzes glutathione exchange, but little is known about; its interaction with protein substrates. Very different proteins are substrates; in vitro, and the enzyme seems to have low requirements for specific protein; interactions. Here we present a systematic investigation of the interaction; between human glutaredoxin 1 and glutathionylated variants of a single model; protein. Thus, single cysteine variants of acyl-coenzyme A binding protein were; produced creating a set of substrates in the same protein background. The rate; constants for deglutathionylation differ by more than 2 orders of magnitude; between the best (k1 = 1.75 x 10(5) M(-1) s(-1)) and the worst substrate (k1 = 4; x 10(2) M(-1) s(-1)). The pKa values of the substrate cysteine residues were; determined by NMR spectroscopy and found to vary from 8.2 to 9.9. Rates of; glutaredoxin 1-catalyzed deglutathionylation were assessed with respect to; substrate cysteine pKa values, cysteine residue accessibility, local stability,; and backbone dynamics. Good substrates are characterized by a combination of high; accessibility of the glutathionylated site and low pKa of the cysteine residue.', 'AD': 'Department of Biology, University of Copenhagen , Ole Maaleos Vej 5, 2200; Copenhagen N, Denmark.', 'VI': '53', 'IS': '1520-4995 (Electronic); 0006-2960 (Linking)', 'AU': 'Jensen KS; Pedersen JT; Winther JR; Teilum K', 'MHDA': '2014/06/10 06:00', 'PHST': '2014/04/09 [aheadofprint]', 'MH': 'Biocatalysis; Cysteine/*metabolism; Glutaredoxins/*metabolism; Kinetics; Models, Molecular; Nuclear Magnetic Resonance, Biomolecular', 'EDAT': '2014/03/29 06:00', 'SO': 'Biochemistry. 2014 Apr 22;53(15):2533-40. doi: 10.1021/bi4016633. Epub 2014 Apr', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 1300) {'LID': '10.1021/bi4016633 [doi]', 'STAT': 'MEDLINE', 'IP': '15', 'DEP': '20140409', 'DA': '20140423', 'AID': '10.1021/bi4016633 [doi]', 'FAU': 'Jensen, Kristine Steen; Pedersen, Jeppe T; Winther, Jakob R; Teilum, Kaare', 'DP': '2014 Apr 22', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2014/03/29 06:00', 'DCOM': '20140609', 'JT': 'Biochemistry', 'PG': '2533-40', 'TI': 'The pKa value and accessibility of cysteine residues are key determinants for; protein substrate discrimination by glutaredoxin.', 'RN': '0 (Glutaredoxins); K848JZ4886 (Cysteine)', 'PL': 'United States', 'TA': 'Biochemistry', 'JID': '0370623', 'AB': 'The enzyme glutaredoxin catalyzes glutathione exchange, but little is known about; its interaction with protein substrates. Very different proteins are substrates; in vitro, and the enzyme seems to have low requirements for specific protein; interactions. Here we present a systematic investigation of the interaction; between human glutaredoxin 1 and glutathionylated variants of a single model; protein. Thus, single cysteine variants of acyl-coenzyme A binding protein were; produced creating a set of substrates in the same protein background. The rate; constants for deglutathionylation differ by more than 2 orders of magnitude; between the best (k1 = 1.75 x 10(5) M(-1) s(-1)) and the worst substrate (k1 = 4; x 10(2) M(-1) s(-1)). The pKa values of the substrate cysteine residues were; determined by NMR spectroscopy and found to vary from 8.2 to 9.9. Rates of; glutaredoxin 1-catalyzed deglutathionylation were assessed with respect to; substrate cysteine pKa values, cysteine residue accessibility, local stability,; and backbone dynamics. Good substrates are characterized by a combination of high; accessibility of the glutathionylated site and low pKa of the cysteine residue.', 'AD': 'Department of Biology, University of Copenhagen , Ole Maaleos Vej 5, 2200; Copenhagen N, Denmark.', 'VI': '53', 'IS': '1520-4995 (Electronic); 0006-2960 (Linking)', 'AU': 'Jensen KS; Pedersen JT; Winther JR; Teilum K', 'MHDA': '2014/06/10 06:00', 'PHST': '2014/04/09 [aheadofprint]', 'MH': 'Biocatalysis; Cysteine/*metabolism; Glutaredoxins/*metabolism; Kinetics; Models, Molecular; Nuclear Magnetic Resonance, Biomolecular', 'EDAT': '2014/03/29 06:00', 'SO': 'Biochemistry. 2014 Apr 22;53(15):2533-40. doi: 10.1021/bi4016633. Epub 2014 Apr; 9.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 1400) {'LID': '10.1016/j.bbapap.2014.02.008 [doi]; S1570-9639(14)00029-6 [pii]', 'STAT': 'MEDLINE', 'IP': '4', 'DEP': '20140222', 'JID': '0217513', 'DA': '20140326', 'AID': 'S1570-9639(14)00029-6 [pii]; 10.1016/j.bbapap.2014.02.008 [doi]', 'FAU': 'Zinsser, Veronika L; Hoey, Elizabeth M; Trudgett, Alan; Timson, David J', 'DP': '2014 Apr', 'OWN': 'NLM', 'PT': 'Journal Article', 'LA': 'eng', 'CRDT': '2014/02/26 06:00', 'DCOM': '20140527', 'JT': 'Biochimica et biophysica acta', 'PG': '744-9', 'TI': 'Biochemical characterisation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH); from the liver fluke, Fasciola hepatica.', 'RN': '0 (Helminth Proteins); 0 (Recombinant Fusion Proteins); 0U46U6E8UK (NAD); 142-10-9 (Glyceraldehyde 3-Phosphate); EC 1.2.1.- (Glyceraldehyde-3-Phosphate Dehydrogenases)', 'PL': 'Netherlands', 'TA': 'Biochim Biophys Acta', 'CI': 'Copyright (c) 2014 Elsevier B.V. All rights reserved.', 'AB': 'Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) catalyses one of the two steps; in glycolysis which generate the reduced coenzyme NADH. This reaction precedes; the two ATP generating steps. Thus, inhibition of GAPDH will lead to; substantially reduced energy generation. Consequently, there has been; considerable interest in developing GAPDH inhibitors as anti-cancer and; anti-parasitic agents. Here, we describe the biochemical characterisation of; GAPDH from the common liver fluke Fasciola hepatica (FhGAPDH). The primary; sequence of FhGAPDH is similar to that from other trematodes and the predicted; structure shows high similarity to those from other animals including the; mammalian hosts. FhGAPDH lacks a binding pocket which has been exploited in the; design of novel antitrypanosomal compounds. The protein can be expressed in, and; purified from Escherichia coli; the recombinant protein was active and showed no; cooperativity towards glyceraldehyde 3-phosphate as a substrate. In the absence; of ligands, FhGAPDH was a mixture of homodimers and tetramers, as judged by; protein-protein crosslinking and analytical gel filtration. The addition of; either NAD(+) or glyceraldehyde 3-phosphate shifted this equilibrium towards a; compact dimer. Thermal scanning fluorimetry demonstrated that this form was; considerably more stable than the unliganded one. These responses to ligand; binding differ from those seen in mammalian enzymes. These differences could be; exploited in the discovery of reagents which selectively disrupt the function of; FhGAPDH.', 'AD': "School of Biological Sciences, Queen's University Belfast, Medical Biology; Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.; School of Biological Sciences, Queen's University Belfast, Medical Biology; Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.; School of Biological Sciences, Queen's University Belfast, Medical Biology; Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.; School of Biological Sciences, Queen's University Belfast, Medical Biology; Centre, 97 Lisburn Road, Belfast BT9 7BL, UK. Electronic address:; [email protected].", 'VI': '1844', 'IS': '0006-3002 (Print); 0006-3002 (Linking)', 'AU': 'Zinsser VL; Hoey EM; Trudgett A; Timson DJ', 'MHDA': '2014/05/28 06:00', 'PHST': '2014/01/13 [received]; 2014/02/07 [revised]; 2014/02/12 [accepted]; 2014/02/22 [aheadofprint]', 'OTO': 'NOTNLM', 'MH': 'Animals; Biocatalysis; Escherichia coli/genetics/metabolism; Fasciola hepatica/chemistry/*enzymology/genetics; Fluorometry/methods; Glyceraldehyde 3-Phosphate/chemistry/*metabolism; Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry/genetics/*metabolism; Helminth Proteins/chemistry/genetics/*metabolism; Humans; Kinetics; Models, Molecular; NAD/chemistry/*metabolism; Protein Multimerization; Protein Stability; Recombinant Fusion Proteins/chemistry/genetics/*metabolism', 'EDAT': '2014/02/26 06:00', 'SO': 'Biochim Biophys Acta. 2014 Apr;1844(4):744-9. doi: 10.1016/j.bbapap.2014.02.008.', 'SB': 'IM', 'OT': 'Drug target; G3PDH; Glycolytic enzyme; Neglected tropical disease; Trematode; Vaccine target', 'PST': 'ppublish'} () ('Stored article number', 1400) {'LID': '10.1016/j.bbapap.2014.02.008 [doi]; S1570-9639(14)00029-6 [pii]', 'STAT': 'MEDLINE', 'IP': '4', 'DEP': '20140222', 'JID': '0217513', 'DA': '20140326', 'AID': 'S1570-9639(14)00029-6 [pii]; 10.1016/j.bbapap.2014.02.008 [doi]', 'FAU': 'Zinsser, Veronika L; Hoey, Elizabeth M; Trudgett, Alan; Timson, David J', 'DP': '2014 Apr', 'OWN': 'NLM', 'PT': 'Journal Article', 'LA': 'eng', 'CRDT': '2014/02/26 06:00', 'DCOM': '20140527', 'JT': 'Biochimica et biophysica acta', 'PG': '744-9', 'TI': 'Biochemical characterisation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH); from the liver fluke, Fasciola hepatica.', 'RN': '0 (Helminth Proteins); 0 (Recombinant Fusion Proteins); 0U46U6E8UK (NAD); 142-10-9 (Glyceraldehyde 3-Phosphate); EC 1.2.1.- (Glyceraldehyde-3-Phosphate Dehydrogenases)', 'PL': 'Netherlands', 'TA': 'Biochim Biophys Acta', 'CI': 'Copyright (c) 2014 Elsevier B.V. All rights reserved.', 'AB': 'Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) catalyses one of the two steps; in glycolysis which generate the reduced coenzyme NADH. This reaction precedes; the two ATP generating steps. Thus, inhibition of GAPDH will lead to; substantially reduced energy generation. Consequently, there has been; considerable interest in developing GAPDH inhibitors as anti-cancer and; anti-parasitic agents. Here, we describe the biochemical characterisation of; GAPDH from the common liver fluke Fasciola hepatica (FhGAPDH). The primary; sequence of FhGAPDH is similar to that from other trematodes and the predicted; structure shows high similarity to those from other animals including the; mammalian hosts. FhGAPDH lacks a binding pocket which has been exploited in the; design of novel antitrypanosomal compounds. The protein can be expressed in, and; purified from Escherichia coli; the recombinant protein was active and showed no; cooperativity towards glyceraldehyde 3-phosphate as a substrate. In the absence; of ligands, FhGAPDH was a mixture of homodimers and tetramers, as judged by; protein-protein crosslinking and analytical gel filtration. The addition of; either NAD(+) or glyceraldehyde 3-phosphate shifted this equilibrium towards a; compact dimer. Thermal scanning fluorimetry demonstrated that this form was; considerably more stable than the unliganded one. These responses to ligand; binding differ from those seen in mammalian enzymes. These differences could be; exploited in the discovery of reagents which selectively disrupt the function of; FhGAPDH.', 'AD': "School of Biological Sciences, Queen's University Belfast, Medical Biology; Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.; School of Biological Sciences, Queen's University Belfast, Medical Biology; Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.; School of Biological Sciences, Queen's University Belfast, Medical Biology; Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.; School of Biological Sciences, Queen's University Belfast, Medical Biology; Centre, 97 Lisburn Road, Belfast BT9 7BL, UK. Electronic address:; [email protected].", 'VI': '1844', 'IS': '0006-3002 (Print); 0006-3002 (Linking)', 'AU': 'Zinsser VL; Hoey EM; Trudgett A; Timson DJ', 'MHDA': '2014/05/28 06:00', 'PHST': '2014/01/13 [received]; 2014/02/07 [revised]; 2014/02/12 [accepted]; 2014/02/22 [aheadofprint]', 'OTO': 'NOTNLM', 'MH': 'Animals; Biocatalysis; Escherichia coli/genetics/metabolism; Fasciola hepatica/chemistry/*enzymology/genetics; Fluorometry/methods; Glyceraldehyde 3-Phosphate/chemistry/*metabolism; Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry/genetics/*metabolism; Helminth Proteins/chemistry/genetics/*metabolism; Humans; Kinetics; Models, Molecular; NAD/chemistry/*metabolism; Protein Multimerization; Protein Stability; Recombinant Fusion Proteins/chemistry/genetics/*metabolism', 'EDAT': '2014/02/26 06:00', 'SO': 'Biochim Biophys Acta. 2014 Apr;1844(4):744-9. doi: 10.1016/j.bbapap.2014.02.008.; Epub 2014 Feb 22.', 'SB': 'IM', 'OT': 'Drug target; G3PDH; Glycolytic enzyme; Neglected tropical disease; Trematode; Vaccine target', 'PST': 'ppublish'} () ('Stored article number', 1500) {'LID': '10.1038/nature12931 [doi]', 'STAT': 'MEDLINE', 'IP': '7490', 'DEP': '20140122', 'MID': 'NIHMS545790', 'DA': '20140306', 'AID': 'nature12931 [pii]; 10.1038/nature12931 [doi]', 'FAU': 'Johnson, Lianna M; Du, Jiamu; Hale, Christopher J; Bischof, Sylvain; Feng, Suhua; Chodavarapu, Ramakrishna K; Zhong, Xuehua; Marson, Giuseppe; Pellegrini, Matteo; Segal, David J; Patel, Dinshaw J; Jacobsen, Steven E', 'DP': '2014 Mar 6', 'GR': 'F32GM096483-01/GM/NIGMS NIH HHS/United States; GM60398/GM/NIGMS NIH HHS/United States; P30 CA016042/CA/NCI NIH HHS/United States; R37 GM060398/GM/NIGMS NIH HHS/United States; Howard Hughes Medical Institute/United States', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2014/01/28 06:00', 'DCOM': '20140321', 'JT': 'Nature', 'LR': '20150826', 'PG': '124-8', 'TI': 'SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA; methylation.', 'RN': '0 (Arabidopsis Proteins); 0 (Chromatin); 0 (DNA-Binding Proteins); 0 (RNA, Plant); 0 (RNA, Small Interfering); EC 2.1.1.- (MET1 protein, Arabidopsis); EC 2.1.1.37 (DNA (Cytosine-5-)-Methyltransferase); EC 2.1.1.43 (Histone-Lysine N-Methyltransferase); EC 2.1.1.43 (SUVH2 protein, Arabidopsis); EC 2.1.1.43 (SUVH9 protein, Arabidopsis); EC 2.7.7.- (RNA polymerase V, Arabidopsis); EC 2.7.7.6 (DNA-Directed RNA Polymerases); EC 2.7.7.6 (DRD1 protein, Arabidopsis)', 'PL': 'England', 'TA': 'Nature', 'JID': '0410462', 'AB': 'RNA-directed DNA methylation in Arabidopsis thaliana depends on the upstream; synthesis of 24-nucleotide small interfering RNAs (siRNAs) by RNA POLYMERASE IV; (Pol IV) and downstream synthesis of non-coding transcripts by Pol V. Pol V; transcripts are thought to interact with siRNAs which then recruit DOMAINS; REARRANGED METHYLTRANSFERASE 2 (DRM2) to methylate DNA. The SU(VAR)3-9 homologues; SUVH2 and SUVH9 act in this downstream step but the mechanism of their action is; unknown. Here we show that genome-wide Pol V association with chromatin; redundantly requires SUVH2 and SUVH9. Although SUVH2 and SUVH9 resemble histone; methyltransferases, a crystal structure reveals that SUVH9 lacks a; peptide-substrate binding cleft and lacks a properly formed S-adenosyl methionine; (SAM)-binding pocket necessary for normal catalysis, consistent with a lack of; methyltransferase activity for these proteins. SUVH2 and SUVH9 both contain SRA; (SET- and RING-ASSOCIATED) domains capable of binding methylated DNA, suggesting; that they function to recruit Pol V through DNA methylation. Consistent with this; model, mutation of DNA METHYLTRANSFERASE 1 (MET1) causes loss of DNA methylation,; a nearly complete loss of Pol V at its normal locations, and redistribution of; Pol V to sites that become hypermethylated. Furthermore, tethering SUVH2 with a; zinc finger to an unmethylated site is sufficient to recruit Pol V and establish; DNA methylation and gene silencing. These results indicate that Pol V is; recruited to DNA methylation through the methyl-DNA binding SUVH2 and SUVH9; proteins, and our mechanistic findings suggest a means for selectively targeting; regions of plant genomes for epigenetic silencing.', 'AD': '1] Department of Molecular, Cell and Developmental Biology, University of; California at Los Angeles, Los Angeles, California 90095, USA [2].; 1] Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York,; New York 10065, USA [2].; Department of Molecular, Cell and Developmental Biology, University of California; at Los Angeles, Los Angeles, California 90095, USA.; Department of Molecular, Cell and Developmental Biology, University of California; at Los Angeles, Los Angeles, California 90095, USA.; 1] Department of Molecular, Cell and Developmental Biology, University of; California at Los Angeles, Los Angeles, California 90095, USA [2] Howard Hughes; Medical Institute, University of California at Los Angeles, Los Angeles,; California 90095, USA.; Department of Molecular, Cell and Developmental Biology, University of California; at Los Angeles, Los Angeles, California 90095, USA.; 1] Department of Molecular, Cell and Developmental Biology, University of; California at Los Angeles, Los Angeles, California 90095, USA [2] Wisconsin; Institute for Discovery, Laboratory of Genetics, University of Wisconsin,; Madison, Wisconsin 53706, USA.; Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New; York 10065, USA.; Department of Molecular, Cell and Developmental Biology, University of California; at Los Angeles, Los Angeles, California 90095, USA.; Genome Center and Department of Biochemistry and Molecular Medicine, University; of California at Davis, Davis, California 95616, USA.; Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New; York 10065, USA.; 1] Department of Molecular, Cell and Developmental Biology, University of; California at Los Angeles, Los Angeles, California 90095, USA [2] Howard Hughes; Medical Institute, University of California at Los Angeles, Los Angeles,; California 90095, USA.', 'VI': '507', 'IS': '1476-4687 (Electronic); 0028-0836 (Linking)', 'PMC': 'PMC3963826', 'AU': 'Johnson LM; Du J; Hale CJ; Bischof S; Feng S; Chodavarapu RK; Zhong X; Marson G; Pellegrini M; Segal DJ; Patel DJ; Jacobsen SE', 'MHDA': '2014/03/22 06:00', 'PHST': '2013/05/29 [received]; 2013/12/02 [accepted]; 2014/01/22 [aheadofprint]', 'OID': 'NLM: NIHMS545790; NLM: PMC3963826', 'MH': '*Arabidopsis/enzymology/genetics; Arabidopsis Proteins/*chemistry/genetics/*metabolism; Binding Sites/genetics; Biocatalysis; Chromatin/chemistry/genetics/metabolism; Crystallography, X-Ray; DNA (Cytosine-5-)-Methyltransferase/genetics/metabolism; *DNA Methylation/genetics; DNA-Binding Proteins/chemistry/metabolism; DNA-Directed RNA Polymerases/*metabolism; Flowers/growth & development; Gene Expression Regulation, Plant; Gene Silencing; Genome, Plant/genetics; Histone-Lysine N-Methyltransferase/*chemistry/*metabolism; Models, Molecular; Mutation/genetics; Phenotype; Protein Structure, Tertiary; Protein Transport; RNA, Plant/biosynthesis/genetics/metabolism; RNA, Small Interfering/biosynthesis/genetics/metabolism; Transcription, Genetic; Zinc Fingers', 'EDAT': '2014/01/28 06:00', 'SI': 'GEO/GSE52041; PDB/4NJ5', 'SO': 'Nature. 2014 Mar 6;507(7490):124-8. doi: 10.1038/nature12931. Epub 2014 Jan 22.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 1600) {'LID': '10.1002/cbic.201300661 [doi]', 'STAT': 'MEDLINE', 'IP': '2', 'DEP': '20131220', 'JID': '100937360', 'DA': '20140117', 'AID': '10.1002/cbic.201300661 [doi]', 'FAU': 'Yang, Hao; Srivastava, Poonam; Zhang, Chen; Lewis, Jared C', 'DP': '2014 Jan 24', 'GR': '1S10RR026988-01/RR/NCRR NIH HHS/United States; R00 GM087551/GM/NIGMS NIH HHS/United States', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.", 'LA': 'eng', 'CRDT': '2013/12/31 06:00', 'DCOM': '20140903', 'JT': 'Chembiochem : a European journal of chemical biology', 'LR': '20150127', 'PG': '223-7', 'TI': 'A general method for artificial metalloenzyme formation through strain-promoted; azide-alkyne cycloaddition.', 'RN': '0 (Alkynes); 0 (Azides); 0 (Metalloproteins)', 'PL': 'Germany', 'TA': 'Chembiochem', 'CI': 'Copyright (c) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.', 'AB': 'Strain-promoted azide-alkyne cycloaddition (SPAAC) can be used to generate; artificial metalloenzymes (ArMs) from scaffold proteins containing a; p-azido-L-phenylalanine (Az) residue and catalytically active; bicyclononyne-substituted metal complexes. The high efficiency of this reaction; allows rapid ArM formation when using Az residues within the scaffold protein in; the presence of cysteine residues or various reactive components of cellular; lysate. In general, cofactor-based ArM formation allows the use of any desired; metal complex to build unique inorganic protein materials. SPAAC covalent linkage; further decouples the native function of the scaffold from the installation; process because it is not affected by native amino acid residues; as long as an; Az residue can be incorporated, an ArM can be generated. We have demonstrated the; scope of this method with respect to both the scaffold and cofactor components; and established that the dirhodium ArMs generated can catalyze the decomposition; of diazo compounds and both Si-H and olefin insertion reactions involving these; carbene precursors.', 'AD': 'Department of Chemistry, University of Chicago, 5735 S. Ellis Ave., Chicago, IL; 60637 (USA).', 'VI': '15', 'IS': '1439-7633 (Electronic); 1439-4227 (Linking)', 'PMC': 'PMC3996923', 'MID': 'NIHMS553943', 'AU': 'Yang H; Srivastava P; Zhang C; Lewis JC', 'MHDA': '2014/09/04 06:00', 'PHST': '2013/10/15 [received]; 2013/12/20 [aheadofprint]', 'OTO': 'NOTNLM', 'OID': 'NLM: NIHMS553943; NLM: PMC3996923', 'MH': 'Alkynes/*chemistry; Azides/*chemistry; Biomimetic Materials/*chemistry; *Cycloaddition Reaction; Metalloproteins/*chemistry', 'EDAT': '2014/01/01 06:00', 'SO': 'Chembiochem. 2014 Jan 24;15(2):223-7. doi: 10.1002/cbic.201300661. Epub 2013 Dec', 'SB': 'IM', 'OT': 'artificial metalloenzymes; biocatalysis; click chemistry; cofactors; dirhodium', 'PST': 'ppublish'} () ('Stored article number', 1600) {'LID': '10.1002/cbic.201300661 [doi]', 'STAT': 'MEDLINE', 'IP': '2', 'DEP': '20131220', 'JID': '100937360', 'DA': '20140117', 'AID': '10.1002/cbic.201300661 [doi]', 'FAU': 'Yang, Hao; Srivastava, Poonam; Zhang, Chen; Lewis, Jared C', 'DP': '2014 Jan 24', 'GR': '1S10RR026988-01/RR/NCRR NIH HHS/United States; R00 GM087551/GM/NIGMS NIH HHS/United States', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.", 'LA': 'eng', 'CRDT': '2013/12/31 06:00', 'DCOM': '20140903', 'JT': 'Chembiochem : a European journal of chemical biology', 'LR': '20150127', 'PG': '223-7', 'TI': 'A general method for artificial metalloenzyme formation through strain-promoted; azide-alkyne cycloaddition.', 'RN': '0 (Alkynes); 0 (Azides); 0 (Metalloproteins)', 'PL': 'Germany', 'TA': 'Chembiochem', 'CI': 'Copyright (c) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.', 'AB': 'Strain-promoted azide-alkyne cycloaddition (SPAAC) can be used to generate; artificial metalloenzymes (ArMs) from scaffold proteins containing a; p-azido-L-phenylalanine (Az) residue and catalytically active; bicyclononyne-substituted metal complexes. The high efficiency of this reaction; allows rapid ArM formation when using Az residues within the scaffold protein in; the presence of cysteine residues or various reactive components of cellular; lysate. In general, cofactor-based ArM formation allows the use of any desired; metal complex to build unique inorganic protein materials. SPAAC covalent linkage; further decouples the native function of the scaffold from the installation; process because it is not affected by native amino acid residues; as long as an; Az residue can be incorporated, an ArM can be generated. We have demonstrated the; scope of this method with respect to both the scaffold and cofactor components; and established that the dirhodium ArMs generated can catalyze the decomposition; of diazo compounds and both Si-H and olefin insertion reactions involving these; carbene precursors.', 'AD': 'Department of Chemistry, University of Chicago, 5735 S. Ellis Ave., Chicago, IL; 60637 (USA).', 'VI': '15', 'IS': '1439-7633 (Electronic); 1439-4227 (Linking)', 'PMC': 'PMC3996923', 'MID': 'NIHMS553943', 'AU': 'Yang H; Srivastava P; Zhang C; Lewis JC', 'MHDA': '2014/09/04 06:00', 'PHST': '2013/10/15 [received]; 2013/12/20 [aheadofprint]', 'OTO': 'NOTNLM', 'OID': 'NLM: NIHMS553943; NLM: PMC3996923', 'MH': 'Alkynes/*chemistry; Azides/*chemistry; Biomimetic Materials/*chemistry; *Cycloaddition Reaction; Metalloproteins/*chemistry', 'EDAT': '2014/01/01 06:00', 'SO': 'Chembiochem. 2014 Jan 24;15(2):223-7. doi: 10.1002/cbic.201300661. Epub 2013 Dec; 20.', 'SB': 'IM', 'OT': 'artificial metalloenzymes; biocatalysis; click chemistry; cofactors; dirhodium', 'PST': 'ppublish'} () ('Stored article number', 1700) {'LID': '10.1021/es403876u [doi]', 'STAT': 'MEDLINE', 'IP': '24', 'DEP': '20131204', 'DA': '20131217', 'AID': '10.1021/es403876u [doi]', 'FAU': 'Wijker, Reto S; Kurt, Zohre; Spain, Jim C; Bolotin, Jakov; Zeyer, Josef; Hofstetter, Thomas B', 'DP': '2013 Dec 17', 'OWN': 'NLM', 'PT': 'Journal Article', 'LA': 'eng', 'CRDT': '2013/11/26 06:00', 'DCOM': '20141007', 'JT': 'Environmental science & technology', 'PG': '14185-93', 'TI': 'Isotope fractionation associated with the biodegradation of 2- and 4-nitrophenols; via monooxygenation pathways.', 'RN': '0 (Benzoquinones); 0 (Carbon Isotopes); 0 (Environmental Pollutants); 0 (Nitrogen Isotopes); 0 (Nitrophenols); 106-51-4 (benzoquinone); BD148E95KD (2-nitrophenol); EC 1.- (Mixed Function Oxygenases); Y92ZL45L4R (4-nitrophenol)', 'PL': 'United States', 'TA': 'Environ Sci Technol', 'JID': '0213155', 'AB': 'Monooxygenation is an important route of nitroaromatic compound (NAC); biodegradation and it is widely found for cometabolic transformations of NACs and; other aromatic pollutants. We investigated the C and N isotope fractionation of; nitrophenol monooxygenation to complement the characterization of NAC; (bio)degradation pathways by compound-specific isotope analysis (CSIA). Because; of the large diversity of enzymes catalyzing monooxygenations, we studied the; combined C and N isotope fractionation and the corresponding (13)C- and; (15)N-apparent kinetic isotope effects (AKIEs) of four nitrophenol-biodegrading; microorganisms (Bacillus spharericus JS905, Pseudomonas sp. 1A, Arthrobacter sp.; JS443, Pseudomonas putida B2) in the pH range 6.1-8.6 with resting cells and; crude cell extracts. While the extent of C and N isotope fractionation and the; AKIE-values varied considerably for the different organisms, the correlated C and; N isotope signatures (delta(15)N vs delta(13)C) revealed trends, indicative of; two distinct monooxygenation pathways involving hydroxy-1,4-benzoquinone or 1,2-; and 1,4-benzoquinone intermediates, respectively. The distinction was possible; based on larger secondary (15)N-AKIEs associated with the benzoquinone pathway.; Isotope fractionation was neither masked substantially by nitrophenol speciation; nor transport across cell membranes. Only when 4-nitrophenol was biodegraded by; Pseudomonas sp. 1A did isotope fractionation become negligible, presumably due to; rate-limiting substrate binding steps pertinent to the catalytic cycle of; flavin-dependent monooxygenases.', 'AD': 'Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600; Dubendorf, Switzerland.', 'VI': '47', 'IS': '1520-5851 (Electronic); 0013-936X (Linking)', 'AU': 'Wijker RS; Kurt Z; Spain JC; Bolotin J; Zeyer J; Hofstetter TB', 'MHDA': '2014/10/08 06:00', 'PHST': '2013/12/04 [aheadofprint]', 'MH': 'Arthrobacter/metabolism; Bacillus/metabolism; Benzoquinones/chemistry/metabolism; Biocatalysis; Biodegradation, Environmental; Carbon Isotopes; Chemical Fractionation; Environmental Pollutants/analysis; Kinetics; *Metabolic Networks and Pathways; Mixed Function Oxygenases/*metabolism; Nitrogen Isotopes; Nitrophenols/chemistry/*metabolism; Pseudomonas putida/metabolism', 'EDAT': '2013/11/26 06:00', 'SO': 'Environ Sci Technol. 2013 Dec 17;47(24):14185-93. doi: 10.1021/es403876u. Epub', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 1700) {'LID': '10.1021/es403876u [doi]', 'STAT': 'MEDLINE', 'IP': '24', 'DEP': '20131204', 'DA': '20131217', 'AID': '10.1021/es403876u [doi]', 'FAU': 'Wijker, Reto S; Kurt, Zohre; Spain, Jim C; Bolotin, Jakov; Zeyer, Josef; Hofstetter, Thomas B', 'DP': '2013 Dec 17', 'OWN': 'NLM', 'PT': 'Journal Article', 'LA': 'eng', 'CRDT': '2013/11/26 06:00', 'DCOM': '20141007', 'JT': 'Environmental science & technology', 'PG': '14185-93', 'TI': 'Isotope fractionation associated with the biodegradation of 2- and 4-nitrophenols; via monooxygenation pathways.', 'RN': '0 (Benzoquinones); 0 (Carbon Isotopes); 0 (Environmental Pollutants); 0 (Nitrogen Isotopes); 0 (Nitrophenols); 106-51-4 (benzoquinone); BD148E95KD (2-nitrophenol); EC 1.- (Mixed Function Oxygenases); Y92ZL45L4R (4-nitrophenol)', 'PL': 'United States', 'TA': 'Environ Sci Technol', 'JID': '0213155', 'AB': 'Monooxygenation is an important route of nitroaromatic compound (NAC); biodegradation and it is widely found for cometabolic transformations of NACs and; other aromatic pollutants. We investigated the C and N isotope fractionation of; nitrophenol monooxygenation to complement the characterization of NAC; (bio)degradation pathways by compound-specific isotope analysis (CSIA). Because; of the large diversity of enzymes catalyzing monooxygenations, we studied the; combined C and N isotope fractionation and the corresponding (13)C- and; (15)N-apparent kinetic isotope effects (AKIEs) of four nitrophenol-biodegrading; microorganisms (Bacillus spharericus JS905, Pseudomonas sp. 1A, Arthrobacter sp.; JS443, Pseudomonas putida B2) in the pH range 6.1-8.6 with resting cells and; crude cell extracts. While the extent of C and N isotope fractionation and the; AKIE-values varied considerably for the different organisms, the correlated C and; N isotope signatures (delta(15)N vs delta(13)C) revealed trends, indicative of; two distinct monooxygenation pathways involving hydroxy-1,4-benzoquinone or 1,2-; and 1,4-benzoquinone intermediates, respectively. The distinction was possible; based on larger secondary (15)N-AKIEs associated with the benzoquinone pathway.; Isotope fractionation was neither masked substantially by nitrophenol speciation; nor transport across cell membranes. Only when 4-nitrophenol was biodegraded by; Pseudomonas sp. 1A did isotope fractionation become negligible, presumably due to; rate-limiting substrate binding steps pertinent to the catalytic cycle of; flavin-dependent monooxygenases.', 'AD': 'Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600; Dubendorf, Switzerland.', 'VI': '47', 'IS': '1520-5851 (Electronic); 0013-936X (Linking)', 'AU': 'Wijker RS; Kurt Z; Spain JC; Bolotin J; Zeyer J; Hofstetter TB', 'MHDA': '2014/10/08 06:00', 'PHST': '2013/12/04 [aheadofprint]', 'MH': 'Arthrobacter/metabolism; Bacillus/metabolism; Benzoquinones/chemistry/metabolism; Biocatalysis; Biodegradation, Environmental; Carbon Isotopes; Chemical Fractionation; Environmental Pollutants/analysis; Kinetics; *Metabolic Networks and Pathways; Mixed Function Oxygenases/*metabolism; Nitrogen Isotopes; Nitrophenols/chemistry/*metabolism; Pseudomonas putida/metabolism', 'EDAT': '2013/11/26 06:00', 'SO': 'Environ Sci Technol. 2013 Dec 17;47(24):14185-93. doi: 10.1021/es403876u. Epub; 2013 Dec 4.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 1800) {'LID': '10.1039/c3cc46161k [doi]', 'STAT': 'MEDLINE', 'IP': '96', 'DEP': '20131024', 'DA': '20131108', 'AID': '10.1039/c3cc46161k [doi]', 'FAU': 'Wu, Qing; Su, Teng; Mao, Yanjie; Wang, Qigang', 'DP': '2013 Dec 14', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2013/10/26 06:00', 'DCOM': '20140609', 'JT': 'Chemical communications (Cambridge, England)', 'PG': '11299-301', 'TI': 'Thermal responsive microgels as recyclable carriers to immobilize active proteins; with enhanced nonaqueous biocatalytic performance.', 'RN': '0 (Acrylamides); 0 (Gels); 0 (Hemoglobins); 0 (Immobilized Proteins); B7GFF17L9U (N-isopropylacrylamide); BBX060AN9V (Hydrogen Peroxide); EC 1.11.1.- (Horseradish Peroxidase)', 'PL': 'England', 'TA': 'Chem Commun (Camb)', 'JID': '9610838', 'AB': 'We describe the preparation of a thermoresponsive microgel, which can; non-covalently immobilize active proteins with enhanced biocatalytic performance; in organic solvents and easy reusability due to the porous microstructure and; temperature responsive property.', 'AD': 'Department of Chemistry, and Advanced Research Institute, Tongji University,; Shanghai 200092, PR China. [email protected].', 'VI': '49', 'IS': '1364-548X (Electronic); 1359-7345 (Linking)', 'AU': 'Wu Q; Su T; Mao Y; Wang Q', 'MHDA': '2014/06/10 06:00', 'PHST': '2013/10/24 [aheadofprint]; 2013/11/07 [epublish]', 'MH': 'Acrylamides/chemistry; Animals; Biocatalysis; Gels/*chemistry; Hemoglobins/*chemistry; Horseradish Peroxidase/chemistry; Hydrogen Peroxide/chemistry; Hydrogen-Ion Concentration; Immobilized Proteins/*chemistry; Models, Molecular; Oxidation-Reduction; Porosity; Temperature', 'EDAT': '2013/10/26 06:00', 'SO': 'Chem Commun (Camb). 2013 Dec 14;49(96):11299-301. doi: 10.1039/c3cc46161k. Epub', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 1800) {'LID': '10.1039/c3cc46161k [doi]', 'STAT': 'MEDLINE', 'IP': '96', 'DEP': '20131024', 'DA': '20131108', 'AID': '10.1039/c3cc46161k [doi]', 'FAU': 'Wu, Qing; Su, Teng; Mao, Yanjie; Wang, Qigang', 'DP': '2013 Dec 14', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2013/10/26 06:00', 'DCOM': '20140609', 'JT': 'Chemical communications (Cambridge, England)', 'PG': '11299-301', 'TI': 'Thermal responsive microgels as recyclable carriers to immobilize active proteins; with enhanced nonaqueous biocatalytic performance.', 'RN': '0 (Acrylamides); 0 (Gels); 0 (Hemoglobins); 0 (Immobilized Proteins); B7GFF17L9U (N-isopropylacrylamide); BBX060AN9V (Hydrogen Peroxide); EC 1.11.1.- (Horseradish Peroxidase)', 'PL': 'England', 'TA': 'Chem Commun (Camb)', 'JID': '9610838', 'AB': 'We describe the preparation of a thermoresponsive microgel, which can; non-covalently immobilize active proteins with enhanced biocatalytic performance; in organic solvents and easy reusability due to the porous microstructure and; temperature responsive property.', 'AD': 'Department of Chemistry, and Advanced Research Institute, Tongji University,; Shanghai 200092, PR China. [email protected].', 'VI': '49', 'IS': '1364-548X (Electronic); 1359-7345 (Linking)', 'AU': 'Wu Q; Su T; Mao Y; Wang Q', 'MHDA': '2014/06/10 06:00', 'PHST': '2013/10/24 [aheadofprint]; 2013/11/07 [epublish]', 'MH': 'Acrylamides/chemistry; Animals; Biocatalysis; Gels/*chemistry; Hemoglobins/*chemistry; Horseradish Peroxidase/chemistry; Hydrogen Peroxide/chemistry; Hydrogen-Ion Concentration; Immobilized Proteins/*chemistry; Models, Molecular; Oxidation-Reduction; Porosity; Temperature', 'EDAT': '2013/10/26 06:00', 'SO': 'Chem Commun (Camb). 2013 Dec 14;49(96):11299-301. doi: 10.1039/c3cc46161k. Epub; 2013 Oct 24.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 1900) {'LID': '10.1039/c3cs60245a [doi]', 'STAT': 'MEDLINE', 'IP': '4', 'JT': 'Chemical Society reviews', 'DA': '20140129', 'AID': '10.1039/c3cs60245a [doi]', 'FAU': 'Janssen, Kris P F; De Cremer, Gert; Neely, Robert K; Kubarev, Alexey V; Van Loon, Jordi; Martens, Johan A; De Vos, Dirk E; Roeffaers, Maarten B J; Hofkens, Johan', 'DP': '2014 Feb 21', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't; Review", 'LA': 'eng', 'CRDT': '2013/10/03 06:00', 'DCOM': '20140916', 'PG': '990-1006', 'TI': 'Single molecule methods for the study of catalysis: from enzymes to heterogeneous; catalysts.', 'PL': 'England', 'TA': 'Chem Soc Rev', 'JID': '0335405', 'AB': 'Structural and temporal inhomogeneities can have a marked influence on the; performance of inorganic and biocatalytic systems alike. While these subtle; variations are hardly ever accessible through bulk or ensemble averaged activity; screening, insights into the molecular mechanisms underlying these diverse; phenomena are absolutely critical for the development of optimized or novel; catalytic systems and processes. Fortunately, state-of-the-art fluorescence; microscopy methods have allowed experimental access to this intriguing world at; the nanoscale. In this tutorial review we will first provide a broad overview of; key concepts and developments in the application of single molecule fluorescence; spectroscopy to (bio)catalysis research. In the second part topics specific to; both bio and heterogeneous catalysis will be reviewed in more detail.', 'AD': 'Laboratory of Photochemistry and Spectroscopy, Department of Chemistry, KU; Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium.; [email protected].', 'VI': '43', 'IS': '1460-4744 (Electronic); 0306-0012 (Linking)', 'AU': 'Janssen KP; De Cremer G; Neely RK; Kubarev AV; Van Loon J; Martens JA; De Vos DE; Roeffaers MB; Hofkens J', 'MHDA': '2014/09/17 06:00', 'MH': 'Animals; Biocatalysis; Catalysis; Humans; Microscopy, Fluorescence/*methods; Models, Molecular; Spectrometry, Fluorescence/*methods', 'EDAT': '2013/10/03 06:00', 'SO': 'Chem Soc Rev. 2014 Feb 21;43(4):990-1006. doi: 10.1039/c3cs60245a.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 2000) {'LID': '10.1016/j.biortech.2013.08.035 [doi]; S0960-8524(13)01264-9 [pii]', 'STAT': 'MEDLINE', 'DEP': '20130813', 'CI': 'Copyright (c) 2013 Elsevier Ltd. All rights reserved.', 'DA': '20130927', 'AID': 'S0960-8524(13)01264-9 [pii]; 10.1016/j.biortech.2013.08.035 [doi]', 'DCOM': '20140430', 'DP': '2013 Nov', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2013/09/04 06:00', 'FAU': 'Talekar, Sachin; Pandharbale, Amol; Ladole, Mayur; Nadar, Shamraja; Mulla, Mosin; Japhalekar, Kshitija; Pattankude, Kishori; Arage, Devika', 'JT': 'Bioresource technology', 'PG': '269-75', 'TI': 'Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as; combined cross-linked enzyme aggregates (combi-CLEAs): a tri-enzyme biocatalyst; with one pot starch hydrolytic activity.', 'RN': 'EC 3.2.1.- (Glycoside Hydrolases); EC 3.2.1.1 (alpha-Amylases); EC 3.2.1.3 (Glucan 1,4-alpha-Glucosidase); EC 3.2.1.41 (pullulanase)', 'PL': 'England', 'TA': 'Bioresour Technol', 'JID': '9889523', 'AB': 'A tri-enzyme biocatalyst "combi-CLEAs" with starch hydrolytic activity was; prepared from commercially available alpha amylase, glucoamylase and pullulanase; preparations by aggregating enzymes with ammonium sulphate followed by; cross-linking formed aggregates for 4.5h with 40 mM glutaraldehyde. The effects; of precipitant type and cross-linking were studied and the biocatalyst was; characterized. Scanning electron microscopy analysis showed that tri-enzyme; biocatalyst was of spherical structure. For one pot starch hydrolytic activity,; shift in optimum pH from 6 to 7 and temperature from 65 to 75 degrees C were; observed after co-immobilization of enzymes. After one pot starch hydrolysis; reaction in batch mode, 100%, 60% and 40% conversions were obtained with; combi-CLEAs, separate CLEAs mixture and free enzyme mixture, respectively.; Co-immobilization also enhanced the thermal stability of enzymes. Finally, the; catalytic activity of enzymes in combi-CLEAs during one pot starch hydrolysis was; well maintained up to five cycles without performance changes.', 'AD': "Department of Biotechnology Engineering, Kolhapur Institute of Technology's; College of Engineering, Kolhapur 416 234, India. Electronic address:; [email protected].", 'VI': '147', 'IS': '1873-2976 (Electronic); 0960-8524 (Linking)', 'AU': 'Talekar S; Pandharbale A; Ladole M; Nadar S; Mulla M; Japhalekar K; Pattankude K; Arage D', 'MHDA': '2014/05/03 06:00', 'PHST': '2013/06/08 [received]; 2013/08/02 [revised]; 2013/08/05 [accepted]; 2013/08/13 [aheadofprint]', 'OTO': 'NOTNLM', 'MH': 'Biocatalysis; Enzyme Stability; Glucan 1,4-alpha-Glucosidase/*metabolism; Glycoside Hydrolases/*metabolism; Hydrolysis; Temperature; alpha-Amylases/*metabolism', 'EDAT': '2013/09/04 06:00', 'SO': 'Bioresour Technol. 2013 Nov;147:269-75. doi: 10.1016/j.biortech.2013.08.035. Epub', 'SB': 'IM', 'OT': 'Alpha amylase; Combined cross-linked enzyme aggregates (combi-CLEAs); Glucoamylase; One pot starch hydrolysis; Pullulanase', 'PST': 'ppublish'} () ('Stored article number', 2000) {'LID': '10.1016/j.biortech.2013.08.035 [doi]; S0960-8524(13)01264-9 [pii]', 'STAT': 'MEDLINE', 'DEP': '20130813', 'CI': 'Copyright (c) 2013 Elsevier Ltd. All rights reserved.', 'DA': '20130927', 'AID': 'S0960-8524(13)01264-9 [pii]; 10.1016/j.biortech.2013.08.035 [doi]', 'DCOM': '20140430', 'DP': '2013 Nov', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2013/09/04 06:00', 'FAU': 'Talekar, Sachin; Pandharbale, Amol; Ladole, Mayur; Nadar, Shamraja; Mulla, Mosin; Japhalekar, Kshitija; Pattankude, Kishori; Arage, Devika', 'JT': 'Bioresource technology', 'PG': '269-75', 'TI': 'Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as; combined cross-linked enzyme aggregates (combi-CLEAs): a tri-enzyme biocatalyst; with one pot starch hydrolytic activity.', 'RN': 'EC 3.2.1.- (Glycoside Hydrolases); EC 3.2.1.1 (alpha-Amylases); EC 3.2.1.3 (Glucan 1,4-alpha-Glucosidase); EC 3.2.1.41 (pullulanase)', 'PL': 'England', 'TA': 'Bioresour Technol', 'JID': '9889523', 'AB': 'A tri-enzyme biocatalyst "combi-CLEAs" with starch hydrolytic activity was; prepared from commercially available alpha amylase, glucoamylase and pullulanase; preparations by aggregating enzymes with ammonium sulphate followed by; cross-linking formed aggregates for 4.5h with 40 mM glutaraldehyde. The effects; of precipitant type and cross-linking were studied and the biocatalyst was; characterized. Scanning electron microscopy analysis showed that tri-enzyme; biocatalyst was of spherical structure. For one pot starch hydrolytic activity,; shift in optimum pH from 6 to 7 and temperature from 65 to 75 degrees C were; observed after co-immobilization of enzymes. After one pot starch hydrolysis; reaction in batch mode, 100%, 60% and 40% conversions were obtained with; combi-CLEAs, separate CLEAs mixture and free enzyme mixture, respectively.; Co-immobilization also enhanced the thermal stability of enzymes. Finally, the; catalytic activity of enzymes in combi-CLEAs during one pot starch hydrolysis was; well maintained up to five cycles without performance changes.', 'AD': "Department of Biotechnology Engineering, Kolhapur Institute of Technology's; College of Engineering, Kolhapur 416 234, India. Electronic address:; [email protected].", 'VI': '147', 'IS': '1873-2976 (Electronic); 0960-8524 (Linking)', 'AU': 'Talekar S; Pandharbale A; Ladole M; Nadar S; Mulla M; Japhalekar K; Pattankude K; Arage D', 'MHDA': '2014/05/03 06:00', 'PHST': '2013/06/08 [received]; 2013/08/02 [revised]; 2013/08/05 [accepted]; 2013/08/13 [aheadofprint]', 'OTO': 'NOTNLM', 'MH': 'Biocatalysis; Enzyme Stability; Glucan 1,4-alpha-Glucosidase/*metabolism; Glycoside Hydrolases/*metabolism; Hydrolysis; Temperature; alpha-Amylases/*metabolism', 'EDAT': '2013/09/04 06:00', 'SO': 'Bioresour Technol. 2013 Nov;147:269-75. doi: 10.1016/j.biortech.2013.08.035. Epub; 2013 Aug 13.', 'SB': 'IM', 'OT': 'Alpha amylase; Combined cross-linked enzyme aggregates (combi-CLEAs); Glucoamylase; One pot starch hydrolysis; Pullulanase', 'PST': 'ppublish'} () ('Stored article number', 2100) {'LID': '10.1007/978-1-62703-550-7_19 [doi]', 'STAT': 'MEDLINE', 'JT': 'Methods in molecular biology (Clifton, N.J.)', 'DA': '20130812', 'AID': '10.1007/978-1-62703-550-7_19 [doi]', 'DCOM': '20140225', 'DP': '2013', 'OWN': 'NLM', 'PT': 'Journal Article', 'LA': 'eng', 'CRDT': '2013/08/13 06:00', 'FAU': 'Pastor, Marta; Esquisabel, Amaia; Pedraz, Jose Luis', 'PG': '285-99', 'TI': 'Biomedical applications of immobilized enzymes: an update.', 'RN': '0 (Enzymes, Immobilized); 0 (Liposomes); 0 (Nanocapsules); 0 (polylactic acid-polyglycolic acid copolymer); 26009-03-0 (Polyglycolic Acid); 33X04XA5AT (Lactic Acid); 9012-76-4 (Chitosan); EC 1.15.1.1 (Superoxide Dismutase); EC 3.4.13.- (Dipeptidases); EC 3.4.13.9 (proline dipeptidase)', 'PL': 'United States', 'TA': 'Methods Mol Biol', 'JID': '9214969', 'AB': 'Immobilized enzymes have been widely studied during the last few decades.; Biocatalyst systems may work as biosensors or may be used for the treatment of; different diseases. This chapter presents different attempts to immobilize; enzymes in the biomedical field, particularly the use of prolidase and superoxide; dismutase as two examples of this approach. Although this chapter focuses on; liposomes and nanoparticles for the entrapment of these enzymes, the methods; detailed here could be adapted for the immobilization of other enzymes with; therapeutic purposes.', 'AD': 'NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of; the Basque Country, Vitoria-Gasteiz, Spain.', 'VI': '1051', 'IS': '1940-6029 (Electronic); 1064-3745 (Linking)', 'AU': 'Pastor M; Esquisabel A; Pedraz JL', 'MHDA': '2014/02/26 06:00', 'MH': 'Animals; Biocatalysis; Chitosan/chemistry; Dipeptidases/chemistry; Drug Compounding; Enzymes, Immobilized/*chemistry; Humans; Lactic Acid/chemistry; Liposomes/chemistry; Nanocapsules/chemistry; Nanomedicine; Polyglycolic Acid/chemistry; Superoxide Dismutase/chemistry', 'EDAT': '2013/08/13 06:00', 'SO': 'Methods Mol Biol. 2013;1051:285-99. doi: 10.1007/978-1-62703-550-7_19.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 2200) {'LID': '10.1007/s00449-013-1010-7 [doi]', 'STAT': 'MEDLINE', 'IP': '3', 'DEP': '20130717', 'DA': '20140327', 'AID': '10.1007/s00449-013-1010-7 [doi]', 'FAU': 'Nicolas, Paula; Lassalle, Veronica; Ferreira, Maria Lujan', 'DP': '2014 Mar', 'OWN': 'NLM', 'PT': 'Journal Article', 'LA': 'eng', 'CRDT': '2013/07/18 06:00', 'DCOM': '20141209', 'JT': 'Bioprocess and biosystems engineering', 'PG': '585-91', 'TI': 'Development of a magnetic biocatalyst useful for the synthesis of ethyloleate.', 'RN': '0 (Oleic Acids); Z2Z439864Y (ethyl oleate)', 'PL': 'Germany', 'TA': 'Bioprocess Biosyst Eng', 'JID': '101088505', 'AB': 'Candida antarctica Lipase B was successfully immobilized on magnetite (Fe3O4); nanoparticles functionalized with chitosan and glutaraldehyde. The obtained; magnetic catalyst was characterized and its performance was evaluated in; solvent-free synthesis of ethyl oleate at room temperature. The performance of; this biocatalyst was compared with the commercial Novozym 435, as a tool to; estimate the efficiency of immobilization. It was found that using 33 mg of the; biocatalyst it was possible to reach almost the same activity that was obtained; using 12 mg of Novozym 435. Furthermore, this new biocatalyst presents the; advantages of not being degraded by short alcohols, being easily recovered from; the reaction media by magnetic decantation, and low fabrication cost. The; possibility of reutilization was also studied, keeping a significant activity up; to eight cycles. A special sampling protocol was also developed for the; multiphasic reaction system, to assure accurate results. This novel biocatalyst; is an interesting alternative for potential industrial applications, considering; the above-mentioned advantages.', 'AD': 'Planta Piloto de Ingenieria Quimica (UNS-CONICET), Camino La Carrindanga km. 7,; 8000, Bahia Blanca, Argentina.', 'VI': '37', 'IS': '1615-7605 (Electronic); 1615-7591 (Linking)', 'AU': 'Nicolas P; Lassalle V; Ferreira ML', 'MHDA': '2014/12/15 06:00', 'PHST': '2013/04/11 [received]; 2013/06/27 [accepted]; 2013/07/17 [aheadofprint]', 'MH': '*Biocatalysis; Candida/*enzymology; *Magnetics; Microscopy, Electron, Transmission; Oleic Acids/*biosynthesis; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared', 'EDAT': '2013/07/19 06:00', 'SO': 'Bioprocess Biosyst Eng. 2014 Mar;37(3):585-91. doi: 10.1007/s00449-013-1010-7.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 2200) {'LID': '10.1007/s00449-013-1010-7 [doi]', 'STAT': 'MEDLINE', 'IP': '3', 'DEP': '20130717', 'DA': '20140327', 'AID': '10.1007/s00449-013-1010-7 [doi]', 'FAU': 'Nicolas, Paula; Lassalle, Veronica; Ferreira, Maria Lujan', 'DP': '2014 Mar', 'OWN': 'NLM', 'PT': 'Journal Article', 'LA': 'eng', 'CRDT': '2013/07/18 06:00', 'DCOM': '20141209', 'JT': 'Bioprocess and biosystems engineering', 'PG': '585-91', 'TI': 'Development of a magnetic biocatalyst useful for the synthesis of ethyloleate.', 'RN': '0 (Oleic Acids); Z2Z439864Y (ethyl oleate)', 'PL': 'Germany', 'TA': 'Bioprocess Biosyst Eng', 'JID': '101088505', 'AB': 'Candida antarctica Lipase B was successfully immobilized on magnetite (Fe3O4); nanoparticles functionalized with chitosan and glutaraldehyde. The obtained; magnetic catalyst was characterized and its performance was evaluated in; solvent-free synthesis of ethyl oleate at room temperature. The performance of; this biocatalyst was compared with the commercial Novozym 435, as a tool to; estimate the efficiency of immobilization. It was found that using 33 mg of the; biocatalyst it was possible to reach almost the same activity that was obtained; using 12 mg of Novozym 435. Furthermore, this new biocatalyst presents the; advantages of not being degraded by short alcohols, being easily recovered from; the reaction media by magnetic decantation, and low fabrication cost. The; possibility of reutilization was also studied, keeping a significant activity up; to eight cycles. A special sampling protocol was also developed for the; multiphasic reaction system, to assure accurate results. This novel biocatalyst; is an interesting alternative for potential industrial applications, considering; the above-mentioned advantages.', 'AD': 'Planta Piloto de Ingenieria Quimica (UNS-CONICET), Camino La Carrindanga km. 7,; 8000, Bahia Blanca, Argentina.', 'VI': '37', 'IS': '1615-7605 (Electronic); 1615-7591 (Linking)', 'AU': 'Nicolas P; Lassalle V; Ferreira ML', 'MHDA': '2014/12/15 06:00', 'PHST': '2013/04/11 [received]; 2013/06/27 [accepted]; 2013/07/17 [aheadofprint]', 'MH': '*Biocatalysis; Candida/*enzymology; *Magnetics; Microscopy, Electron, Transmission; Oleic Acids/*biosynthesis; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared', 'EDAT': '2013/07/19 06:00', 'SO': 'Bioprocess Biosyst Eng. 2014 Mar;37(3):585-91. doi: 10.1007/s00449-013-1010-7.; Epub 2013 Jul 17.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 2300) {'LID': '10.1007/s00449-013-0991-6 [doi]', 'STAT': 'MEDLINE', 'IP': '2', 'DEP': '20130618', 'DA': '20140131', 'AID': '10.1007/s00449-013-0991-6 [doi]', 'FAU': 'Kiriukhin, Michael; Tyurin, Michael', 'DP': '2014 Feb', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2013/06/19 06:00', 'DCOM': '20140929', 'JT': 'Bioprocess and biosystems engineering', 'PG': '245-60', 'TI': 'Mevalonate production by engineered acetogen biocatalyst during continuous; fermentation of syngas or CO(2)/H(2) blend.', 'RN': '0 (Acetogenins); 0 (DNA Primers); 142M471B3J (Carbon Dioxide); 7YNJ3PO35Z (Hydrogen); S5UOB36OCZ (Mevalonic Acid)', 'PL': 'Germany', 'TA': 'Bioprocess Biosyst Eng', 'JID': '101088505', 'AB': 'Naturally mevalonate-resistant acetogen Clostridium sp. MT1243 produced only 425; mM acetate during syngas fermentation. Using Clostridium sp. MT1243 we engineered; biocatalyst selectively producing mevalonate from synthesis gas or CO(2)/H(2); blend. Acetate production and spore formation were eliminated from Clostridium; sp. MT1243 using Cre-lox66/lox71-system. Cell energy released via elimination of; phosphotransacetylase, acetate kinase and early stage sporulation genes powered; mevalonate accumulation in fermentation broth due to expression of synthetic; thiolase, HMG-synthase, and HMG-reductase, three copies of each, integrated using; Tn7-approach. Recombinants produced 145 mM mevalonate in five independent; single-step fermentation runs 25 days each in five repeats using syngas blend 60%; CO and 40% H(2) (v/v) (p < 0.005). Mevalonate production was 97 mM if only; CO(2)/H(2) blend was fed instead of syngas (p < 0.005). Mevalonate from; CO(2)/H(2) blend might serve as a commercial route to mitigate global warming in; proportion to CO(2) fermentation scale worldwide.', 'AD': 'Syngas Biofuels Energy, Inc., P.O. Box 300819, Houston, TX, 77230, USA.', 'VI': '37', 'IS': '1615-7605 (Electronic); 1615-7591 (Linking)', 'AU': 'Kiriukhin M; Tyurin M', 'MHDA': '2014/09/30 06:00', 'PHST': '2013/02/03 [received]; 2013/05/31 [accepted]; 2013/06/18 [aheadofprint]', 'MH': 'Acetogenins/*metabolism; Base Sequence; Biocatalysis; Carbon Dioxide/*metabolism; Chromosomes, Bacterial; Clostridium/genetics/*metabolism; DNA Primers; *Fermentation; Hydrogen/*metabolism; Mevalonic Acid/*metabolism; Polymerase Chain Reaction', 'EDAT': '2013/06/19 06:00', 'SO': 'Bioprocess Biosyst Eng. 2014 Feb;37(2):245-60. doi: 10.1007/s00449-013-0991-6.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 2300) {'LID': '10.1007/s00449-013-0991-6 [doi]', 'STAT': 'MEDLINE', 'IP': '2', 'DEP': '20130618', 'DA': '20140131', 'AID': '10.1007/s00449-013-0991-6 [doi]', 'FAU': 'Kiriukhin, Michael; Tyurin, Michael', 'DP': '2014 Feb', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2013/06/19 06:00', 'DCOM': '20140929', 'JT': 'Bioprocess and biosystems engineering', 'PG': '245-60', 'TI': 'Mevalonate production by engineered acetogen biocatalyst during continuous; fermentation of syngas or CO(2)/H(2) blend.', 'RN': '0 (Acetogenins); 0 (DNA Primers); 142M471B3J (Carbon Dioxide); 7YNJ3PO35Z (Hydrogen); S5UOB36OCZ (Mevalonic Acid)', 'PL': 'Germany', 'TA': 'Bioprocess Biosyst Eng', 'JID': '101088505', 'AB': 'Naturally mevalonate-resistant acetogen Clostridium sp. MT1243 produced only 425; mM acetate during syngas fermentation. Using Clostridium sp. MT1243 we engineered; biocatalyst selectively producing mevalonate from synthesis gas or CO(2)/H(2); blend. Acetate production and spore formation were eliminated from Clostridium; sp. MT1243 using Cre-lox66/lox71-system. Cell energy released via elimination of; phosphotransacetylase, acetate kinase and early stage sporulation genes powered; mevalonate accumulation in fermentation broth due to expression of synthetic; thiolase, HMG-synthase, and HMG-reductase, three copies of each, integrated using; Tn7-approach. Recombinants produced 145 mM mevalonate in five independent; single-step fermentation runs 25 days each in five repeats using syngas blend 60%; CO and 40% H(2) (v/v) (p < 0.005). Mevalonate production was 97 mM if only; CO(2)/H(2) blend was fed instead of syngas (p < 0.005). Mevalonate from; CO(2)/H(2) blend might serve as a commercial route to mitigate global warming in; proportion to CO(2) fermentation scale worldwide.', 'AD': 'Syngas Biofuels Energy, Inc., P.O. Box 300819, Houston, TX, 77230, USA.', 'VI': '37', 'IS': '1615-7605 (Electronic); 1615-7591 (Linking)', 'AU': 'Kiriukhin M; Tyurin M', 'MHDA': '2014/09/30 06:00', 'PHST': '2013/02/03 [received]; 2013/05/31 [accepted]; 2013/06/18 [aheadofprint]', 'MH': 'Acetogenins/*metabolism; Base Sequence; Biocatalysis; Carbon Dioxide/*metabolism; Chromosomes, Bacterial; Clostridium/genetics/*metabolism; DNA Primers; *Fermentation; Hydrogen/*metabolism; Mevalonic Acid/*metabolism; Polymerase Chain Reaction', 'EDAT': '2013/06/19 06:00', 'SO': 'Bioprocess Biosyst Eng. 2014 Feb;37(2):245-60. doi: 10.1007/s00449-013-0991-6.; Epub 2013 Jun 18.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 2400) {'LID': '10.1038/nchem.1650 [doi]', 'STAT': 'MEDLINE', 'IP': '6', 'DEP': '20130519', 'MID': 'HHMIMS591916', 'DA': '20130522', 'AID': 'nchem.1650 [pii]; 10.1038/nchem.1650 [doi]', 'FAU': 'Adamala, Katarzyna; Szostak, Jack W', 'DP': '2013 Jun', 'GR': 'Howard Hughes Medical Institute/United States', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, U.S. Gov't, Non-P.H.S.", 'LA': 'eng', 'CRDT': '2013/05/23 06:00', 'DCOM': '20130716', 'JT': 'Nature chemistry', 'LR': '20141113', 'PG': '495-501', 'TI': 'Competition between model protocells driven by an encapsulated catalyst.', 'RN': '0 (Capsules); 0 (Dipeptides); 0 (Micelles); 0 (acetylphenylalanyl-leucinamide); 0 (seryl-histidine)', 'EIN': 'Nat Chem. 2013 Jul;5(7):634', 'PL': 'England', 'TA': 'Nat Chem', 'JID': '101499734', 'AB': 'The advent of Darwinian evolution required the emergence of molecular mechanisms; for the heritable variation of fitness. One model for such a system involves; competing protocell populations, each consisting of a replicating genetic polymer; within a replicating vesicle. In this model, each genetic polymer imparts a; selective advantage to its protocell by, for example, coding for a catalyst that; generates a useful metabolite. Here, we report a partial model of such nascent; evolutionary traits in a system that consists of fatty-acid vesicles containing a; dipeptide catalyst, which catalyses the formation of a second dipeptide. The; newly formed dipeptide binds to vesicle membranes, which imparts enhanced; affinity for fatty acids and thus promotes vesicle growth. The catalysed; dipeptide synthesis proceeds with higher efficiency in vesicles than in free; solution, which further enhances fitness. Our observations suggest that, in a; replicating protocell with an RNA genome, ribozyme-catalysed peptide synthesis; might have been sufficient to initiate Darwinian evolution.', 'AD': 'Howard Hughes Medical Institute, Department of Molecular Biology, and Center for; Computational and Integrative Biology, Massachusetts General Hospital, Boston,; Massachusetts 02114, USA.', 'VI': '5', 'IS': '1755-4349 (Electronic); 1755-4330 (Linking)', 'PMC': 'PMC4041014', 'AU': 'Adamala K; Szostak JW', 'MHDA': '2013/07/17 06:00', 'PHST': '2012/11/30 [received]; 2013/04/04 [accepted]; 2013/05/19 [aheadofprint]', 'OID': 'NLM: HHMIMS591916; NLM: PMC4041014', 'MH': 'Artificial Cells/cytology/*metabolism; *Biocatalysis; Biological Transport; Capsules; Cell Membrane/metabolism; Dipeptides/chemistry/metabolism; Hydrophobic and Hydrophilic Interactions; Micelles', 'EDAT': '2013/05/23 06:00', 'SO': 'Nat Chem. 2013 Jun;5(6):495-501. doi: 10.1038/nchem.1650. Epub 2013 May 19.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 2500) {'LID': '10.1039/c3mt20257g [doi]', 'STAT': 'MEDLINE', 'IP': '5', 'DEP': '20130419', 'DA': '20130502', 'AID': '10.1039/c3mt20257g [doi]', 'FAU': 'Zhu, Xiaofei; Li, Tiejun; Gu, Xiang; Zhang, Sixue; Liu, Yi; Wang, Yu; Tan, Xiangshi', 'DP': '2013 May', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2013/04/20 06:00', 'DCOM': '20131118', 'JT': 'Metallomics : integrated biometal science', 'LR': '20140220', 'PG': '551-8', 'TI': 'Structural and functional investigation into acetyl-coenzyme A synthase and; methyltransferase from human pathogen Clostridium difficile.', 'RN': '0 (Anti-Bacterial Agents); 0 (Bacterial Proteins); 0 (Chelating Agents); 0 (Enzyme Inhibitors); EC 2.1.1.- (Methyltransferases); EC 6.2.1.- (Coenzyme A Ligases)', 'PL': 'England', 'TA': 'Metallomics', 'JID': '101478346', 'AB': 'Methyltransferase (MeTrCd) and acetyl-coenzyme A synthase (ACSCd) are two key; enzymes in the acetyl-coenzyme A synthesis pathway of the human pathogen; Clostridium difficile. The pathway is absent in humans and is essential for the; survival of the pathogen. MeTrCd and ACSCd were cloned, expressed in E. coli, and; characterized for the first time. Structural and functional investigations of the; two enzymes were performed using homology structure modeling, fluorescence; spectroscopy, and steady state/pre-steady state kinetics. The conformational; change and methyl transfer activity of MeTrCd were shown to be pH dependent. The; kinetic studies of MeTrCd at the optimal pH 5.1 yield the parameters kcat (2.63; s(-1)), Km (17.8 muM) and kcat/Km (0.15 muM(-1) s(-1)). The active site metal; cluster (A-cluster) of ACSCd, [Fe4S4][NipNid], was characterized using metal; analysis, structural modeling, and UV/Vis spectra of the characteristic features; of [Fe4S4] cubane. Nip, as a labile metal, can be removed by treatment with; chelators, resulting in the loss of ACS activity. Three bidentate chelators; (1,10-phenanthroline, 8-hydroxyquinoline, and 2,2-dipyridyl) exhibited excellent; inhibition effects on ACSCd methyl group transfer and acetyl-coenzyme A synthesis; activity. These inhibitory effects were further examined using antibacterial; activity assays against Clostridium difficile. These results provide a new; strategy to find new potential antibiotics for the treatment of CDI.', 'AD': 'Department of Chemistry & Institutes of Biomedical Sciences, Fudan University,; Shanghai 200433, China.', 'VI': '5', 'IS': '1756-591X (Electronic); 1756-5901 (Linking)', 'AU': 'Zhu X; Li T; Gu X; Zhang S; Liu Y; Wang Y; Tan X', 'MHDA': '2013/11/19 06:00', 'PHST': '2013/04/19 [aheadofprint]; 2013/05/01 [epublish]', 'MH': 'Anti-Bacterial Agents/pharmacology; Bacterial Proteins/*chemistry/*metabolism; Base Sequence; Biocatalysis/drug effects; Chelating Agents/pharmacology; Clostridium difficile/drug effects/*enzymology/genetics; Coenzyme A Ligases/antagonists & inhibitors/*chemistry/*metabolism; Enzyme Inhibitors/pharmacology; Fluorescence; Humans; Hydrogen-Ion Concentration/drug effects; Kinetics; Methyltransferases/*chemistry/*metabolism; Microbial Sensitivity Tests; Multigene Family; Protein Structure, Secondary; Structure-Activity Relationship', 'EDAT': '2013/04/20 06:00', 'SO': 'Metallomics. 2013 May;5(5):551-8. doi: 10.1039/c3mt20257g. Epub 2013 Apr 19.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 2600) {'LID': '10.1021/ja401537t [doi]', 'STAT': 'MEDLINE', 'IP': '15', 'DEP': '20130408', 'MID': 'NIHMS466346', 'DA': '20130417', 'AID': '10.1021/ja401537t [doi]', 'FAU': 'Zastrow, Melissa L; Pecoraro, Vincent L', 'DP': '2013 Apr 17', 'GR': 'ES012236/ES/NIEHS NIH HHS/United States; R01 ES012236/ES/NIEHS NIH HHS/United States', 'OWN': 'NLM', 'PT': 'Journal Article; Research Support, N.I.H., Extramural', 'LA': 'eng', 'CRDT': '2013/03/23 06:00', 'DCOM': '20131021', 'JT': 'Journal of the American Chemical Society', 'LR': '20141116', 'PG': '5895-903', 'TI': 'Influence of active site location on catalytic activity in de novo-designed zinc; metalloenzymes.', 'RN': '0 (Peptide Fragments); EC 4.2.1.1 (Carbonic Anhydrases)', 'PL': 'United States', 'TA': 'J Am Chem Soc', 'JID': '7503056', 'AB': 'While metalloprotein design has now yielded a number of successful metal-bound; and even catalytically active constructs, the question of where to put a metal; site along a linear, repetitive sequence has not been thoroughly addressed. Often; several possibilities in a given sequence may exist that would appear equivalent; but may in fact differ for metal affinity, substrate access, or protein dynamics.; We present a systematic variation of active site location for a hydrolytically; active ZnHis3O site contained within a de novo-designed three-stranded coiled; coil. We find that the maximal rate, substrate access, and metal-binding affinity; are dependent on the selected position, while catalytic efficiency for; p-nitrophenyl acetate hydrolysis can be retained regardless of the location of; the active site. This achievement demonstrates how efficient, tailor-made enzymes; which control rate, pKa, substrate and solvent access (and selectivity), and; metal-binding affinity may be realized. These findings may be applied to the more; advanced de novo design of constructs containing secondary interactions, such as; hydrogen-bonding channels. We are now confident that changes to location for; accommodating such channels can be achieved without location-dependent loss of; catalytic efficiency. These findings bring us closer to our ultimate goal of; incorporating the secondary interactions we believe will be necessary in order to; improve both active site properties and the catalytic efficiency to be; competitive with the native enzyme, carbonic anhydrase.', 'AD': 'Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.', 'VI': '135', 'IS': '1520-5126 (Electronic); 0002-7863 (Linking)', 'PMC': 'PMC3667658', 'AU': 'Zastrow ML; Pecoraro VL', 'MHDA': '2013/10/22 06:00', 'PHST': '2013/04/08 [aheadofprint]', 'OID': 'NLM: NIHMS466346; NLM: PMC3667658', 'MH': 'Amino Acid Sequence; *Biocatalysis; Carbonic Anhydrases/*chemistry/*metabolism; *Catalytic Domain; *Drug Design; Kinetics; Models, Molecular; Molecular Sequence Data; Peptide Fragments/chemistry/metabolism; Protein Structure, Secondary', 'EDAT': '2013/03/23 06:00', 'SO': 'J Am Chem Soc. 2013 Apr 17;135(15):5895-903. doi: 10.1021/ja401537t. Epub 2013', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 2600) {'LID': '10.1021/ja401537t [doi]', 'STAT': 'MEDLINE', 'IP': '15', 'DEP': '20130408', 'MID': 'NIHMS466346', 'DA': '20130417', 'AID': '10.1021/ja401537t [doi]', 'FAU': 'Zastrow, Melissa L; Pecoraro, Vincent L', 'DP': '2013 Apr 17', 'GR': 'ES012236/ES/NIEHS NIH HHS/United States; R01 ES012236/ES/NIEHS NIH HHS/United States', 'OWN': 'NLM', 'PT': 'Journal Article; Research Support, N.I.H., Extramural', 'LA': 'eng', 'CRDT': '2013/03/23 06:00', 'DCOM': '20131021', 'JT': 'Journal of the American Chemical Society', 'LR': '20141116', 'PG': '5895-903', 'TI': 'Influence of active site location on catalytic activity in de novo-designed zinc; metalloenzymes.', 'RN': '0 (Peptide Fragments); EC 4.2.1.1 (Carbonic Anhydrases)', 'PL': 'United States', 'TA': 'J Am Chem Soc', 'JID': '7503056', 'AB': 'While metalloprotein design has now yielded a number of successful metal-bound; and even catalytically active constructs, the question of where to put a metal; site along a linear, repetitive sequence has not been thoroughly addressed. Often; several possibilities in a given sequence may exist that would appear equivalent; but may in fact differ for metal affinity, substrate access, or protein dynamics.; We present a systematic variation of active site location for a hydrolytically; active ZnHis3O site contained within a de novo-designed three-stranded coiled; coil. We find that the maximal rate, substrate access, and metal-binding affinity; are dependent on the selected position, while catalytic efficiency for; p-nitrophenyl acetate hydrolysis can be retained regardless of the location of; the active site. This achievement demonstrates how efficient, tailor-made enzymes; which control rate, pKa, substrate and solvent access (and selectivity), and; metal-binding affinity may be realized. These findings may be applied to the more; advanced de novo design of constructs containing secondary interactions, such as; hydrogen-bonding channels. We are now confident that changes to location for; accommodating such channels can be achieved without location-dependent loss of; catalytic efficiency. These findings bring us closer to our ultimate goal of; incorporating the secondary interactions we believe will be necessary in order to; improve both active site properties and the catalytic efficiency to be; competitive with the native enzyme, carbonic anhydrase.', 'AD': 'Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.', 'VI': '135', 'IS': '1520-5126 (Electronic); 0002-7863 (Linking)', 'PMC': 'PMC3667658', 'AU': 'Zastrow ML; Pecoraro VL', 'MHDA': '2013/10/22 06:00', 'PHST': '2013/04/08 [aheadofprint]', 'OID': 'NLM: NIHMS466346; NLM: PMC3667658', 'MH': 'Amino Acid Sequence; *Biocatalysis; Carbonic Anhydrases/*chemistry/*metabolism; *Catalytic Domain; *Drug Design; Kinetics; Models, Molecular; Molecular Sequence Data; Peptide Fragments/chemistry/metabolism; Protein Structure, Secondary', 'EDAT': '2013/03/23 06:00', 'SO': 'J Am Chem Soc. 2013 Apr 17;135(15):5895-903. doi: 10.1021/ja401537t. Epub 2013; Apr 8.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 2700) {'LID': '10.1074/mcp.M112.026880 [doi]', 'STAT': 'MEDLINE', 'IP': '4', 'DEP': '20130221', 'DA': '20130403', 'AID': 'M112.026880 [pii]; 10.1074/mcp.M112.026880 [doi]', 'FAU': 'Kailemia, Muchena J; Li, Lingyun; Xu, Yongmei; Liu, Jian; Linhardt, Robert J; Amster, I Jonathan', 'DP': '2013 Apr', 'GR': '2R01-GM038060-20/GM/NIGMS NIH HHS/United States; P41 GM103390/GM/NIGMS NIH HHS/United States', 'OWN': 'NLM', 'PT': 'Journal Article; Research Support, N.I.H., Extramural', 'LA': 'eng', 'CRDT': '2013/02/23 06:00', 'DCOM': '20130916', 'JT': 'Molecular & cellular proteomics : MCP', 'LR': '20141116', 'PG': '979-90', 'TI': 'Structurally informative tandem mass spectrometry of highly sulfated natural and; chemoenzymatically synthesized heparin and heparan sulfate glycosaminoglycans.', 'RN': '0 (Oligosaccharides); 0 (Sulfuric Acid Esters); 482-67-7 (Phosphoadenosine Phosphosulfate); 9005-49-6 (Heparin); 9050-30-0 (Heparitin Sulfate); EC 2.8.2.- (Sulfotransferases)', 'PL': 'United States', 'TA': 'Mol Cell Proteomics', 'JID': '101125647', 'AB': 'The highly sulfated glycosaminoglycan oligosaccharides derived from heparin and; heparan sulfate have been a highly intractable class of molecules to analyze by; tandem mass spectrometry. Under the many methods of ion activation, this class of; molecules generally exhibits SO3 loss as the most significant fragmentation; pathway, interfering with the assignment of the location of sulfo groups in; glycosaminoglycan chains. We report here a method that stabilizes sulfo groups; and facilitates the complete structural analysis of densely sulfated (two or more; sulfo groups per disaccharide repeat unit) heparin and heparan sulfate oligomers.; This is achieved by complete removal of all ionizable protons, either by charging; during electrospray ionization or by Na(+)/H(+) exchange. The addition of; millimolar levels of NaOH to the sample solution facilitates the production of; precursor ions that meet this criterion. This approach is found to work for a; variety of heparin sulfate oligosaccharides derived from natural sources or; produced by chemoenzymatic synthesis, with up to 12 saccharide subunits and up to; 11 sulfo groups.', 'AD': 'Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA.', 'VI': '12', 'IS': '1535-9484 (Electronic); 1535-9476 (Linking)', 'PMC': 'PMC3617343', 'AU': 'Kailemia MJ; Li L; Xu Y; Liu J; Linhardt RJ; Amster IJ', 'MHDA': '2013/09/17 06:00', 'PHST': '2013/02/21 [aheadofprint]', 'OID': 'NLM: PMC3617343', 'MH': 'Animals; Biocatalysis; Carbohydrate Conformation; Carbohydrate Sequence; Heparin/biosynthesis/*chemistry; Heparitin Sulfate/biosynthesis/*chemistry; Molecular Sequence Data; Oligosaccharides/biosynthesis/chemistry; Phosphoadenosine Phosphosulfate/chemistry; Spectrometry, Mass, Electrospray Ionization; Sulfotransferases/*chemistry; Sulfuric Acid Esters/chemistry; Sus scrofa; *Tandem Mass Spectrometry', 'EDAT': '2013/02/23 06:00', 'SO': 'Mol Cell Proteomics. 2013 Apr;12(4):979-90. doi: 10.1074/mcp.M112.026880. Epub', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 2700) {'LID': '10.1074/mcp.M112.026880 [doi]', 'STAT': 'MEDLINE', 'IP': '4', 'DEP': '20130221', 'DA': '20130403', 'AID': 'M112.026880 [pii]; 10.1074/mcp.M112.026880 [doi]', 'FAU': 'Kailemia, Muchena J; Li, Lingyun; Xu, Yongmei; Liu, Jian; Linhardt, Robert J; Amster, I Jonathan', 'DP': '2013 Apr', 'GR': '2R01-GM038060-20/GM/NIGMS NIH HHS/United States; P41 GM103390/GM/NIGMS NIH HHS/United States', 'OWN': 'NLM', 'PT': 'Journal Article; Research Support, N.I.H., Extramural', 'LA': 'eng', 'CRDT': '2013/02/23 06:00', 'DCOM': '20130916', 'JT': 'Molecular & cellular proteomics : MCP', 'LR': '20141116', 'PG': '979-90', 'TI': 'Structurally informative tandem mass spectrometry of highly sulfated natural and; chemoenzymatically synthesized heparin and heparan sulfate glycosaminoglycans.', 'RN': '0 (Oligosaccharides); 0 (Sulfuric Acid Esters); 482-67-7 (Phosphoadenosine Phosphosulfate); 9005-49-6 (Heparin); 9050-30-0 (Heparitin Sulfate); EC 2.8.2.- (Sulfotransferases)', 'PL': 'United States', 'TA': 'Mol Cell Proteomics', 'JID': '101125647', 'AB': 'The highly sulfated glycosaminoglycan oligosaccharides derived from heparin and; heparan sulfate have been a highly intractable class of molecules to analyze by; tandem mass spectrometry. Under the many methods of ion activation, this class of; molecules generally exhibits SO3 loss as the most significant fragmentation; pathway, interfering with the assignment of the location of sulfo groups in; glycosaminoglycan chains. We report here a method that stabilizes sulfo groups; and facilitates the complete structural analysis of densely sulfated (two or more; sulfo groups per disaccharide repeat unit) heparin and heparan sulfate oligomers.; This is achieved by complete removal of all ionizable protons, either by charging; during electrospray ionization or by Na(+)/H(+) exchange. The addition of; millimolar levels of NaOH to the sample solution facilitates the production of; precursor ions that meet this criterion. This approach is found to work for a; variety of heparin sulfate oligosaccharides derived from natural sources or; produced by chemoenzymatic synthesis, with up to 12 saccharide subunits and up to; 11 sulfo groups.', 'AD': 'Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA.', 'VI': '12', 'IS': '1535-9484 (Electronic); 1535-9476 (Linking)', 'PMC': 'PMC3617343', 'AU': 'Kailemia MJ; Li L; Xu Y; Liu J; Linhardt RJ; Amster IJ', 'MHDA': '2013/09/17 06:00', 'PHST': '2013/02/21 [aheadofprint]', 'OID': 'NLM: PMC3617343', 'MH': 'Animals; Biocatalysis; Carbohydrate Conformation; Carbohydrate Sequence; Heparin/biosynthesis/*chemistry; Heparitin Sulfate/biosynthesis/*chemistry; Molecular Sequence Data; Oligosaccharides/biosynthesis/chemistry; Phosphoadenosine Phosphosulfate/chemistry; Spectrometry, Mass, Electrospray Ionization; Sulfotransferases/*chemistry; Sulfuric Acid Esters/chemistry; Sus scrofa; *Tandem Mass Spectrometry', 'EDAT': '2013/02/23 06:00', 'SO': 'Mol Cell Proteomics. 2013 Apr;12(4):979-90. doi: 10.1074/mcp.M112.026880. Epub; 2013 Feb 21.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 2800) {'LID': '10.1371/journal.pone.0052011 [doi]', 'STAT': 'MEDLINE', 'IP': '1', 'DEP': '20130111', 'DA': '20130117', 'AID': '10.1371/journal.pone.0052011 [doi]; PONE-D-12-24605 [pii]', 'FAU': 'Strambi, Angela; Mori, Mattia; Rossi, Matteo; Colecchia, David; Manetti, Fabrizio; Carlomagno, Francesca; Botta, Maurizio; Chiariello, Mario', 'DP': '2013', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't; Validation Studies", 'LA': 'eng', 'CRDT': '2013/01/18 06:00', 'DCOM': '20130705', 'JT': 'PloS one', 'LR': '20141104', 'PG': 'e52011', 'TI': 'Structure prediction and validation of the ERK8 kinase domain.', 'RN': '0 (Protein Kinase Inhibitors); 61D2G4IYVH (Adenosine Diphosphate); 8L70Q75FXE (Adenosine Triphosphate); EC 2.7.10.- (ERK8 protein, human); EC 2.7.11.24 (Extracellular Signal-Regulated MAP Kinases)', 'PL': 'United States', 'TA': 'PLoS One', 'JID': '101285081', 'AB': 'Extracellular signal-regulated kinase 8 (ERK8) has been already implicated in; cell transformation and in the protection of genomic integrity and, therefore,; proposed as a novel potential therapeutic target for cancer. In the absence of a; crystal structure, we developed a three-dimensional model for its kinase domain.; To validate our model we applied a structure-based virtual screening protocol; consisting of pharmacophore screening and molecular docking. Experimental; characterization of the hit compounds confirmed that a high percentage of the; identified scaffolds was able to inhibit ERK8. We also confirmed an ATP; competitive mechanism of action for the two best-performing molecules.; Ultimately, we identified an ERK8 drug-resistant "gatekeeper" mutant that; corroborated the predicted molecular binding mode, confirming the reliability of; the generated structure. We expect that our model will be a valuable tool for the; development of specific ERK8 kinase inhibitors.', 'AD': 'Istituto Toscano Tumori-Core Research Laboratory, Signal Transduction Unit, AOU; Senese, Siena, Italy.', 'VI': '8', 'IS': '1932-6203 (Electronic); 1932-6203 (Linking)', 'PMC': 'PMC3543423', 'AU': 'Strambi A; Mori M; Rossi M; Colecchia D; Manetti F; Carlomagno F; Botta M; Chiariello M', 'MHDA': '2013/07/06 06:00', 'PHST': '2012/08/17 [received]; 2012/11/07 [accepted]; 2013/01/11 [epublish]', 'OID': 'NLM: PMC3543423', 'MH': 'Adenosine Diphosphate/chemistry/metabolism; Adenosine Triphosphate/chemistry/metabolism; Amino Acid Sequence; Binding Sites/genetics; Biocatalysis/drug effects; Blotting, Western; Extracellular Signal-Regulated MAP Kinases/*chemistry/genetics/*metabolism; Humans; *Models, Molecular; Molecular Dynamics Simulation; Molecular Sequence Data; Molecular Structure; Mutation; Protein Binding; Protein Kinase Inhibitors/chemistry/metabolism/pharmacology; *Protein Structure, Tertiary; Sequence Homology, Amino Acid', 'EDAT': '2013/01/18 06:00', 'SO': 'PLoS One. 2013;8(1):e52011. doi: 10.1371/journal.pone.0052011. Epub 2013 Jan 11.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 2900) {'LID': '10.1021/jp308747c [doi]', 'STAT': 'MEDLINE', 'IP': '2', 'DEP': '20130102', 'DA': '20130117', 'AID': '10.1021/jp308747c [doi]', 'FAU': 'Pan, Xiao-Liang; Liu, Wei; Liu, Jing-Yao', 'DP': '2013 Jan 17', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2012/12/20 06:00', 'DCOM': '20130703', 'JT': 'The journal of physical chemistry. B', 'PG': '484-9', 'TI': 'Mechanism of the glycosylation step catalyzed by human alpha-galactosidase: a; QM/MM metadynamics study.', 'RN': 'EC 3.2.1.22 (alpha-Galactosidase)', 'PL': 'United States', 'TA': 'J Phys Chem B', 'JID': '101157530', 'AB': "The enzyme alpha-galactosidase (alpha-GAL), a member of glycoside hydrolase; family 27, catalyzes the removal of a nonreducing terminal alpha-galactose; residue from polysaccharides, glycolipids, and glycopeptides. alpha-GAL is; believed to have the double displacement retaining reaction mechanism. In this; work, the glycosylation step catalyzed by human alpha-GAL was computationally; simulated with quantum mechanics/molecular mechanics metadynamics. Our; simulations show that the overall catalytic mechanism follows a D(N)*A(N)-like; mechanism, and the transition state has a oxocarbenium ion like character with a; partially formed double bond between the ring oxygen and C5' carbon atoms. In; addition, the galactosyl ring of the substrate follows a conformational itinerary; of (4)C(1) --> [E(3)/(4)H(3)](++) --> (1)S(3) along the reaction coordinate.", 'AD': 'State Key Laboratory of Theoretical and Computational Chemistry, Institute of; Theoretical Chemistry, Jilin University, Changchun 130023, China.', 'VI': '117', 'IS': '1520-5207 (Electronic); 1520-5207 (Linking)', 'AU': 'Pan XL; Liu W; Liu JY', 'MHDA': '2013/07/05 06:00', 'PHST': '2013/01/02 [aheadofprint]', 'MH': 'Biocatalysis; Glycosylation; Humans; *Molecular Dynamics Simulation; Protein Structure, Tertiary; *Quantum Theory; Thermodynamics; alpha-Galactosidase/*chemistry/metabolism', 'EDAT': '2012/12/20 06:00', 'SO': 'J Phys Chem B. 2013 Jan 17;117(2):484-9. doi: 10.1021/jp308747c. Epub 2013 Jan 2.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 3000) {'LID': '10.1038/ncomms2196 [doi]', 'STAT': 'MEDLINE', 'JT': 'Nature communications', 'DA': '20121115', 'AID': 'ncomms2196 [pii]; 10.1038/ncomms2196 [doi]', 'DCOM': '20130322', 'DP': '2012', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2012/11/15 06:00', 'FAU': 'Guo, Mian; Dong, Hang; Li, Jie; Cheng, Ben; Huang, Yun-qing; Feng, Yu-qi; Lei, Aiwen', 'LR': '20131121', 'PG': '1190', 'TI': 'Spectroscopic observation of iodosylarene metalloporphyrin adducts and; manganese(V)-oxo porphyrin species in a cytochrome P450 analogue.', 'RN': '0 (Epoxy Compounds); 0 (Iodine Compounds); 0 (Iodobenzenes); 0 (Metalloporphyrins); 0 (Organotin Compounds); 0 (Phenols); 42Z2K6ZL8P (Manganese); 9035-51-2 (Cytochrome P-450 Enzyme System); 99J2VIC675 (2,4,6-tri-tert-butylphenol)', 'PL': 'England', 'TA': 'Nat Commun', 'JID': '101528555', 'AB': 'Different metalloporphyrin model compounds have been synthesized to study the; mechanisms of cytochrome P450s with various terminal oxidants, and numerous; intermediates have been reported. However, the detailed mechanism of the oxygen; atom transfer from iodosylarene to the substrates remains unclear. Here we report; the direct ultraviolet-visible spectroscopic observation of the soluble; iodosylarene-manganese porphyrin adduct following catalytic oxidation using; 2,4,6-tri-tert-butylphenol as the reductant. When the reductant is changed to; cis-stilbene, the rate-determining step also changes. Both the; iodosylarene-manganese porphyrin adduct and [(porphyrin)Mn(V)=O] species may be; simultaneously observed. In the absence of reductant, the adduct of iodosylarene; with sterically hindered [Mn(meso-tetrakis(2,6-dichlorophenyl)porphinato)Cl] is; immediately formed, and smoothly converted into a high-valent; [(porpyrinato)Mn=O]. Electrospray ionization mass spectrometry analysis of the; reaction further confirms the transformation between these species. This study; provides an insight into the mechanism of oxygen transfer within the; haem-containing enzymatic systems.', 'AD': 'College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072,; China.', 'VI': '3', 'IS': '2041-1723 (Electronic); 2041-1723 (Linking)', 'AU': 'Guo M; Dong H; Li J; Cheng B; Huang YQ; Feng YQ; Lei A', 'MHDA': '2013/03/23 06:00', 'PHST': '2012/09/10 [received]; 2012/10/10 [accepted]', 'MH': 'Biocatalysis; Cytochrome P-450 Enzyme System/*metabolism; Epoxy Compounds/chemistry; Iodine Compounds/*chemistry; Iodobenzenes/*chemistry; Kinetics; Manganese/*chemistry; Metalloporphyrins/*chemistry; Organotin Compounds/*chemistry; Oxidation-Reduction; Phenols/chemistry; Spectrometry, Mass, Electrospray Ionization; Spectrophotometry, Ultraviolet/*methods; Substrate Specificity; Time Factors', 'EDAT': '2012/11/15 06:00', 'SO': 'Nat Commun. 2012;3:1190. doi: 10.1038/ncomms2196.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 3100) {'LID': '10.1016/j.febslet.2012.10.001 [doi]; S0014-5793(12)00766-1 [pii]', 'STAT': 'MEDLINE', 'IP': '22', 'DEP': '20121012', 'JID': '0155157', 'DA': '20121112', 'AID': 'S0014-5793(12)00766-1 [pii]; 10.1016/j.febslet.2012.10.001 [doi]', 'FAU': 'Dai, Yuyuan; Outten, F Wayne', 'DP': '2012 Nov 16', 'GR': 'GM 81706/GM/NIGMS NIH HHS/United States; R01 GM081706/GM/NIGMS NIH HHS/United States', 'OWN': 'NLM', 'PT': 'Journal Article; Research Support, N.I.H., Extramural', 'LA': 'eng', 'CRDT': '2012/10/17 06:00', 'DCOM': '20130205', 'JT': 'FEBS letters', 'LR': '20141120', 'PG': '4016-22', 'TI': 'The E. coli SufS-SufE sulfur transfer system is more resistant to oxidative; stress than IscS-IscU.', 'RN': '0 (Carrier Proteins); 0 (Escherichia coli Proteins); 0 (Iron-Sulfur Proteins); 0 (IscU protein, E coli); 0 (Oxidants); 0 (Suf E protein, E coli); 70FD1KFU70 (Sulfur); BBX060AN9V (Hydrogen Peroxide); EC 4.- (Lyases); EC 4.4.- (Carbon-Sulfur Lyases); EC 4.4.1.- (cysteine desulfurase); EC 4.4.1.16 (selenocysteine lyase); K848JZ4886 (Cysteine)', 'PL': 'Netherlands', 'TA': 'FEBS Lett', 'CI': 'Copyright (c) 2012 Federation of European Biochemical Societies. Published by; Elsevier B.V. All rights reserved.', 'AB': 'During oxidative stress in Escherichiacoli, the SufABCDSE stress response pathway; mediates iron-sulfur (Fe-S) cluster biogenesis rather than the Isc pathway. To; determine why the Suf pathway is favored under stress conditions, the stress; response SufS-SufE sulfur transfer pathway and the basal housekeeping IscS-IscU; pathway were directly compared. We found that SufS-SufE cysteine desulfurase; activity is significantly higher than IscS-IscU at physiological cysteine; concentrations and after exposure to H(2)O(2). Mass spectrometry analysis; demonstrated that IscS-IscU is more susceptible than SufS-SufE to oxidative; modification by H(2)O(2). These important results provide biochemical insight; into the stress resistance of the Suf pathway.', 'AD': 'Department of Chemistry and Biochemistry, University of South Carolina, Columbia,; SC 29208, United States.', 'VI': '586', 'IS': '1873-3468 (Electronic); 0014-5793 (Linking)', 'PMC': 'PMC3511050', 'MID': 'NIHMS414859', 'AU': 'Dai Y; Outten FW', 'MHDA': '2013/02/06 06:00', 'PHST': '2012/09/01 [received]; 2012/09/25 [revised]; 2012/10/01 [accepted]; 2012/10/12 [aheadofprint]', 'OID': 'NLM: NIHMS414859; NLM: PMC3511050', 'MH': 'Biocatalysis/drug effects; Carbon-Sulfur Lyases/genetics/*metabolism; Carrier Proteins/genetics/*metabolism; Cysteine/metabolism; Electrophoresis, Polyacrylamide Gel; Escherichia coli/genetics/metabolism; Escherichia coli Proteins/genetics/*metabolism; Hydrogen Peroxide/pharmacology; Iron-Sulfur Proteins/genetics/*metabolism; Kinetics; Lyases/genetics/*metabolism; Mass Spectrometry; Oxidants/pharmacology; Oxidation-Reduction; *Oxidative Stress; Substrate Specificity; Sulfur/*metabolism', 'EDAT': '2012/10/17 06:00', 'SO': 'FEBS Lett. 2012 Nov 16;586(22):4016-22. doi: 10.1016/j.febslet.2012.10.001. Epub', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 3100) {'LID': '10.1016/j.febslet.2012.10.001 [doi]; S0014-5793(12)00766-1 [pii]', 'STAT': 'MEDLINE', 'IP': '22', 'DEP': '20121012', 'JID': '0155157', 'DA': '20121112', 'AID': 'S0014-5793(12)00766-1 [pii]; 10.1016/j.febslet.2012.10.001 [doi]', 'FAU': 'Dai, Yuyuan; Outten, F Wayne', 'DP': '2012 Nov 16', 'GR': 'GM 81706/GM/NIGMS NIH HHS/United States; R01 GM081706/GM/NIGMS NIH HHS/United States', 'OWN': 'NLM', 'PT': 'Journal Article; Research Support, N.I.H., Extramural', 'LA': 'eng', 'CRDT': '2012/10/17 06:00', 'DCOM': '20130205', 'JT': 'FEBS letters', 'LR': '20141120', 'PG': '4016-22', 'TI': 'The E. coli SufS-SufE sulfur transfer system is more resistant to oxidative; stress than IscS-IscU.', 'RN': '0 (Carrier Proteins); 0 (Escherichia coli Proteins); 0 (Iron-Sulfur Proteins); 0 (IscU protein, E coli); 0 (Oxidants); 0 (Suf E protein, E coli); 70FD1KFU70 (Sulfur); BBX060AN9V (Hydrogen Peroxide); EC 4.- (Lyases); EC 4.4.- (Carbon-Sulfur Lyases); EC 4.4.1.- (cysteine desulfurase); EC 4.4.1.16 (selenocysteine lyase); K848JZ4886 (Cysteine)', 'PL': 'Netherlands', 'TA': 'FEBS Lett', 'CI': 'Copyright (c) 2012 Federation of European Biochemical Societies. Published by; Elsevier B.V. All rights reserved.', 'AB': 'During oxidative stress in Escherichiacoli, the SufABCDSE stress response pathway; mediates iron-sulfur (Fe-S) cluster biogenesis rather than the Isc pathway. To; determine why the Suf pathway is favored under stress conditions, the stress; response SufS-SufE sulfur transfer pathway and the basal housekeeping IscS-IscU; pathway were directly compared. We found that SufS-SufE cysteine desulfurase; activity is significantly higher than IscS-IscU at physiological cysteine; concentrations and after exposure to H(2)O(2). Mass spectrometry analysis; demonstrated that IscS-IscU is more susceptible than SufS-SufE to oxidative; modification by H(2)O(2). These important results provide biochemical insight; into the stress resistance of the Suf pathway.', 'AD': 'Department of Chemistry and Biochemistry, University of South Carolina, Columbia,; SC 29208, United States.', 'VI': '586', 'IS': '1873-3468 (Electronic); 0014-5793 (Linking)', 'PMC': 'PMC3511050', 'MID': 'NIHMS414859', 'AU': 'Dai Y; Outten FW', 'MHDA': '2013/02/06 06:00', 'PHST': '2012/09/01 [received]; 2012/09/25 [revised]; 2012/10/01 [accepted]; 2012/10/12 [aheadofprint]', 'OID': 'NLM: NIHMS414859; NLM: PMC3511050', 'MH': 'Biocatalysis/drug effects; Carbon-Sulfur Lyases/genetics/*metabolism; Carrier Proteins/genetics/*metabolism; Cysteine/metabolism; Electrophoresis, Polyacrylamide Gel; Escherichia coli/genetics/metabolism; Escherichia coli Proteins/genetics/*metabolism; Hydrogen Peroxide/pharmacology; Iron-Sulfur Proteins/genetics/*metabolism; Kinetics; Lyases/genetics/*metabolism; Mass Spectrometry; Oxidants/pharmacology; Oxidation-Reduction; *Oxidative Stress; Substrate Specificity; Sulfur/*metabolism', 'EDAT': '2012/10/17 06:00', 'SO': 'FEBS Lett. 2012 Nov 16;586(22):4016-22. doi: 10.1016/j.febslet.2012.10.001. Epub; 2012 Oct 12.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 3200) {'LID': '10.1016/j.cbpc.2012.08.004 [doi]; S1532-0456(12)00093-2 [pii]', 'STAT': 'MEDLINE', 'IP': '1', 'DEP': '20120906', 'JID': '100959500', 'DA': '20121126', 'AID': 'S1532-0456(12)00093-2 [pii]; 10.1016/j.cbpc.2012.08.004 [doi]', 'FAU': 'Lavado, Ramon; Aparicio-Fabre, Rosaura; Schlenk, Daniel', 'DP': '2013 Jan', 'GR': 'P42 ES004696/ES/NIEHS NIH HHS/United States; P42ES04696/ES/NIEHS NIH HHS/United States', 'OWN': 'NLM', 'PT': 'Journal Article; Research Support, N.I.H., Extramural', 'LA': 'eng', 'CRDT': '2012/09/18 06:00', 'DCOM': '20130503', 'JT': 'Comparative biochemistry and physiology. Toxicology & pharmacology : CBP', 'LR': '20141105', 'PG': '9-15', 'TI': 'Effects of salinity acclimation on the pesticide-metabolizing enzyme; flavin-containing monooxygenase (FMO) in rainbow trout (Oncorhynchus mykiss).', 'RN': '0 (Fish Proteins); 0 (Isoenzymes); 0 (Pesticides); 0 (Sulfides); 0 (methyl 4-tolylsulfide); 120-62-7 (sulfoxide); 4O21U048EF (Benzydamine); 7647-14-5 (Sodium Chloride); EC 1.- (Oxidoreductases); EC 1.13.- (Oxygenases); EC 1.14.13.8 (dimethylaniline monooxygenase (N-oxide forming)); RSB34337V9 (Safrole)', 'PL': 'United States', 'TA': 'Comp Biochem Physiol C Toxicol Pharmacol', 'CI': 'Copyright (c) 2012 Elsevier Inc. All rights reserved.', 'AB': 'Thioether-containing pesticides are more toxic in certain anadromous and; catadromous fish species that have undergone acclimation to hypersaline; environments. Enhanced toxicity has been shown to be mediated through the; bioactivation of these xenobiotics by one or more flavin-containing; monooxygenases (FMOs), which are induced by hyperosmotic conditions. To better; understand the number of FMO genes that may be regulated by hyperosmotic; conditions, rainbow trout (Oncorhynchus mykiss) were maintained and acclimated to; freshwater (<0.5 g/L salinity) and to 18 g/L salinity. The expression of 3; different FMO transcripts (A, B and C) and associated enzymatic activities methyl; p-tolyl sulfoxidation (MTSO) and benzydamine N-oxigenation (BZNO) were measured; in four tissues. In freshwater-acclimated organisms FMO catalytic activities were; as follows: liver>kidney>gills=olfactory tissues; in hypersaline-acclimated; animals activities were higher in liver>gills>olfactory tissues>kidney.; Acclimation to 18 g/L caused a significant induction in the stereoselective; formation of R-MTSO in gill. In olfactory tissues, stereoselective (100%); formation of S-MTSO was observed and was unaltered by acclimation to hypersaline; water. When specific transcripts were evaluated, salinity-acclimation increased; FMO A in liver (up to 2-fold) and kidney (up to 3-fold) but not in olfactory; tissues and gills. FMO B mRNA was significantly down-regulated in all tissues,; and FMO C was unchanged by hypersaline acclimation. FMO B and C failed to; correlate with any FMO catalytic activity, but FMO A mRNA expression linearly; correlated to both FMO catalytic activities (MTSO and BZNO) in liver (r(2)=0.92; and r(2)=0.88) and kidney microsomes (r(2)=0.93 and r(2)=90). FMO A only; correlated with MTSO activity in gills (r(2)=0.93). These results indicate unique; tissue specific expression of FMO genes in salmonids and are consistent with; salinity-mediated enhancement of thioether-containing pesticide bioactivation by; FMO which may occur in liver or kidney after salinity acclimation.', 'AD': 'Department of Environmental Sciences, University of California, Riverside, 92521,; USA. [email protected]', 'VI': '157', 'IS': '1532-0456 (Print); 1532-0456 (Linking)', 'PMC': 'PMC3508337', 'MID': 'NIHMS405609', 'AU': 'Lavado R; Aparicio-Fabre R; Schlenk D', 'MHDA': '2013/05/04 06:00', 'PHST': '2012/08/17 [received]; 2012/08/30 [revised]; 2012/08/30 [accepted]; 2012/09/06 [aheadofprint]', 'OID': 'NLM: NIHMS405609; NLM: PMC3508337', 'MH': '*Adaptation, Physiological; Amino Acid Sequence; Animals; Benzydamine/metabolism; Biocatalysis/drug effects; Fish Proteins/genetics/*metabolism; Gene Expression Regulation, Enzymologic/drug effects; Gills/enzymology/metabolism; Isoenzymes/genetics/metabolism; Kidney/enzymology/metabolism; Liver/enzymology/metabolism; Molecular Sequence Data; Olfactory Bulb/enzymology/metabolism; Oncorhynchus mykiss/genetics/*metabolism; Oxidoreductases/metabolism; Oxygenases/genetics/*metabolism; Pesticides/*metabolism; Reverse Transcriptase Polymerase Chain Reaction; Safrole/analogs & derivatives/metabolism; Salinity; Sequence Homology, Amino Acid; Sodium Chloride/pharmacology; Substrate Specificity; Sulfides/metabolism', 'EDAT': '2012/09/18 06:00', 'SO': 'Comp Biochem Physiol C Toxicol Pharmacol. 2013 Jan;157(1):9-15. doi:', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 3200) {'LID': '10.1016/j.cbpc.2012.08.004 [doi]; S1532-0456(12)00093-2 [pii]', 'STAT': 'MEDLINE', 'IP': '1', 'DEP': '20120906', 'JID': '100959500', 'DA': '20121126', 'AID': 'S1532-0456(12)00093-2 [pii]; 10.1016/j.cbpc.2012.08.004 [doi]', 'FAU': 'Lavado, Ramon; Aparicio-Fabre, Rosaura; Schlenk, Daniel', 'DP': '2013 Jan', 'GR': 'P42 ES004696/ES/NIEHS NIH HHS/United States; P42ES04696/ES/NIEHS NIH HHS/United States', 'OWN': 'NLM', 'PT': 'Journal Article; Research Support, N.I.H., Extramural', 'LA': 'eng', 'CRDT': '2012/09/18 06:00', 'DCOM': '20130503', 'JT': 'Comparative biochemistry and physiology. Toxicology & pharmacology : CBP', 'LR': '20141105', 'PG': '9-15', 'TI': 'Effects of salinity acclimation on the pesticide-metabolizing enzyme; flavin-containing monooxygenase (FMO) in rainbow trout (Oncorhynchus mykiss).', 'RN': '0 (Fish Proteins); 0 (Isoenzymes); 0 (Pesticides); 0 (Sulfides); 0 (methyl 4-tolylsulfide); 120-62-7 (sulfoxide); 4O21U048EF (Benzydamine); 7647-14-5 (Sodium Chloride); EC 1.- (Oxidoreductases); EC 1.13.- (Oxygenases); EC 1.14.13.8 (dimethylaniline monooxygenase (N-oxide forming)); RSB34337V9 (Safrole)', 'PL': 'United States', 'TA': 'Comp Biochem Physiol C Toxicol Pharmacol', 'CI': 'Copyright (c) 2012 Elsevier Inc. All rights reserved.', 'AB': 'Thioether-containing pesticides are more toxic in certain anadromous and; catadromous fish species that have undergone acclimation to hypersaline; environments. Enhanced toxicity has been shown to be mediated through the; bioactivation of these xenobiotics by one or more flavin-containing; monooxygenases (FMOs), which are induced by hyperosmotic conditions. To better; understand the number of FMO genes that may be regulated by hyperosmotic; conditions, rainbow trout (Oncorhynchus mykiss) were maintained and acclimated to; freshwater (<0.5 g/L salinity) and to 18 g/L salinity. The expression of 3; different FMO transcripts (A, B and C) and associated enzymatic activities methyl; p-tolyl sulfoxidation (MTSO) and benzydamine N-oxigenation (BZNO) were measured; in four tissues. In freshwater-acclimated organisms FMO catalytic activities were; as follows: liver>kidney>gills=olfactory tissues; in hypersaline-acclimated; animals activities were higher in liver>gills>olfactory tissues>kidney.; Acclimation to 18 g/L caused a significant induction in the stereoselective; formation of R-MTSO in gill. In olfactory tissues, stereoselective (100%); formation of S-MTSO was observed and was unaltered by acclimation to hypersaline; water. When specific transcripts were evaluated, salinity-acclimation increased; FMO A in liver (up to 2-fold) and kidney (up to 3-fold) but not in olfactory; tissues and gills. FMO B mRNA was significantly down-regulated in all tissues,; and FMO C was unchanged by hypersaline acclimation. FMO B and C failed to; correlate with any FMO catalytic activity, but FMO A mRNA expression linearly; correlated to both FMO catalytic activities (MTSO and BZNO) in liver (r(2)=0.92; and r(2)=0.88) and kidney microsomes (r(2)=0.93 and r(2)=90). FMO A only; correlated with MTSO activity in gills (r(2)=0.93). These results indicate unique; tissue specific expression of FMO genes in salmonids and are consistent with; salinity-mediated enhancement of thioether-containing pesticide bioactivation by; FMO which may occur in liver or kidney after salinity acclimation.', 'AD': 'Department of Environmental Sciences, University of California, Riverside, 92521,; USA. [email protected]', 'VI': '157', 'IS': '1532-0456 (Print); 1532-0456 (Linking)', 'PMC': 'PMC3508337', 'MID': 'NIHMS405609', 'AU': 'Lavado R; Aparicio-Fabre R; Schlenk D', 'MHDA': '2013/05/04 06:00', 'PHST': '2012/08/17 [received]; 2012/08/30 [revised]; 2012/08/30 [accepted]; 2012/09/06 [aheadofprint]', 'OID': 'NLM: NIHMS405609; NLM: PMC3508337', 'MH': '*Adaptation, Physiological; Amino Acid Sequence; Animals; Benzydamine/metabolism; Biocatalysis/drug effects; Fish Proteins/genetics/*metabolism; Gene Expression Regulation, Enzymologic/drug effects; Gills/enzymology/metabolism; Isoenzymes/genetics/metabolism; Kidney/enzymology/metabolism; Liver/enzymology/metabolism; Molecular Sequence Data; Olfactory Bulb/enzymology/metabolism; Oncorhynchus mykiss/genetics/*metabolism; Oxidoreductases/metabolism; Oxygenases/genetics/*metabolism; Pesticides/*metabolism; Reverse Transcriptase Polymerase Chain Reaction; Safrole/analogs & derivatives/metabolism; Salinity; Sequence Homology, Amino Acid; Sodium Chloride/pharmacology; Substrate Specificity; Sulfides/metabolism', 'EDAT': '2012/09/18 06:00', 'SO': 'Comp Biochem Physiol C Toxicol Pharmacol. 2013 Jan;157(1):9-15. doi:; 10.1016/j.cbpc.2012.08.004. Epub 2012 Sep 6.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 3300) {'LID': '10.1128/AAC.01338-12 [doi]', 'STAT': 'MEDLINE', 'IP': '11', 'DEP': '20120820', 'DA': '20121017', 'AID': 'AAC.01338-12 [pii]; 10.1128/AAC.01338-12 [doi]', 'FAU': 'Lamoureaux, Toni L; Frase, Hilary; Antunes, Nuno T; Vakulenko, Sergei B', 'DP': '2012 Nov', 'GR': 'R01 AI089726/AI/NIAID NIH HHS/United States', 'OWN': 'NLM', 'PT': 'Journal Article', 'LA': 'eng', 'CRDT': '2012/08/22 06:00', 'DCOM': '20130423', 'JT': 'Antimicrobial agents and chemotherapy', 'LR': '20150613', 'PG': '6006-8', 'TI': 'Antibiotic resistance and substrate profiles of the class A carbapenemase KPC-6.', 'RN': '0 (Bacterial Proteins); 0 (Carbapenems); 0 (Cephalosporins); 0 (Isoenzymes); 0 (Penicillins); EC 3.5.2.6 (beta-Lactamases); EC 3.5.2.6 (carbapenemase); G2B4VE5GH8 (Aztreonam)', 'PL': 'United States', 'TA': 'Antimicrob Agents Chemother', 'JID': '0315061', 'AB': 'The class A carbapenemase KPC-6 produces resistance to a broad range of; beta-lactam antibiotics. This enzyme hydrolyzes penicillins, the monobactam; aztreonam, and carbapenems with similar catalytic efficiencies, ranging from; 10(5) to 10(6) M(-1) s(-1). The catalytic efficiencies of KPC-6 against cephems; vary to a greater extent, ranging from 10(3) M(-1) s(-1) for the cephamycin; cefoxitin and the extended-spectrum cephalosporin ceftazidime to 10(5) to 10(6); M(-1) s(-1) for the narrow-spectrum and some of the extended-spectrum; cephalosporins.', 'AD': 'Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame,; Indiana, USA.', 'VI': '56', 'IS': '1098-6596 (Electronic); 0066-4804 (Linking)', 'PMC': 'PMC3486543', 'AU': 'Lamoureaux TL; Frase H; Antunes NT; Vakulenko SB', 'MHDA': '2013/04/24 06:00', 'PHST': '2012/08/20 [aheadofprint]', 'OID': 'NLM: PMC3486543', 'MH': 'Aztreonam/*metabolism/pharmacology; Bacterial Proteins/genetics/*metabolism; Biocatalysis; Carbapenems/*metabolism/pharmacology; Cephalosporins/*metabolism/pharmacology; Escherichia coli/*enzymology/genetics; Hydrolysis; Isoenzymes/genetics/metabolism; Kinetics; Microbial Sensitivity Tests; Penicillins/*metabolism/pharmacology; Substrate Specificity; beta-Lactam Resistance/genetics; beta-Lactamases/genetics/*metabolism', 'EDAT': '2012/08/22 06:00', 'SO': 'Antimicrob Agents Chemother. 2012 Nov;56(11):6006-8. doi: 10.1128/AAC.01338-12.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 3300) {'LID': '10.1128/AAC.01338-12 [doi]', 'STAT': 'MEDLINE', 'IP': '11', 'DEP': '20120820', 'DA': '20121017', 'AID': 'AAC.01338-12 [pii]; 10.1128/AAC.01338-12 [doi]', 'FAU': 'Lamoureaux, Toni L; Frase, Hilary; Antunes, Nuno T; Vakulenko, Sergei B', 'DP': '2012 Nov', 'GR': 'R01 AI089726/AI/NIAID NIH HHS/United States', 'OWN': 'NLM', 'PT': 'Journal Article', 'LA': 'eng', 'CRDT': '2012/08/22 06:00', 'DCOM': '20130423', 'JT': 'Antimicrobial agents and chemotherapy', 'LR': '20150613', 'PG': '6006-8', 'TI': 'Antibiotic resistance and substrate profiles of the class A carbapenemase KPC-6.', 'RN': '0 (Bacterial Proteins); 0 (Carbapenems); 0 (Cephalosporins); 0 (Isoenzymes); 0 (Penicillins); EC 3.5.2.6 (beta-Lactamases); EC 3.5.2.6 (carbapenemase); G2B4VE5GH8 (Aztreonam)', 'PL': 'United States', 'TA': 'Antimicrob Agents Chemother', 'JID': '0315061', 'AB': 'The class A carbapenemase KPC-6 produces resistance to a broad range of; beta-lactam antibiotics. This enzyme hydrolyzes penicillins, the monobactam; aztreonam, and carbapenems with similar catalytic efficiencies, ranging from; 10(5) to 10(6) M(-1) s(-1). The catalytic efficiencies of KPC-6 against cephems; vary to a greater extent, ranging from 10(3) M(-1) s(-1) for the cephamycin; cefoxitin and the extended-spectrum cephalosporin ceftazidime to 10(5) to 10(6); M(-1) s(-1) for the narrow-spectrum and some of the extended-spectrum; cephalosporins.', 'AD': 'Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame,; Indiana, USA.', 'VI': '56', 'IS': '1098-6596 (Electronic); 0066-4804 (Linking)', 'PMC': 'PMC3486543', 'AU': 'Lamoureaux TL; Frase H; Antunes NT; Vakulenko SB', 'MHDA': '2013/04/24 06:00', 'PHST': '2012/08/20 [aheadofprint]', 'OID': 'NLM: PMC3486543', 'MH': 'Aztreonam/*metabolism/pharmacology; Bacterial Proteins/genetics/*metabolism; Biocatalysis; Carbapenems/*metabolism/pharmacology; Cephalosporins/*metabolism/pharmacology; Escherichia coli/*enzymology/genetics; Hydrolysis; Isoenzymes/genetics/metabolism; Kinetics; Microbial Sensitivity Tests; Penicillins/*metabolism/pharmacology; Substrate Specificity; beta-Lactam Resistance/genetics; beta-Lactamases/genetics/*metabolism', 'EDAT': '2012/08/22 06:00', 'SO': 'Antimicrob Agents Chemother. 2012 Nov;56(11):6006-8. doi: 10.1128/AAC.01338-12.; Epub 2012 Aug 20.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 3400) {'LID': '10.1002/humu.22169 [doi]', 'STAT': 'MEDLINE', 'IP': '1', 'DEP': '20120810', 'JID': '9215429', 'DA': '20130102', 'AID': '10.1002/humu.22169 [doi]', 'FAU': 'Luksch, Hella; Romanowski, Michael J; Chara, Osvaldo; Tungler, Victoria; Caffarena, Ernesto R; Heymann, Michael C; Lohse, Peter; Aksentijevich, Ivona; Remmers, Elaine F; Flecks, Silvana; Quoos, Nadine; Gramatte, Johannes; Petzold, Cathleen; Hofmann, Sigrun R; Winkler, Stefan; Pessler, Frank; Kallinich, Tilmann; Ganser, Gerd; Nimtz-Talaska, Antje; Baumann, Ulrich; Runde, Volker; Grimbacher, Bodo; Birmelin, Jennifer; Gahr, Manfred; Roesler, Joachim; Rosen-Wolff, Angela', 'DP': '2013 Jan', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2012/07/27 06:00', 'DCOM': '20130701', 'JT': 'Human mutation', 'PG': '122-31', 'TI': 'Naturally occurring genetic variants of human caspase-1 differ considerably in; structure and the ability to activate interleukin-1beta.', 'RN': '0 (Cytokines); 0 (Interleukin-1beta); EC 3.4.22.36 (Caspase 1)', 'PL': 'United States', 'TA': 'Hum Mutat', 'CI': '(c) 2012 Wiley Periodicals, Inc.', 'AB': 'Caspase-1 (Interleukin-1 Converting Enzyme, ICE) is a proinflammatory enzyme that; plays pivotal roles in innate immunity and many inflammatory conditions such as; periodic fever syndromes and gout. Inflammation is often mediated by enzymatic; activation of interleukin (IL)-1beta and IL-18. We detected seven naturally; occurring human CASP1 variants with different effects on protein structure,; expression, and enzymatic activity. Most mutations destabilized the caspase-1; dimer interface as revealed by crystal structure analysis and homology modeling; followed by molecular dynamics simulations. All variants demonstrated decreased; or absent enzymatic and IL-1beta releasing activity in vitro, in a cell; transfection model, and as low as 25% of normal ex vivo in a whole blood assay of; samples taken from subjects with variant CASP1, a subset of whom suffered from; unclassified autoinflammation. We conclude that decreased enzymatic activity of; caspase-1 is compatible with normal life and does not prevent moderate and severe; autoinflammation.', 'AD': 'Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden,; Germany.', 'VI': '34', 'IS': '1098-1004 (Electronic); 1059-7794 (Linking)', 'AU': 'Luksch H; Romanowski MJ; Chara O; Tungler V; Caffarena ER; Heymann MC; Lohse P; Aksentijevich I; Remmers EF; Flecks S; Quoos N; Gramatte J; Petzold C; Hofmann SR; Winkler S; Pessler F; Kallinich T; Ganser G; Nimtz-Talaska A; Baumann U; Runde V; Grimbacher B; Birmelin J; Gahr M; Roesler J; Rosen-Wolff A', 'MHDA': '2013/07/03 06:00', 'PHST': '2012/02/17 [received]; 2012/07/11 [accepted]; 2012/08/10 [aheadofprint]', 'MH': 'Biocatalysis; Caspase 1/chemistry/*genetics/*metabolism; Cell Line; Crystallography, X-Ray; Cytokines/blood/metabolism; DNA Mutational Analysis; Genetic Predisposition to Disease/genetics; *Genetic Variation; HEK293 Cells; Humans; Inflammation/enzymology/genetics; Interleukin-1beta/*metabolism; Models, Molecular; Mutation; Protein Multimerization; Protein Structure, Tertiary', 'EDAT': '2012/07/27 06:00', 'SO': 'Hum Mutat. 2013 Jan;34(1):122-31. doi: 10.1002/humu.22169. Epub 2012 Aug 10.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 3500) {'LID': '10.1016/j.jbiotec.2012.05.022 [doi]; S0168-1656(12)00312-4 [pii]', 'STAT': 'MEDLINE', 'IP': '4', 'DEP': '20120620', 'JID': '8411927', 'DA': '20121203', 'AID': 'S0168-1656(12)00312-4 [pii]; 10.1016/j.jbiotec.2012.05.022 [doi]', 'FAU': 'Muller, Markus Michael; Kugler, Johannes H; Henkel, Marius; Gerlitzki, Melanie; Hormann, Barbara; Pohnlein, Martin; Syldatk, Christoph; Hausmann, Rudolf', 'DP': '2012 Dec 31', 'OWN': 'NLM', 'PT': 'Journal Article; Review', 'LA': 'eng', 'CRDT': '2012/06/26 06:00', 'DCOM': '20130514', 'JT': 'Journal of biotechnology', 'PG': '366-80', 'TI': 'Rhamnolipids--next generation surfactants?', 'RN': '0 (Glycolipids); 0 (Surface-Active Agents); 0 (rhamnolipid)', 'PL': 'Netherlands', 'TA': 'J Biotechnol', 'CI': 'Copyright (c) 2012 Elsevier B.V. All rights reserved.', 'AB': 'The demand for bio-based processes and materials in the petrochemical industry; has significantly increased during the last decade because of the expected; running out of petroleum. This trend can be ascribed to three main causes: (1); the increased use of renewable resources for chemical synthesis of already; established product classes, (2) the replacement of chemical synthesis of already; established product classes by new biotechnological processes based on renewable; resources, and (3) the biotechnological production of new molecules with new; features or better performances than already established comparable chemically; synthesized products. All three approaches are currently being pursued for; surfactant production. Biosurfactants are a very promising and interesting; substance class because they are based on renewable resources, sustainable, and; biologically degradable. Alkyl polyglycosides are chemically synthesized; biosurfactants established on the surfactant market. The first microbiological; biosurfactants on the market were sophorolipids. Of all currently known; biosurfactants, rhamnolipids have the highest potential for becoming the next; generation of biosurfactants introduced on the market. Although the metabolic; pathways and genetic regulation of biosynthesis are known qualitatively, the; quantitative understanding relevant for bioreactor cultivation is still missing.; Additionally, high product titers have been exclusively described with vegetable; oil as sole carbon source in combination with Pseudomonas aeruginosa strains.; Competitive productivity is still out of reach for heterologous hosts or; non-pathogenic natural producer strains. Thus, on the one hand there is a need to; gain a deeper understanding of the regulation of rhamnolipid production on; process and cellular level during bioreactor cultivations. On the other hand,; there is a need for metabolizable renewable substrates, which do not compete with; food and feed. A sustainable bioeconomy approach should combine a holistic; X-omics strategy with metabolic engineering to achieve the next step in; rhamnolipid production based on non-food renewable resources. This review; discusses different approaches towards optimization of rhamnolipid production and; enhancement of product spectra. The optimization of rhamnolipid production with; P. aeruginosa strains, screening methods for new non-pathogenic natural; rhamnolipid producers and recombinant rhamnolipid production are examined.; Finally, biocatalysis with rhamnolipids for the synthesis of l-rhamnose,; beta-hydroxyfatty acids, and tailor-made surfactants is discussed. Biosurfactants; are still in the phase of initial commercialization. However, for next generation; development of rhamnolipid production processes and next generation; biosurfactants there are still considerable obstacles to be surmounted, which are; discussed here.', 'AD': 'Institute of Process Engineering and Life Sciences, Section II: Technical; Biology, Karlsruhe Institute of Technology-KIT, Engler-Bunte-Ring 1, D-76131; Karlsruhe, Germany. [email protected]', 'VI': '162', 'IS': '1873-4863 (Electronic); 0168-1656 (Linking)', 'AU': 'Muller MM; Kugler JH; Henkel M; Gerlitzki M; Hormann B; Pohnlein M; Syldatk C; Hausmann R', 'MHDA': '2013/05/15 06:00', 'PHST': '2011/11/25 [received]; 2012/05/06 [revised]; 2012/05/18 [accepted]; 2012/06/20 [aheadofprint]', 'MH': 'Biotechnology/*methods; Burkholderia/metabolism; Glycolipids/*biosynthesis/chemical synthesis/*chemistry; Pseudomonas/metabolism; Surface-Active Agents/chemical synthesis/*chemistry/*metabolism', 'EDAT': '2012/06/26 06:00', 'SO': 'J Biotechnol. 2012 Dec 31;162(4):366-80. doi: 10.1016/j.jbiotec.2012.05.022. Epub', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 3500) {'LID': '10.1016/j.jbiotec.2012.05.022 [doi]; S0168-1656(12)00312-4 [pii]', 'STAT': 'MEDLINE', 'IP': '4', 'DEP': '20120620', 'JID': '8411927', 'DA': '20121203', 'AID': 'S0168-1656(12)00312-4 [pii]; 10.1016/j.jbiotec.2012.05.022 [doi]', 'FAU': 'Muller, Markus Michael; Kugler, Johannes H; Henkel, Marius; Gerlitzki, Melanie; Hormann, Barbara; Pohnlein, Martin; Syldatk, Christoph; Hausmann, Rudolf', 'DP': '2012 Dec 31', 'OWN': 'NLM', 'PT': 'Journal Article; Review', 'LA': 'eng', 'CRDT': '2012/06/26 06:00', 'DCOM': '20130514', 'JT': 'Journal of biotechnology', 'PG': '366-80', 'TI': 'Rhamnolipids--next generation surfactants?', 'RN': '0 (Glycolipids); 0 (Surface-Active Agents); 0 (rhamnolipid)', 'PL': 'Netherlands', 'TA': 'J Biotechnol', 'CI': 'Copyright (c) 2012 Elsevier B.V. All rights reserved.', 'AB': 'The demand for bio-based processes and materials in the petrochemical industry; has significantly increased during the last decade because of the expected; running out of petroleum. This trend can be ascribed to three main causes: (1); the increased use of renewable resources for chemical synthesis of already; established product classes, (2) the replacement of chemical synthesis of already; established product classes by new biotechnological processes based on renewable; resources, and (3) the biotechnological production of new molecules with new; features or better performances than already established comparable chemically; synthesized products. All three approaches are currently being pursued for; surfactant production. Biosurfactants are a very promising and interesting; substance class because they are based on renewable resources, sustainable, and; biologically degradable. Alkyl polyglycosides are chemically synthesized; biosurfactants established on the surfactant market. The first microbiological; biosurfactants on the market were sophorolipids. Of all currently known; biosurfactants, rhamnolipids have the highest potential for becoming the next; generation of biosurfactants introduced on the market. Although the metabolic; pathways and genetic regulation of biosynthesis are known qualitatively, the; quantitative understanding relevant for bioreactor cultivation is still missing.; Additionally, high product titers have been exclusively described with vegetable; oil as sole carbon source in combination with Pseudomonas aeruginosa strains.; Competitive productivity is still out of reach for heterologous hosts or; non-pathogenic natural producer strains. Thus, on the one hand there is a need to; gain a deeper understanding of the regulation of rhamnolipid production on; process and cellular level during bioreactor cultivations. On the other hand,; there is a need for metabolizable renewable substrates, which do not compete with; food and feed. A sustainable bioeconomy approach should combine a holistic; X-omics strategy with metabolic engineering to achieve the next step in; rhamnolipid production based on non-food renewable resources. This review; discusses different approaches towards optimization of rhamnolipid production and; enhancement of product spectra. The optimization of rhamnolipid production with; P. aeruginosa strains, screening methods for new non-pathogenic natural; rhamnolipid producers and recombinant rhamnolipid production are examined.; Finally, biocatalysis with rhamnolipids for the synthesis of l-rhamnose,; beta-hydroxyfatty acids, and tailor-made surfactants is discussed. Biosurfactants; are still in the phase of initial commercialization. However, for next generation; development of rhamnolipid production processes and next generation; biosurfactants there are still considerable obstacles to be surmounted, which are; discussed here.', 'AD': 'Institute of Process Engineering and Life Sciences, Section II: Technical; Biology, Karlsruhe Institute of Technology-KIT, Engler-Bunte-Ring 1, D-76131; Karlsruhe, Germany. [email protected]', 'VI': '162', 'IS': '1873-4863 (Electronic); 0168-1656 (Linking)', 'AU': 'Muller MM; Kugler JH; Henkel M; Gerlitzki M; Hormann B; Pohnlein M; Syldatk C; Hausmann R', 'MHDA': '2013/05/15 06:00', 'PHST': '2011/11/25 [received]; 2012/05/06 [revised]; 2012/05/18 [accepted]; 2012/06/20 [aheadofprint]', 'MH': 'Biotechnology/*methods; Burkholderia/metabolism; Glycolipids/*biosynthesis/chemical synthesis/*chemistry; Pseudomonas/metabolism; Surface-Active Agents/chemical synthesis/*chemistry/*metabolism', 'EDAT': '2012/06/26 06:00', 'SO': 'J Biotechnol. 2012 Dec 31;162(4):366-80. doi: 10.1016/j.jbiotec.2012.05.022. Epub; 2012 Jun 20.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 3600) {'STAT': 'MEDLINE', 'IP': '2', 'JT': 'Journal of nanoscience and nanotechnology', 'DA': '20120528', 'FAU': 'Ma, Xiaoyuan; Liu, Liangliang; Liu, Fangjing; Qian, Weiping', 'DP': '2012 Feb', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2012/05/29 06:00', 'DCOM': '20120606', 'LR': '20131121', 'PG': '870-8', 'TI': 'Biocatalytically induced growth of gold nanoshells: using enzyme reaction for the; controllable fabrication of nanomaterials.', 'RN': '0 (Colloids); 0 (Enzymes); 7440-57-5 (Gold); BBX060AN9V (Hydrogen Peroxide)', 'PL': 'United States', 'TA': 'J Nanosci Nanotechnol', 'JID': '101088195', 'AB': 'In the present work, the enzymatically controlled growth process of gold; nanoshells (GNSs) in the presence of O2/glucose/glucose oxidase (GOx) and its; chloroaurate ion electron acceptor is described. The biocatalytically stimulated; growth process is one of the bio-inspired synthetic procedures directed by; biological molecules which occur under ambient conditions. It is found that; hydrogen peroxide (H2O2) could enlarge the gold nanoparticles (GNPs) on the; surface of GNSs precursor composites, of which the preadsorbed GNPs serve as; nucleation sites for further gold deposition. Here, GOx is harnessed for its; unparalled level of catalytic activity and substrate specificity while H2O2 is; produced as a by-product during the oxidation of D-glucose to gluconic acid by; GOx. Then the bio-generated H2O2 is used as the reducing agent in the catalytic; deposition process of GNSs formation. During the procedure, the localized surface; plasmon resonance peaks range across hundreds of nanometers from visible to near; infrared region accompanying by the resultant formation of uniform and continuous; core-shell nanostructures. The corresponding optical, morphological and enzyme; kinetic properties are all well investigated. The novel protocol offers a new; perspective for the bio-directed synthesis method in nanotechnology.', 'AD': 'State Key Laboratory of Bioelectronics, School of Biological Science and Medical; Engineering, Southeast University, Nanjing 210096, P R. China.', 'VI': '12', 'IS': '1533-4880 (Print); 1533-4880 (Linking)', 'AU': 'Ma X; Liu L; Liu F; Qian W', 'MHDA': '2012/06/07 06:00', 'MH': 'Biocatalysis; Colloids; Enzymes/*chemistry; Gold/*chemistry; Hydrogen Peroxide/chemistry; Microscopy, Electron, Transmission; *Nanoshells; Spectrophotometry, Ultraviolet; Surface Plasmon Resonance', 'EDAT': '2012/05/29 06:00', 'SO': 'J Nanosci Nanotechnol. 2012 Feb;12(2):870-8.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 3700) {'STAT': 'MEDLINE', 'IP': '1', 'JT': 'Mikrobiolohichnyi zhurnal (Kiev, Ukraine : 1993)', 'DA': '20120501', 'FAU': 'Pirog, T P; Shevchuk, T A; Konon, A D; Shuliakova, M A; Iutinskaia, G A', 'DP': '2012 Jan-Feb', 'OWN': 'NLM', 'PT': 'English Abstract; Journal Article', 'LA': 'rus', 'CRDT': '2012/05/02 06:00', 'DCOM': '20120529', 'LR': '20131121', 'PG': '20-7', 'TI': '[Synthesis of surfactants acinetobacter calcoaceticus IMV B-7241 and Rhodococcus; erythropolis IMV Ac-5070 in the medium with glycerol].', 'RN': '0 (Alkanes); 0 (Bacterial Proteins); 0 (Culture Media); 0 (Surface-Active Agents); EC 1.4.1.2 (Glutamate Dehydrogenase); EC 2.7.9.- (Phosphotransferases (Paired Acceptors)); EC 2.7.9.2 (pyruvate, water dikinase); EC 4.1.1.31 (Phosphoenolpyruvate Carboxylase); EC 4.1.1.49 (Phosphoenolpyruvate Carboxykinase (ATP)); F8Z00SHP6Q (n-hexadecane); PDC6A3C0OX (Glycerol)', 'PL': 'Ukraine', 'TA': 'Mikrobiol Z', 'JID': '9318954', 'AB': 'It was established that glycerol, a byproduct of biodiesel production, may be; used as substrate for synthesis of surfactants Rhodococcus erythropolis IMV; Ac-5017 and Acinetobacter calcoaceticus IMV B-7241. Maximum indices of; surfactants synthesis by the strain IMV B-7241 have been fixed, when the medium; with glycerol included yeast autolysate and trace elements. It was shown that the; surfactants synthesis could be intensified when cultivating A. calcoaceticus IMV; B-7241 and R. erythropolis IMV Ac-5017 on the mixture of hexadecane and glycerol; in concentration of 0.5-1.0% (in volume). When using inoculate grown on; hexadecane, the conditional concentration of the surfactant A.calcoaceticus IMV; B-7241 on the mixed substrate was higher by 56-100, and that of R. erythropolis; IMVAc-5017 by 260-320 % than on the monosubstrate glycerol. The paper is; presented in Russian.', 'VI': '74', 'IS': '1028-0987 (Print); 1028-0987 (Linking)', 'AU': 'Pirog TP; Shevchuk TA; Konon AD; Shuliakova MA; Iutinskaia GA', 'MHDA': '2012/05/30 06:00', 'MH': 'Acinetobacter calcoaceticus/*enzymology; Alkanes/metabolism; Bacterial Proteins/*metabolism; Biocatalysis; Culture Media; Fermentation; Glutamate Dehydrogenase/metabolism; Glycerol/*metabolism; Industrial Microbiology/*methods; Phosphoenolpyruvate Carboxykinase (ATP)/metabolism; Phosphoenolpyruvate Carboxylase/metabolism; Phosphotransferases (Paired Acceptors)/metabolism; Rhodococcus/*enzymology; Surface-Active Agents/*metabolism', 'EDAT': '2012/05/02 06:00', 'SO': 'Mikrobiol Z. 2012 Jan-Feb;74(1):20-7.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 3800) {'LID': '10.1039/c2ob25247c [doi]', 'STAT': 'MEDLINE', 'IP': '17', 'DEP': '20120322', 'DA': '20120405', 'AID': '10.1039/c2ob25247c [doi]', 'FAU': 'Prechter, Agnes; Groger, Harald; Heinrich, Markus R', 'DP': '2012 May 7', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2012/03/24 06:00', 'DCOM': '20120807', 'JT': 'Organic & biomolecular chemistry', 'LR': '20121115', 'PG': '3384-7', 'TI': 'Synthesis of (S)-(+)-cericlamine through lipase-catalyzed aminolysis of azo; acetates.', 'RN': '0 (Acetates); 0 (Amines); 0 (Azo Compounds); 0 (Fungal Proteins); 0 (Propanolamines); 0 (Serotonin Uptake Inhibitors); EC 3.1.1.- (lipase B, Candida antarctica); EC 3.1.1.3 (Lipase); VES82D23IB (cericlamine)', 'PL': 'England', 'TA': 'Org Biomol Chem', 'JID': '101154995', 'AB': 'The kinetic enzymatic resolution of azo acetates via aminolysis with Candida; antarctica lipase B has been investigated using benzylamine as amine component.; The products obtained from this biotransformation in high enantiomeric purity can; serve as valuable precursors for various amino alcohols, as exemplified by the; synthesis of the serotonin reuptake inhibitor (S)-(+)-cericlamine.', 'AD': 'Department fur Chemie und Pharmazie, Pharmazeutische Chemie, Friedrich-Alexander; Universitat Erlangen-Nurnberg, Schuhstrasse 19, 91052 Erlangen, Germany.', 'VI': '10', 'IS': '1477-0539 (Electronic); 1477-0520 (Linking)', 'AU': 'Prechter A; Groger H; Heinrich MR', 'MHDA': '2012/08/08 06:00', 'PHST': '2012/03/22 [aheadofprint]; 2012/05/07 [epublish]', 'MH': 'Acetates/*chemistry; Amines/chemistry; Azo Compounds/*chemistry; *Biocatalysis; Chemistry Techniques, Synthetic/*methods; Fungal Proteins/*metabolism; Kinetics; Lipase/*metabolism; Propanolamines/*chemical synthesis/chemistry; Serotonin Uptake Inhibitors/*chemical synthesis/chemistry; Stereoisomerism; Substrate Specificity', 'EDAT': '2012/03/24 06:00', 'SO': 'Org Biomol Chem. 2012 May 7;10(17):3384-7. doi: 10.1039/c2ob25247c. Epub 2012 Mar', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 3800) {'LID': '10.1039/c2ob25247c [doi]', 'STAT': 'MEDLINE', 'IP': '17', 'DEP': '20120322', 'DA': '20120405', 'AID': '10.1039/c2ob25247c [doi]', 'FAU': 'Prechter, Agnes; Groger, Harald; Heinrich, Markus R', 'DP': '2012 May 7', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2012/03/24 06:00', 'DCOM': '20120807', 'JT': 'Organic & biomolecular chemistry', 'LR': '20121115', 'PG': '3384-7', 'TI': 'Synthesis of (S)-(+)-cericlamine through lipase-catalyzed aminolysis of azo; acetates.', 'RN': '0 (Acetates); 0 (Amines); 0 (Azo Compounds); 0 (Fungal Proteins); 0 (Propanolamines); 0 (Serotonin Uptake Inhibitors); EC 3.1.1.- (lipase B, Candida antarctica); EC 3.1.1.3 (Lipase); VES82D23IB (cericlamine)', 'PL': 'England', 'TA': 'Org Biomol Chem', 'JID': '101154995', 'AB': 'The kinetic enzymatic resolution of azo acetates via aminolysis with Candida; antarctica lipase B has been investigated using benzylamine as amine component.; The products obtained from this biotransformation in high enantiomeric purity can; serve as valuable precursors for various amino alcohols, as exemplified by the; synthesis of the serotonin reuptake inhibitor (S)-(+)-cericlamine.', 'AD': 'Department fur Chemie und Pharmazie, Pharmazeutische Chemie, Friedrich-Alexander; Universitat Erlangen-Nurnberg, Schuhstrasse 19, 91052 Erlangen, Germany.', 'VI': '10', 'IS': '1477-0539 (Electronic); 1477-0520 (Linking)', 'AU': 'Prechter A; Groger H; Heinrich MR', 'MHDA': '2012/08/08 06:00', 'PHST': '2012/03/22 [aheadofprint]; 2012/05/07 [epublish]', 'MH': 'Acetates/*chemistry; Amines/chemistry; Azo Compounds/*chemistry; *Biocatalysis; Chemistry Techniques, Synthetic/*methods; Fungal Proteins/*metabolism; Kinetics; Lipase/*metabolism; Propanolamines/*chemical synthesis/chemistry; Serotonin Uptake Inhibitors/*chemical synthesis/chemistry; Stereoisomerism; Substrate Specificity', 'EDAT': '2012/03/24 06:00', 'SO': 'Org Biomol Chem. 2012 May 7;10(17):3384-7. doi: 10.1039/c2ob25247c. Epub 2012 Mar; 22.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 3900) {'LID': '10.1038/srep00142 [doi]', 'STAT': 'MEDLINE', 'DEP': '20111104', 'DA': '20120222', 'AID': '10.1038/srep00142 [doi]', 'DCOM': '20130909', 'DP': '2011', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2012/02/23 06:00', 'FAU': 'Tao, Fei; Zhang, Yinan; Ma, Cuiqing; Xu, Ping', 'JT': 'Scientific reports', 'LR': '20141019', 'PG': '142', 'TI': 'One-pot bio-synthesis: N-acetyl-D-neuraminic acid production by a powerful; engineered whole-cell catalyst.', 'RN': '0 (Carrier Proteins); 0 (Surface-Active Agents); EC 4.1.3.- (Oxo-Acid-Lyases); EC 4.1.3.3 (N-acetylneuraminate lyase); EC 5.1.3.- (Carbohydrate Epimerases); EC 5.1.3.8 (N-acyl-D-glucosamine 2-epimerase); GZP2782OP0 (N-Acetylneuraminic Acid)', 'PL': 'England', 'TA': 'Sci Rep', 'JID': '101563288', 'AB': 'Whole cell biocatalysis is an important tool for pharmaceutical intermediates; synthesis, although it is hindered by some shortcomings, such as high cost and; toxicity of inducer, mass transfer resistance caused by cell membrane and side; reactions. Whole-cell catalysis using N-acetyl-d-glucosamine 2-epimerase (EC; 5.1.3.8) and N-acetyl-d-neuraminic acid (Neu5Ac) aldolase (EC 4.1.3.3) is a; promising approach for the production of Neu5Ac, a potential precursor of many; anti-viral drugs. A powerful catalyst was developed by packaging the enzymes in; an engineered bacterium and using a safe temperature-induced vector. Since the; mass transfer resistance and the side reactions were substantially reduced, a; high Neu5Ac amount (191 mM) was achieved. An efficient method was also presented,; which allows one-pot synthesis of Neu5Ac with a safe and economic manner. The; results highlight the promise of large-scale Neu5Ac synthesis and point at a; potential of our approach as a general strategy to improve whole-cell; biocatalysis.', 'AD': "State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University,; Shanghai 200240, People's Republic of China; State Key Laboratory of Microbial; Technology, Shandong University, Jinan 250100, People's Republic of China.", 'VI': '1', 'IS': '2045-2322 (Electronic); 2045-2322 (Linking)', 'PMC': 'PMC3216623', 'AU': 'Tao F; Zhang Y; Ma C; Xu P', 'GN': 'NLM: Original DateCompleted: 20120507', 'MHDA': '2012/02/23 06:01', 'PHST': '2011/08/17 [received]; 2011/10/12 [accepted]; 2011/11/04 [epublish]', 'OID': 'NLM: PMC3216623', 'MH': 'Base Sequence; Carbohydrate Epimerases/genetics/metabolism; Carrier Proteins/genetics/metabolism; Catalysis; Escherichia coli/genetics/metabolism; Genes, Bacterial; Kinetics; Metabolic Engineering/*methods; N-Acetylneuraminic Acid/*biosynthesis; Oxo-Acid-Lyases/genetics/metabolism; Plasmids/genetics; Surface-Active Agents; Synechocystis/enzymology/genetics', 'EDAT': '2012/02/23 06:00', 'SO': 'Sci Rep. 2011;1:142. doi: 10.1038/srep00142. Epub 2011 Nov 4.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 4000) {'LID': '10.1002/cbic.201100750 [doi]', 'STAT': 'MEDLINE', 'IP': '4', 'DEP': '20120124', 'JID': '100937360', 'DA': '20120301', 'AID': '10.1002/cbic.201100750 [doi]', 'FAU': 'Venkataraman, Harini; Beer, Stephanie B A de; Bergen, Laura A H van; Essen, Nick van; Geerke, Daan P; Vermeulen, Nico P E; Commandeur, Jan N M', 'DP': '2012 Mar 5', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2012/01/26 06:00', 'DCOM': '20121019', 'JT': 'Chembiochem : a European journal of chemical biology', 'LR': '20131121', 'PG': '520-3', 'TI': 'A single active site mutation inverts stereoselectivity of 16-hydroxylation of; testosterone catalyzed by engineered cytochrome P450 BM3.', 'RN': '3XMK78S47O (Testosterone); 9035-51-2 (Cytochrome P-450 Enzyme System)', 'PL': 'Germany', 'TA': 'Chembiochem', 'CI': 'Copyright (c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.', 'AB': 'Inversion of stereoselectivity: screening of a minimal mutant library revealed a; cytochrome P450 BM3 variant M01 A82W S72I capable of producing 16; alpha-OH-testosterone. Remarkably, a single active site mutation S72I in M01 A82W; inverted the stereoselectivity of hydroxylation from 16 beta to 16 alpha.; Introduction of S72I mutation in another 16 beta-OH-selective variant M11 V87I,; also resulted in similar inversion of stereoselectivity.', 'AD': 'Department of Chemistry and Pharmaceutical Sciences, Division of Molecular and; Computational Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV; Amsterdam, Netherlands.', 'VI': '13', 'IS': '1439-7633 (Electronic); 1439-4227 (Linking)', 'AU': 'Venkataraman H; Beer SB; Bergen LA; Essen Nv; Geerke DP; Vermeulen NP; Commandeur JN', 'MHDA': '2012/10/20 06:00', 'PHST': '2011/11/30 [received]; 2012/01/24 [aheadofprint]', 'MH': 'Biocatalysis; Catalytic Domain; Cytochrome P-450 Enzyme System/chemistry/genetics/*metabolism; Hydroxylation; Mutation; *Protein Engineering; Stereoisomerism; Testosterone/chemistry/genetics/*metabolism', 'EDAT': '2012/01/26 06:00', 'SO': 'Chembiochem. 2012 Mar 5;13(4):520-3. doi: 10.1002/cbic.201100750. Epub 2012 Jan', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 4000) {'LID': '10.1002/cbic.201100750 [doi]', 'STAT': 'MEDLINE', 'IP': '4', 'DEP': '20120124', 'JID': '100937360', 'DA': '20120301', 'AID': '10.1002/cbic.201100750 [doi]', 'FAU': 'Venkataraman, Harini; Beer, Stephanie B A de; Bergen, Laura A H van; Essen, Nick van; Geerke, Daan P; Vermeulen, Nico P E; Commandeur, Jan N M', 'DP': '2012 Mar 5', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2012/01/26 06:00', 'DCOM': '20121019', 'JT': 'Chembiochem : a European journal of chemical biology', 'LR': '20131121', 'PG': '520-3', 'TI': 'A single active site mutation inverts stereoselectivity of 16-hydroxylation of; testosterone catalyzed by engineered cytochrome P450 BM3.', 'RN': '3XMK78S47O (Testosterone); 9035-51-2 (Cytochrome P-450 Enzyme System)', 'PL': 'Germany', 'TA': 'Chembiochem', 'CI': 'Copyright (c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.', 'AB': 'Inversion of stereoselectivity: screening of a minimal mutant library revealed a; cytochrome P450 BM3 variant M01 A82W S72I capable of producing 16; alpha-OH-testosterone. Remarkably, a single active site mutation S72I in M01 A82W; inverted the stereoselectivity of hydroxylation from 16 beta to 16 alpha.; Introduction of S72I mutation in another 16 beta-OH-selective variant M11 V87I,; also resulted in similar inversion of stereoselectivity.', 'AD': 'Department of Chemistry and Pharmaceutical Sciences, Division of Molecular and; Computational Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV; Amsterdam, Netherlands.', 'VI': '13', 'IS': '1439-7633 (Electronic); 1439-4227 (Linking)', 'AU': 'Venkataraman H; Beer SB; Bergen LA; Essen Nv; Geerke DP; Vermeulen NP; Commandeur JN', 'MHDA': '2012/10/20 06:00', 'PHST': '2011/11/30 [received]; 2012/01/24 [aheadofprint]', 'MH': 'Biocatalysis; Catalytic Domain; Cytochrome P-450 Enzyme System/chemistry/genetics/*metabolism; Hydroxylation; Mutation; *Protein Engineering; Stereoisomerism; Testosterone/chemistry/genetics/*metabolism', 'EDAT': '2012/01/26 06:00', 'SO': 'Chembiochem. 2012 Mar 5;13(4):520-3. doi: 10.1002/cbic.201100750. Epub 2012 Jan; 24.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 4100) {'LID': '10.1016/j.chembiol.2011.11.007 [doi]', 'STAT': 'MEDLINE', 'IP': '12', 'JT': 'Chemistry & biology', 'JID': '9500160', 'DA': '20111226', 'AID': 'S1074-5521(11)00409-1 [pii]; 10.1016/j.chembiol.2011.11.007 [doi]', 'FAU': 'Li, Yan; Zhao, Peiji; Kang, Qianjin; Ma, Juan; Bai, Linquan; Deng, Zixin', 'DP': '2011 Dec 23', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2011/12/27 06:00', 'DCOM': '20120423', 'LR': '20131121', 'PG': '1571-80', 'TI': 'Dual carbamoylations on the polyketide and glycosyl moiety by asm21 result in; extended ansamitocin biosynthesis.', 'RN': '0 (Polyketides); 14083FR882 (Maytansine); 69279-90-9 (ansamitocins); EC 2.1.3.- (Carboxyl and Carbamoyl Transferases)', 'PL': 'United States', 'TA': 'Chem Biol', 'CI': 'Copyright (c) 2011 Elsevier Ltd. All rights reserved.', 'AB': 'Carbamoylation is one of the post-PKS modifications in ansamitocin biosynthesis.; A novel ansamitocinoside with carbamoyl substitution at the C-4 hydroxyl group of; the N-beta-D-glucosyl moiety was identified from the ansamitocin producer,; Actinosynnema pretiosum. Through biotransformation, the carbamoyltransferase gene; asm21 was suggested to be responsible for the carbamoylation of the glucosyl; moiety. Three new derivatives without the backbone carbamoyl group were isolated; from an asm21 mutant and characterized by NMR spectroscopy. Among them,; 18-O-methyl-19-chloroproansamitocin was the major product and the preferred; substrate for macrolactam C-7 carbamoylation by Asm21. However, Asm21 exhibited; higher catalytic efficiency toward the glucosyl moiety. Furthermore, the dual; carbamoylations and N-glycosylation were precisely demonstrated in vivo. This; work represents the first biochemical characterization of an; O-carbamoyltransferase performing dual actions on both a polyketide backbone and; a glycosyl moiety during ansamitocin biosynthesis.', 'AD': 'State Key Laboratory of Microbial Metabolism, School of Life Sciences and; Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.', 'VI': '18', 'IS': '1879-1301 (Electronic); 1074-5521 (Linking)', 'AU': 'Li Y; Zhao P; Kang Q; Ma J; Bai L; Deng Z', 'MHDA': '2012/04/24 06:00', 'PHST': '2011/10/04 [received]; 2011/10/29 [revised]; 2011/11/07 [accepted]', 'MH': 'Actinomycetales/enzymology; Biocatalysis; Carboxyl and Carbamoyl Transferases/genetics/*metabolism; Magnetic Resonance Spectroscopy; Maytansine/*analogs & derivatives/biosynthesis/chemistry; Mutation; Polyketides/*chemistry', 'EDAT': '2011/12/27 06:00', 'SO': 'Chem Biol. 2011 Dec 23;18(12):1571-80. doi: 10.1016/j.chembiol.2011.11.007.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 4200) {'LID': '10.1016/j.cbpa.2011.11.002 [doi]', 'STAT': 'MEDLINE', 'IP': '6', 'DEP': '20111119', 'JID': '9811312', 'DA': '20111213', 'AID': 'S1367-5931(11)00166-9 [pii]; 10.1016/j.cbpa.2011.11.002 [doi]', 'FAU': 'Perez, Corey E; Gonzalez, Ruben L Jr', 'DP': '2011 Dec', 'GR': 'R01 GM084288/GM/NIGMS NIH HHS/United States; R01 GM084288/GM/NIGMS NIH HHS/United States; R01 GM084288-03/GM/NIGMS NIH HHS/United States', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.; Review", 'LA': 'eng', 'CRDT': '2011/11/23 06:00', 'DCOM': '20120402', 'JT': 'Current opinion in chemical biology', 'LR': '20141117', 'PG': '853-63', 'TI': 'In vitro and in vivo single-molecule fluorescence imaging of ribosome-catalyzed; protein synthesis.', 'RN': '0 (Fluorescent Dyes)', 'PL': 'England', 'TA': 'Curr Opin Chem Biol', 'CI': 'Copyright (c) 2011 Elsevier Ltd. All rights reserved.', 'AB': 'Combined with the availability of highly purified, fluorescently labeled in vitro; translation systems, the advent of single-molecule fluorescence imaging has; ushered in a new era in high-resolution mechanistic studies of ribosome-catalyzed; protein synthesis, or translation. Together with ensemble biochemical; investigations of translation and structural studies of functional ribosomal; complexes, in vitro single-molecule fluorescence imaging of protein synthesis is; providing unique mechanistic insight into this fundamental biological process.; More recently, rapidly evolving breakthroughs in fluorescence-based molecular; imaging in live cells with sub-diffraction-limit spatial resolution and; ever-increasing temporal resolution provide great promise for conducting; mechanistic studies of translation and its regulation in living cells. Here we; review the remarkable recent progress that has been made in these fields,; highlight important mechanistic insights that have been gleaned from these; studies thus far, and discuss what we envision lies ahead as these approaches; continue to evolve and expand to address increasingly complex mechanistic and; regulatory aspects of translation.', 'AD': 'Department of Chemistry, Columbia University, New York, NY 10027, USA.', 'VI': '15', 'IS': '1879-0402 (Electronic); 1367-5931 (Linking)', 'PMC': 'PMC3532847', 'MID': 'NIHMS340581', 'AU': 'Perez CE; Gonzalez RL Jr', 'MHDA': '2012/04/03 06:00', 'PHST': '2011/10/24 [received]; 2011/11/01 [revised]; 2011/11/01 [accepted]; 2011/11/19 [aheadofprint]', 'OID': 'NLM: NIHMS340581; NLM: PMC3532847', 'MH': 'Biocatalysis; Escherichia coli/genetics/metabolism; Fluorescence Resonance Energy Transfer; Fluorescent Dyes/*analysis/chemistry; Gene Expression; Microscopy, Fluorescence/instrumentation/*methods; Models, Molecular; Protein Biosynthesis/*physiology; Ribosomes/chemistry/genetics/metabolism/*ultrastructure; Staining and Labeling/*methods', 'EDAT': '2011/11/23 06:00', 'SO': 'Curr Opin Chem Biol. 2011 Dec;15(6):853-63. doi: 10.1016/j.cbpa.2011.11.002. Epub', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 4200) {'LID': '10.1016/j.cbpa.2011.11.002 [doi]', 'STAT': 'MEDLINE', 'IP': '6', 'DEP': '20111119', 'JID': '9811312', 'DA': '20111213', 'AID': 'S1367-5931(11)00166-9 [pii]; 10.1016/j.cbpa.2011.11.002 [doi]', 'FAU': 'Perez, Corey E; Gonzalez, Ruben L Jr', 'DP': '2011 Dec', 'GR': 'R01 GM084288/GM/NIGMS NIH HHS/United States; R01 GM084288/GM/NIGMS NIH HHS/United States; R01 GM084288-03/GM/NIGMS NIH HHS/United States', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.; Review", 'LA': 'eng', 'CRDT': '2011/11/23 06:00', 'DCOM': '20120402', 'JT': 'Current opinion in chemical biology', 'LR': '20141117', 'PG': '853-63', 'TI': 'In vitro and in vivo single-molecule fluorescence imaging of ribosome-catalyzed; protein synthesis.', 'RN': '0 (Fluorescent Dyes)', 'PL': 'England', 'TA': 'Curr Opin Chem Biol', 'CI': 'Copyright (c) 2011 Elsevier Ltd. All rights reserved.', 'AB': 'Combined with the availability of highly purified, fluorescently labeled in vitro; translation systems, the advent of single-molecule fluorescence imaging has; ushered in a new era in high-resolution mechanistic studies of ribosome-catalyzed; protein synthesis, or translation. Together with ensemble biochemical; investigations of translation and structural studies of functional ribosomal; complexes, in vitro single-molecule fluorescence imaging of protein synthesis is; providing unique mechanistic insight into this fundamental biological process.; More recently, rapidly evolving breakthroughs in fluorescence-based molecular; imaging in live cells with sub-diffraction-limit spatial resolution and; ever-increasing temporal resolution provide great promise for conducting; mechanistic studies of translation and its regulation in living cells. Here we; review the remarkable recent progress that has been made in these fields,; highlight important mechanistic insights that have been gleaned from these; studies thus far, and discuss what we envision lies ahead as these approaches; continue to evolve and expand to address increasingly complex mechanistic and; regulatory aspects of translation.', 'AD': 'Department of Chemistry, Columbia University, New York, NY 10027, USA.', 'VI': '15', 'IS': '1879-0402 (Electronic); 1367-5931 (Linking)', 'PMC': 'PMC3532847', 'MID': 'NIHMS340581', 'AU': 'Perez CE; Gonzalez RL Jr', 'MHDA': '2012/04/03 06:00', 'PHST': '2011/10/24 [received]; 2011/11/01 [revised]; 2011/11/01 [accepted]; 2011/11/19 [aheadofprint]', 'OID': 'NLM: NIHMS340581; NLM: PMC3532847', 'MH': 'Biocatalysis; Escherichia coli/genetics/metabolism; Fluorescence Resonance Energy Transfer; Fluorescent Dyes/*analysis/chemistry; Gene Expression; Microscopy, Fluorescence/instrumentation/*methods; Models, Molecular; Protein Biosynthesis/*physiology; Ribosomes/chemistry/genetics/metabolism/*ultrastructure; Staining and Labeling/*methods', 'EDAT': '2011/11/23 06:00', 'SO': 'Curr Opin Chem Biol. 2011 Dec;15(6):853-63. doi: 10.1016/j.cbpa.2011.11.002. Epub; 2011 Nov 19.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 4300) {'LID': '10.1016/j.bbabio.2011.10.001 [doi]', 'STAT': 'MEDLINE', 'IP': '4', 'DEP': '20111014', 'JID': '0217513', 'DA': '20120305', 'AID': 'S0005-2728(11)00233-7 [pii]; 10.1016/j.bbabio.2011.10.001 [doi]', 'FAU': 'Varanasi, Lakshman; Hosler, Jonathan P', 'DP': '2012 Apr', 'GR': 'GM56824/GM/NIGMS NIH HHS/United States; R01 GM056824-09/GM/NIGMS NIH HHS/United States', 'OWN': 'NLM', 'PT': 'Journal Article; Research Support, N.I.H., Extramural; Review', 'LA': 'eng', 'CRDT': '2011/10/26 06:00', 'DCOM': '20120510', 'JT': 'Biochimica et biophysica acta', 'LR': '20141021', 'PG': '545-51', 'TI': 'Subunit III-depleted cytochrome c oxidase provides insight into the process of; proton uptake by proteins.', 'RN': '0 (Bacterial Proteins); 0 (Protein Subunits); 0 (Protons); EC 1.9.3.1 (Electron Transport Complex IV)', 'PL': 'Netherlands', 'TA': 'Biochim Biophys Acta', 'CI': 'Copyright A(c) 2011 Elsevier B.V. All rights reserved.', 'AB': 'We review studies of subunit III-depleted cytochrome c oxidase (CcO III (-)) that; elucidate the structural basis of steady-state proton uptake from solvent into an; internal proton transfer pathway. The removal of subunit III from R. sphaeroides; CcO makes proton uptake into the D pathway a rate-determining step, such that; measurements of the pH dependence of steady-state O(2) consumption can be used to; compare the rate and functional pK(a) of proton uptake by D pathways containing; different initial proton acceptors. The removal of subunit III also promotes; spontaneous suicide inactivation by CcO, greatly shortening its catalytic; lifespan. Because the probability of suicide inactivation is controlled by the; rate at which the D pathway delivers protons to the active site, measurements of; catalytic lifespan provide a second method to compare the relative efficacy of; proton uptake by engineered CcO III (-) forms. These simple experimental systems; have been used to explore general questions of proton uptake by proteins, such as; the functional value of an initial proton acceptor, whether an initial acceptor; must be surface-exposed, which side chains will function as initial proton; acceptors and whether multiple acceptors can speed proton uptake.', 'AD': 'Department of Biochemistry, The University of Mississippi Medical Center,; Jackson, MS, USA. [email protected]', 'VI': '1817', 'IS': '0006-3002 (Print); 0006-3002 (Linking)', 'PMC': 'PMC3294125', 'MID': 'NIHMS338182', 'AU': 'Varanasi L; Hosler JP', 'MHDA': '2012/05/11 06:00', 'PHST': '2011/07/28 [received]; 2011/10/10 [revised]; 2011/10/10 [accepted]; 2011/10/14 [aheadofprint]', 'OID': 'NLM: NIHMS338182; NLM: PMC3294125', 'MH': 'Bacterial Proteins/chemistry/genetics/*metabolism; Binding Sites/genetics; Biocatalysis; Biological Transport/genetics; Electron Transport Complex IV/chemistry/genetics/*metabolism; Hydrogen-Ion Concentration; Mutation; Protein Subunits/chemistry/genetics/metabolism; *Protons; Rhodobacter sphaeroides/*enzymology/genetics/metabolism', 'EDAT': '2011/10/26 06:00', 'SO': 'Biochim Biophys Acta. 2012 Apr;1817(4):545-51. doi: 10.1016/j.bbabio.2011.10.001.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 4300) {'LID': '10.1016/j.bbabio.2011.10.001 [doi]', 'STAT': 'MEDLINE', 'IP': '4', 'DEP': '20111014', 'JID': '0217513', 'DA': '20120305', 'AID': 'S0005-2728(11)00233-7 [pii]; 10.1016/j.bbabio.2011.10.001 [doi]', 'FAU': 'Varanasi, Lakshman; Hosler, Jonathan P', 'DP': '2012 Apr', 'GR': 'GM56824/GM/NIGMS NIH HHS/United States; R01 GM056824-09/GM/NIGMS NIH HHS/United States', 'OWN': 'NLM', 'PT': 'Journal Article; Research Support, N.I.H., Extramural; Review', 'LA': 'eng', 'CRDT': '2011/10/26 06:00', 'DCOM': '20120510', 'JT': 'Biochimica et biophysica acta', 'LR': '20141021', 'PG': '545-51', 'TI': 'Subunit III-depleted cytochrome c oxidase provides insight into the process of; proton uptake by proteins.', 'RN': '0 (Bacterial Proteins); 0 (Protein Subunits); 0 (Protons); EC 1.9.3.1 (Electron Transport Complex IV)', 'PL': 'Netherlands', 'TA': 'Biochim Biophys Acta', 'CI': 'Copyright A(c) 2011 Elsevier B.V. All rights reserved.', 'AB': 'We review studies of subunit III-depleted cytochrome c oxidase (CcO III (-)) that; elucidate the structural basis of steady-state proton uptake from solvent into an; internal proton transfer pathway. The removal of subunit III from R. sphaeroides; CcO makes proton uptake into the D pathway a rate-determining step, such that; measurements of the pH dependence of steady-state O(2) consumption can be used to; compare the rate and functional pK(a) of proton uptake by D pathways containing; different initial proton acceptors. The removal of subunit III also promotes; spontaneous suicide inactivation by CcO, greatly shortening its catalytic; lifespan. Because the probability of suicide inactivation is controlled by the; rate at which the D pathway delivers protons to the active site, measurements of; catalytic lifespan provide a second method to compare the relative efficacy of; proton uptake by engineered CcO III (-) forms. These simple experimental systems; have been used to explore general questions of proton uptake by proteins, such as; the functional value of an initial proton acceptor, whether an initial acceptor; must be surface-exposed, which side chains will function as initial proton; acceptors and whether multiple acceptors can speed proton uptake.', 'AD': 'Department of Biochemistry, The University of Mississippi Medical Center,; Jackson, MS, USA. [email protected]', 'VI': '1817', 'IS': '0006-3002 (Print); 0006-3002 (Linking)', 'PMC': 'PMC3294125', 'MID': 'NIHMS338182', 'AU': 'Varanasi L; Hosler JP', 'MHDA': '2012/05/11 06:00', 'PHST': '2011/07/28 [received]; 2011/10/10 [revised]; 2011/10/10 [accepted]; 2011/10/14 [aheadofprint]', 'OID': 'NLM: NIHMS338182; NLM: PMC3294125', 'MH': 'Bacterial Proteins/chemistry/genetics/*metabolism; Binding Sites/genetics; Biocatalysis; Biological Transport/genetics; Electron Transport Complex IV/chemistry/genetics/*metabolism; Hydrogen-Ion Concentration; Mutation; Protein Subunits/chemistry/genetics/metabolism; *Protons; Rhodobacter sphaeroides/*enzymology/genetics/metabolism', 'EDAT': '2011/10/26 06:00', 'SO': 'Biochim Biophys Acta. 2012 Apr;1817(4):545-51. doi: 10.1016/j.bbabio.2011.10.001.; Epub 2011 Oct 14.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 4400) {'LID': '10.1002/anie.201103632 [doi]', 'STAT': 'MEDLINE', 'IP': '46', 'DEP': '20110921', 'DA': '20111109', 'AID': '10.1002/anie.201103632 [doi]', 'FAU': 'Kohler, Valentin; Mao, Jincheng; Heinisch, Tillmann; Pordea, Anca; Sardo, Alessia; Wilson, Yvonne M; Knorr, Livia; Creus, Marc; Prost, Jean-Christophe; Schirmer, Tilman; Ward, Thomas R', 'DP': '2011 Nov 11', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2011/09/28 06:00', 'DCOM': '20120306', 'JT': 'Angewandte Chemie (International ed. in English)', 'LR': '20131121', 'PG': '10863-6', 'TI': 'OsO4.streptavidin: a tunable hybrid catalyst for the enantioselective; cis-dihydroxylation of olefins.', 'RN': '0 (Alkenes); 0 (Multienzyme Complexes); 9013-20-1 (Streptavidin); EC 1.13.11.- (Dioxygenases); EC 1.14.12.- (naphthalene dioxygenase); P40W033BGM (Osmium Tetroxide)', 'PL': 'Germany', 'TA': 'Angew Chem Int Ed Engl', 'JID': '0370543', 'AD': 'Departement Chemie, Universitat Basel, Basel, Switzerland.', 'VI': '50', 'IS': '1521-3773 (Electronic); 1433-7851 (Linking)', 'AU': 'Kohler V; Mao J; Heinisch T; Pordea A; Sardo A; Wilson YM; Knorr L; Creus M; Prost JC; Schirmer T; Ward TR', 'MHDA': '2012/03/07 06:00', 'PHST': '2011/05/27 [received]; 2011/08/29 [revised]; 2011/09/21 [aheadofprint]', 'MH': 'Alkenes/*chemistry; Amino Acid Substitution; Binding Sites; Biocatalysis; Crystallography, X-Ray; Dioxygenases/genetics/metabolism; Hydroxylation; Multienzyme Complexes/genetics/metabolism; Osmium Tetroxide/*chemistry; Protein Structure, Tertiary; Stereoisomerism; Streptavidin/*chemistry', 'EDAT': '2011/09/29 06:00', 'SO': 'Angew Chem Int Ed Engl. 2011 Nov 11;50(46):10863-6. doi: 10.1002/anie.201103632.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 4400) {'LID': '10.1002/anie.201103632 [doi]', 'STAT': 'MEDLINE', 'IP': '46', 'DEP': '20110921', 'DA': '20111109', 'AID': '10.1002/anie.201103632 [doi]', 'FAU': 'Kohler, Valentin; Mao, Jincheng; Heinisch, Tillmann; Pordea, Anca; Sardo, Alessia; Wilson, Yvonne M; Knorr, Livia; Creus, Marc; Prost, Jean-Christophe; Schirmer, Tilman; Ward, Thomas R', 'DP': '2011 Nov 11', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2011/09/28 06:00', 'DCOM': '20120306', 'JT': 'Angewandte Chemie (International ed. in English)', 'LR': '20131121', 'PG': '10863-6', 'TI': 'OsO4.streptavidin: a tunable hybrid catalyst for the enantioselective; cis-dihydroxylation of olefins.', 'RN': '0 (Alkenes); 0 (Multienzyme Complexes); 9013-20-1 (Streptavidin); EC 1.13.11.- (Dioxygenases); EC 1.14.12.- (naphthalene dioxygenase); P40W033BGM (Osmium Tetroxide)', 'PL': 'Germany', 'TA': 'Angew Chem Int Ed Engl', 'JID': '0370543', 'AD': 'Departement Chemie, Universitat Basel, Basel, Switzerland.', 'VI': '50', 'IS': '1521-3773 (Electronic); 1433-7851 (Linking)', 'AU': 'Kohler V; Mao J; Heinisch T; Pordea A; Sardo A; Wilson YM; Knorr L; Creus M; Prost JC; Schirmer T; Ward TR', 'MHDA': '2012/03/07 06:00', 'PHST': '2011/05/27 [received]; 2011/08/29 [revised]; 2011/09/21 [aheadofprint]', 'MH': 'Alkenes/*chemistry; Amino Acid Substitution; Binding Sites; Biocatalysis; Crystallography, X-Ray; Dioxygenases/genetics/metabolism; Hydroxylation; Multienzyme Complexes/genetics/metabolism; Osmium Tetroxide/*chemistry; Protein Structure, Tertiary; Stereoisomerism; Streptavidin/*chemistry', 'EDAT': '2011/09/29 06:00', 'SO': 'Angew Chem Int Ed Engl. 2011 Nov 11;50(46):10863-6. doi: 10.1002/anie.201103632.; Epub 2011 Sep 21.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 4500) {'LID': '10.1038/cddis.2011.81 [doi]', 'STAT': 'MEDLINE', 'DEP': '20110825', 'DA': '20110825', 'AID': 'cddis201181 [pii]; 10.1038/cddis.2011.81 [doi]', 'DCOM': '20111128', 'DP': '2011', 'GR': '079895/Wellcome Trust/United Kingdom; 089703/Wellcome Trust/United Kingdom; G0901339/Medical Research Council/United Kingdom; MC_G1000734/Medical Research Council/United Kingdom; Medical Research Council/United Kingdom', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2011/08/26 06:00', 'FAU': 'Lichtenberg, M; Mansilla, A; Zecchini, V R; Fleming, A; Rubinsztein, D C', 'JT': 'Cell death & disease', 'LR': '20141022', 'PG': 'e196', 'TI': "The Parkinson's disease protein LRRK2 impairs proteasome substrate clearance; without affecting proteasome catalytic activity.", 'RN': '0 (HSP70 Heat-Shock Proteins); 0 (Ubiquitin); 0 (alpha-Synuclein); EC 2.7.11.1 (LRRK2 protein, human); EC 2.7.11.1 (Protein-Serine-Threonine Kinases); EC 3.4.25.1 (Proteasome Endopeptidase Complex)', 'PL': 'England', 'TA': 'Cell Death Dis', 'JID': '101524092', 'AB': "Leucine-rich repeat kinase 2 (LRRK2) mutations are the most common known cause of; Parkinson's disease (PD). The clinical features of LRRK2 PD are indistinguishable; from idiopathic PD, with accumulation of alpha-synuclein and/or tau and/or; ubiquitin in intraneuronal aggregates. This suggests that LRRK2 is a key to; understanding the aetiology of the disorder. Although loss-of-function does not; appear to be the mechanism causing PD in LRRK2 patients, it is not clear how this; protein mediates toxicity. In this study, we report that LRRK2 overexpression in; cells and in vivo impairs the activity of the ubiquitin-proteasome pathway, and; that this accounts for the accumulation of diverse substrates with LRRK2; overexpression. We show that this is not mediated by large LRRK2 aggregates or; sequestration of ubiquitin to the aggregates. Importantly, such abnormalities are; not seen with overexpression of the related protein LRRK1. Our data suggest that; LRRK2 inhibits the clearance of proteasome substrates upstream of proteasome; catalytic activity, favouring the accumulation of proteins and aggregate; formation. Thus, we provide a molecular link between LRRK2, the most common known; cause of PD, and its previously described phenotype of protein accumulation.", 'AD': "Department of Medical Genetics, University of Cambridge, Cambridge Institute for; Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, UK.", 'VI': '2', 'IS': '2041-4889 (Electronic)', 'PMC': 'PMC3181424', 'AU': 'Lichtenberg M; Mansilla A; Zecchini VR; Fleming A; Rubinsztein DC', 'MHDA': '2011/12/13 00:00', 'OID': 'NLM: PMC3181424', 'MH': 'Animals; Biocatalysis; Cell Line; HSP70 Heat-Shock Proteins/metabolism; Humans; Models, Animal; Parkinson Disease/*metabolism; Proteasome Endopeptidase Complex/*metabolism; Protein-Serine-Threonine Kinases/genetics/*metabolism; Signal Transduction; Substrate Specificity; Transcription, Genetic; Ubiquitin/metabolism; Zebrafish; alpha-Synuclein/metabolism', 'EDAT': '2011/08/26 06:00', 'SO': 'Cell Death Dis. 2011 Aug 25;2:e196. doi: 10.1038/cddis.2011.81.', 'SB': 'IM', 'PST': 'epublish'} () ('Stored article number', 4600) {'LID': '10.1074/jbc.M111.224899 [doi]', 'STAT': 'MEDLINE', 'IP': '38', 'DEP': '20110727', 'DA': '20110919', 'AID': 'M111.224899 [pii]; 10.1074/jbc.M111.224899 [doi]', 'FAU': 'Poll, Florian; Doll, Christian; Schulz, Stefan', 'DP': '2011 Sep 23', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2011/07/29 06:00', 'DCOM': '20111123', 'JT': 'The Journal of biological chemistry', 'LR': '20141022', 'PG': '32931-6', 'TI': 'Rapid dephosphorylation of G protein-coupled receptors by protein phosphatase; 1beta is required for termination of beta-arrestin-dependent signaling.', 'RN': '0 (Arrestins); 0 (Oxazoles); 0 (Receptors, Somatostatin); 0 (beta-arrestin); 0 (somatostatin receptor sst2A); 101932-71-2 (calyculin A); 1W21G5Q4N2 (Okadaic Acid); 452VLY9402 (Serine); EC 2.7.11.24 (Extracellular Signal-Regulated MAP Kinases); EC 3.1.3.16 (PPP1CB protein, human); EC 3.1.3.16 (Phosphoprotein Phosphatases); EC 3.1.3.16 (Protein Phosphatase 1)', 'PL': 'United States', 'TA': 'J Biol Chem', 'JID': '2985121R', 'AB': 'Termination of signaling of activated G protein-coupled receptors (GPCRs) is; essential for maintenance of cellular homeostasis. It is well established that; beta-arrestin redistributes to phosphorylated GPCRs and thereby facilitates; desensitization of classical G protein-dependent signaling. beta-Arrestin in turn; serves as a scaffold to initiate a second wave of signaling. Here, we report a; molecular mechanism that regulates the termination of unconventional; beta-arrestin-dependent GPCR signaling. We identify protein phosphatase 1beta; (PP1beta) as a phosphatase for the cluster of phosphorylated threonines; ((353)TTETQRT(359)) within the sst(2A) somatostatin receptor carboxyl terminus; that mediates beta-arrestin binding using siRNA knock-down screening. We show; that PP1beta-mediated sst(2A) dephosphorylation is initiated directly after; receptor activation at or near the plasma membrane. As a functional consequence; of diminished PP1beta activity, we find that somatostatin- and substance; P-induced but not epidermal growth factor-induced ERK activation was aberrantly; enhanced and prolonged. Thus, we demonstrate a novel mechanism for fine tuning; unconventional beta-arrestin-dependent GPCR signaling in that recruitment of; PP1beta to activated GPCRs facilitates GPCR dephosphorylation and, hence, leads; to disruption of the beta-arrestin-GPCR complex.', 'AD': 'Institute of Pharmacology and Toxicology, University Hospital, Friedrich Schiller; University, D-07747 Jena, Germany.', 'VI': '286', 'IS': '1083-351X (Electronic); 0021-9258 (Linking)', 'PMC': 'PMC3190940', 'AU': 'Poll F; Doll C; Schulz S', 'MHDA': '2011/12/13 00:00', 'PHST': '2011/07/27 [aheadofprint]', 'OID': 'NLM: PMC3190940', 'MH': 'Amino Acid Motifs; Amino Acid Sequence; Animals; Arrestins/*metabolism; Biocatalysis/drug effects; Cell Membrane/drug effects/enzymology; Enzyme Activation/drug effects; Extracellular Signal-Regulated MAP Kinases/metabolism; HEK293 Cells; Humans; Molecular Sequence Data; Okadaic Acid/pharmacology; Oxazoles/pharmacology; Phosphoprotein Phosphatases/antagonists & inhibitors/metabolism; Phosphorylation/drug effects; Protein Phosphatase 1/*metabolism; Rats; Receptors, Somatostatin/chemistry/*metabolism; Serine/metabolism; *Signal Transduction/drug effects; Time Factors', 'EDAT': '2011/07/29 06:00', 'SO': 'J Biol Chem. 2011 Sep 23;286(38):32931-6. doi: 10.1074/jbc.M111.224899. Epub 2011', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 4600) {'LID': '10.1074/jbc.M111.224899 [doi]', 'STAT': 'MEDLINE', 'IP': '38', 'DEP': '20110727', 'DA': '20110919', 'AID': 'M111.224899 [pii]; 10.1074/jbc.M111.224899 [doi]', 'FAU': 'Poll, Florian; Doll, Christian; Schulz, Stefan', 'DP': '2011 Sep 23', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2011/07/29 06:00', 'DCOM': '20111123', 'JT': 'The Journal of biological chemistry', 'LR': '20141022', 'PG': '32931-6', 'TI': 'Rapid dephosphorylation of G protein-coupled receptors by protein phosphatase; 1beta is required for termination of beta-arrestin-dependent signaling.', 'RN': '0 (Arrestins); 0 (Oxazoles); 0 (Receptors, Somatostatin); 0 (beta-arrestin); 0 (somatostatin receptor sst2A); 101932-71-2 (calyculin A); 1W21G5Q4N2 (Okadaic Acid); 452VLY9402 (Serine); EC 2.7.11.24 (Extracellular Signal-Regulated MAP Kinases); EC 3.1.3.16 (PPP1CB protein, human); EC 3.1.3.16 (Phosphoprotein Phosphatases); EC 3.1.3.16 (Protein Phosphatase 1)', 'PL': 'United States', 'TA': 'J Biol Chem', 'JID': '2985121R', 'AB': 'Termination of signaling of activated G protein-coupled receptors (GPCRs) is; essential for maintenance of cellular homeostasis. It is well established that; beta-arrestin redistributes to phosphorylated GPCRs and thereby facilitates; desensitization of classical G protein-dependent signaling. beta-Arrestin in turn; serves as a scaffold to initiate a second wave of signaling. Here, we report a; molecular mechanism that regulates the termination of unconventional; beta-arrestin-dependent GPCR signaling. We identify protein phosphatase 1beta; (PP1beta) as a phosphatase for the cluster of phosphorylated threonines; ((353)TTETQRT(359)) within the sst(2A) somatostatin receptor carboxyl terminus; that mediates beta-arrestin binding using siRNA knock-down screening. We show; that PP1beta-mediated sst(2A) dephosphorylation is initiated directly after; receptor activation at or near the plasma membrane. As a functional consequence; of diminished PP1beta activity, we find that somatostatin- and substance; P-induced but not epidermal growth factor-induced ERK activation was aberrantly; enhanced and prolonged. Thus, we demonstrate a novel mechanism for fine tuning; unconventional beta-arrestin-dependent GPCR signaling in that recruitment of; PP1beta to activated GPCRs facilitates GPCR dephosphorylation and, hence, leads; to disruption of the beta-arrestin-GPCR complex.', 'AD': 'Institute of Pharmacology and Toxicology, University Hospital, Friedrich Schiller; University, D-07747 Jena, Germany.', 'VI': '286', 'IS': '1083-351X (Electronic); 0021-9258 (Linking)', 'PMC': 'PMC3190940', 'AU': 'Poll F; Doll C; Schulz S', 'MHDA': '2011/12/13 00:00', 'PHST': '2011/07/27 [aheadofprint]', 'OID': 'NLM: PMC3190940', 'MH': 'Amino Acid Motifs; Amino Acid Sequence; Animals; Arrestins/*metabolism; Biocatalysis/drug effects; Cell Membrane/drug effects/enzymology; Enzyme Activation/drug effects; Extracellular Signal-Regulated MAP Kinases/metabolism; HEK293 Cells; Humans; Molecular Sequence Data; Okadaic Acid/pharmacology; Oxazoles/pharmacology; Phosphoprotein Phosphatases/antagonists & inhibitors/metabolism; Phosphorylation/drug effects; Protein Phosphatase 1/*metabolism; Rats; Receptors, Somatostatin/chemistry/*metabolism; Serine/metabolism; *Signal Transduction/drug effects; Time Factors', 'EDAT': '2011/07/29 06:00', 'SO': 'J Biol Chem. 2011 Sep 23;286(38):32931-6. doi: 10.1074/jbc.M111.224899. Epub 2011; Jul 27.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 4700) {'LID': '10.1007/s13318-011-0050-0 [doi]', 'STAT': 'MEDLINE', 'IP': '4', 'DEP': '20110629', 'DA': '20111121', 'AID': '10.1007/s13318-011-0050-0 [doi]', 'FAU': 'Li, Tingting; Li, Ning; Guo, Qinglong; Ji, Hui; Zhao, Di; Xie, Shan; Li, Xiaonan; Qiu, Zhixia; Han, Deen; Chen, Xijing; You, Qidong', 'DP': '2011 Dec', 'OWN': 'NLM', 'PT': 'Journal Article', 'LA': 'eng', 'CRDT': '2011/06/30 06:00', 'DCOM': '20120228', 'JT': 'European journal of drug metabolism and pharmacokinetics', 'LR': '20141120', 'PG': '249-56', 'TI': 'Inhibitory effects of wogonin on catalytic activity of cytochrome P450 enzyme in; human liver microsomes.', 'RN': '0 (Cytochrome P-450 CYP1A2 Inhibitors); 0 (Cytochrome P-450 Enzyme Inhibitors); 0 (Enzyme Inhibitors); 0 (Flavanones); 632-85-9 (wogonin); 9035-51-2 (Cytochrome P-450 Enzyme System); EC 1.14.13.- (Cytochrome P-450 CYP2C19); EC 1.14.14.1 (Aryl Hydrocarbon Hydroxylases); EC 1.14.14.1 (CYP2C19 protein, human)', 'PL': 'France', 'TA': 'Eur J Drug Metab Pharmacokinet', 'JID': '7608491', 'AB': 'Wogonin, derived from the root of Scutellaria baicalensis, is a popular herb for; its anticancer, anti-inflammatory, neuroprotective and anti-convulsant effects.; The purpose of this study was to investigate the effect of wogonin on human; hepatic cytochrome P450s (CYP450s) in vitro. Isoform-specific substrate probes of; CYP1A2, 2C9, 2C19, 2D6, 2E1 and 3A4 were incubated in human liver microsomes with; or without wogonin. IC(50) and K (i) values were estimated and the types of; inhibition were determined. Wogonin was a potent, competitive inhibitor of CYP1A2; (K (i) = 0.24 muM), and a weak inhibitor of CYP2C19 (IC(50) = 101.10 muM), but; was not able to inhibit CYP2C9, CYP2D6, CYP2E1 and CYP3A4 (IC(50) > 200 muM).; Wogonin could inhibit the activity of CYP1A2 and CYP2C19 with varying potency,; while it is a strong inhibitor of CYP1A2. These findings suggested that it was; necessary to study the potential pharmacokinetic drug interaction in vivo.', 'AD': "School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People's; Republic of China.", 'VI': '36', 'IS': '0378-7966 (Print); 0378-7966 (Linking)', 'AU': 'Li T; Li N; Guo Q; Ji H; Zhao D; Xie S; Li X; Qiu Z; Han D; Chen X; You Q', 'MHDA': '2012/03/01 06:00', 'PHST': '2011/02/27 [received]; 2011/06/08 [accepted]; 2011/06/29 [aheadofprint]', 'MH': 'Aryl Hydrocarbon Hydroxylases/antagonists & inhibitors; *Biocatalysis; Cytochrome P-450 CYP1A2 Inhibitors; Cytochrome P-450 CYP2C19; *Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System/metabolism; Drug Interactions; Enzyme Inhibitors/*pharmacology; Flavanones/*pharmacology; Humans; Microsomes, Liver/drug effects/*enzymology', 'EDAT': '2011/06/30 06:00', 'SO': 'Eur J Drug Metab Pharmacokinet. 2011 Dec;36(4):249-56. doi:', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 4700) {'LID': '10.1007/s13318-011-0050-0 [doi]', 'STAT': 'MEDLINE', 'IP': '4', 'DEP': '20110629', 'DA': '20111121', 'AID': '10.1007/s13318-011-0050-0 [doi]', 'FAU': 'Li, Tingting; Li, Ning; Guo, Qinglong; Ji, Hui; Zhao, Di; Xie, Shan; Li, Xiaonan; Qiu, Zhixia; Han, Deen; Chen, Xijing; You, Qidong', 'DP': '2011 Dec', 'OWN': 'NLM', 'PT': 'Journal Article', 'LA': 'eng', 'CRDT': '2011/06/30 06:00', 'DCOM': '20120228', 'JT': 'European journal of drug metabolism and pharmacokinetics', 'LR': '20141120', 'PG': '249-56', 'TI': 'Inhibitory effects of wogonin on catalytic activity of cytochrome P450 enzyme in; human liver microsomes.', 'RN': '0 (Cytochrome P-450 CYP1A2 Inhibitors); 0 (Cytochrome P-450 Enzyme Inhibitors); 0 (Enzyme Inhibitors); 0 (Flavanones); 632-85-9 (wogonin); 9035-51-2 (Cytochrome P-450 Enzyme System); EC 1.14.13.- (Cytochrome P-450 CYP2C19); EC 1.14.14.1 (Aryl Hydrocarbon Hydroxylases); EC 1.14.14.1 (CYP2C19 protein, human)', 'PL': 'France', 'TA': 'Eur J Drug Metab Pharmacokinet', 'JID': '7608491', 'AB': 'Wogonin, derived from the root of Scutellaria baicalensis, is a popular herb for; its anticancer, anti-inflammatory, neuroprotective and anti-convulsant effects.; The purpose of this study was to investigate the effect of wogonin on human; hepatic cytochrome P450s (CYP450s) in vitro. Isoform-specific substrate probes of; CYP1A2, 2C9, 2C19, 2D6, 2E1 and 3A4 were incubated in human liver microsomes with; or without wogonin. IC(50) and K (i) values were estimated and the types of; inhibition were determined. Wogonin was a potent, competitive inhibitor of CYP1A2; (K (i) = 0.24 muM), and a weak inhibitor of CYP2C19 (IC(50) = 101.10 muM), but; was not able to inhibit CYP2C9, CYP2D6, CYP2E1 and CYP3A4 (IC(50) > 200 muM).; Wogonin could inhibit the activity of CYP1A2 and CYP2C19 with varying potency,; while it is a strong inhibitor of CYP1A2. These findings suggested that it was; necessary to study the potential pharmacokinetic drug interaction in vivo.', 'AD': "School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People's; Republic of China.", 'VI': '36', 'IS': '0378-7966 (Print); 0378-7966 (Linking)', 'AU': 'Li T; Li N; Guo Q; Ji H; Zhao D; Xie S; Li X; Qiu Z; Han D; Chen X; You Q', 'MHDA': '2012/03/01 06:00', 'PHST': '2011/02/27 [received]; 2011/06/08 [accepted]; 2011/06/29 [aheadofprint]', 'MH': 'Aryl Hydrocarbon Hydroxylases/antagonists & inhibitors; *Biocatalysis; Cytochrome P-450 CYP1A2 Inhibitors; Cytochrome P-450 CYP2C19; *Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System/metabolism; Drug Interactions; Enzyme Inhibitors/*pharmacology; Flavanones/*pharmacology; Humans; Microsomes, Liver/drug effects/*enzymology', 'EDAT': '2011/06/30 06:00', 'SO': 'Eur J Drug Metab Pharmacokinet. 2011 Dec;36(4):249-56. doi:; 10.1007/s13318-011-0050-0. Epub 2011 Jun 29.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 4800) {'LID': '10.1016/j.jmb.2011.05.016 [doi]', 'STAT': 'MEDLINE', 'IP': '3', 'DEP': '20110517', 'JID': '2985088R', 'DA': '20110624', 'AID': 'S0022-2836(11)00551-1 [pii]; 10.1016/j.jmb.2011.05.016 [doi]', 'FAU': 'French, Jarrod B; Neau, David B; Ealick, Steven E', 'DP': '2011 Jul 15', 'GR': 'GM73220/GM/NIGMS NIH HHS/United States; P41 RR015301/RR/NCRR NIH HHS/United States; P41 RR015301-09/RR/NCRR NIH HHS/United States; R01 GM073220/GM/NIGMS NIH HHS/United States; R01 GM073220-06/GM/NIGMS NIH HHS/United States; RR-15301/RR/NCRR NIH HHS/United States', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.", 'LA': 'eng', 'CRDT': '2011/05/28 06:00', 'DCOM': '20111012', 'JT': 'Journal of molecular biology', 'LR': '20141022', 'PG': '447-60', 'TI': 'Characterization of the structure and function of Klebsiella pneumoniae allantoin; racemase.', 'RN': '0 (Bacterial Proteins); 344S277G0Z (Allantoin); 452VLY9402 (Serine); EC 5.1.- (Racemases and Epimerases); EC 5.1.99.3 (allantoin racemase); K848JZ4886 (Cysteine)', 'PL': 'England', 'TA': 'J Mol Biol', 'CI': 'Copyright (c) 2011 Elsevier Ltd. All rights reserved.', 'AB': 'The oxidative catabolism of uric acid produces 5-hydroxyisourate (HIU), which is; further degraded to (S)-allantoin by two enzymes, HIU hydrolase and; 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase. The intermediates of; the latter two reactions, HIU and 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline,; are unstable in solution and decay nonstereospecifically to allantoin. In; addition, nonenzymatic racemization of allantoin has been shown to occur at; physiological pH. Since the further breakdown of allantoin is catalyzed by; allantoinase, an enzyme that is specific for (S)-allantoin, an allantoin racemase; is necessary for complete and efficient catabolism of uric acid. In this work, we; characterize the structure and activity of allantoin racemase from Klebsiella; pneumoniae (KpHpxA). In addition to an unliganded structure solved using; selenomethionyl single-wavelength anomalous dispersion, structures of C79S/C184S; KpHpxA in complex with allantoin and with 5-acetylhydantoin are presented. These; structures reveal several important features of the active site including an; oxyanion hole and a polar binding pocket that interacts with the ureido tail of; allantoin and serves to control the orientation of the hydantoin ring. The; ability of KpHpxA to interconvert the (R)- and (S)-enantiomers of allantoin is; demonstrated, and analysis of the steady-state kinetics of KpHpxA yielded a; k(cat)/K(m) of 6.0 x 10(5) M(-1) s(-1). Mutation of either of the active-site; cysteines, Cys79 or Cys184, to serine inactivates this enzyme. The data presented; provide new insights into the activity and substrate specificity of this enzyme; and enable us to propose a mechanism for catalysis that is consistent with the; two-base mechanism observed in other members of the aspartate/glutamate family.', 'AD': 'Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY; 14853, USA.', 'VI': '410', 'IS': '1089-8638 (Electronic); 0022-2836 (Linking)', 'PMC': 'PMC3129624', 'MID': 'NIHMS303787', 'AU': 'French JB; Neau DB; Ealick SE', 'MHDA': '2011/10/13 06:00', 'PHST': '2011/03/29 [received]; 2011/05/04 [revised]; 2011/05/10 [accepted]; 2011/05/17 [aheadofprint]', 'OID': 'NLM: NIHMS303787; NLM: PMC3129624', 'MH': 'Allantoin/chemistry/metabolism; Amino Acid Substitution; Bacterial Proteins/*chemistry/genetics/*metabolism; Binding Sites/genetics; Biocatalysis; Catalytic Domain; Crystallography, X-Ray; Cysteine/chemistry/genetics/metabolism; Humans; Kinetics; Klebsiella Infections/microbiology; Klebsiella pneumoniae/*enzymology/genetics; Models, Molecular; Mutation; Protein Multimerization; Protein Structure, Quaternary; Protein Structure, Secondary; Racemases and Epimerases/*chemistry/genetics/*metabolism; Serine/chemistry/genetics/metabolism; Stereoisomerism; Substrate Specificity', 'EDAT': '2011/05/28 06:00', 'SI': 'PDB/3QVJ; PDB/3QVK; PDB/3QVL', 'SO': 'J Mol Biol. 2011 Jul 15;410(3):447-60. doi: 10.1016/j.jmb.2011.05.016. Epub 2011', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 4800) {'LID': '10.1016/j.jmb.2011.05.016 [doi]', 'STAT': 'MEDLINE', 'IP': '3', 'DEP': '20110517', 'JID': '2985088R', 'DA': '20110624', 'AID': 'S0022-2836(11)00551-1 [pii]; 10.1016/j.jmb.2011.05.016 [doi]', 'FAU': 'French, Jarrod B; Neau, David B; Ealick, Steven E', 'DP': '2011 Jul 15', 'GR': 'GM73220/GM/NIGMS NIH HHS/United States; P41 RR015301/RR/NCRR NIH HHS/United States; P41 RR015301-09/RR/NCRR NIH HHS/United States; R01 GM073220/GM/NIGMS NIH HHS/United States; R01 GM073220-06/GM/NIGMS NIH HHS/United States; RR-15301/RR/NCRR NIH HHS/United States', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.", 'LA': 'eng', 'CRDT': '2011/05/28 06:00', 'DCOM': '20111012', 'JT': 'Journal of molecular biology', 'LR': '20141022', 'PG': '447-60', 'TI': 'Characterization of the structure and function of Klebsiella pneumoniae allantoin; racemase.', 'RN': '0 (Bacterial Proteins); 344S277G0Z (Allantoin); 452VLY9402 (Serine); EC 5.1.- (Racemases and Epimerases); EC 5.1.99.3 (allantoin racemase); K848JZ4886 (Cysteine)', 'PL': 'England', 'TA': 'J Mol Biol', 'CI': 'Copyright (c) 2011 Elsevier Ltd. All rights reserved.', 'AB': 'The oxidative catabolism of uric acid produces 5-hydroxyisourate (HIU), which is; further degraded to (S)-allantoin by two enzymes, HIU hydrolase and; 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase. The intermediates of; the latter two reactions, HIU and 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline,; are unstable in solution and decay nonstereospecifically to allantoin. In; addition, nonenzymatic racemization of allantoin has been shown to occur at; physiological pH. Since the further breakdown of allantoin is catalyzed by; allantoinase, an enzyme that is specific for (S)-allantoin, an allantoin racemase; is necessary for complete and efficient catabolism of uric acid. In this work, we; characterize the structure and activity of allantoin racemase from Klebsiella; pneumoniae (KpHpxA). In addition to an unliganded structure solved using; selenomethionyl single-wavelength anomalous dispersion, structures of C79S/C184S; KpHpxA in complex with allantoin and with 5-acetylhydantoin are presented. These; structures reveal several important features of the active site including an; oxyanion hole and a polar binding pocket that interacts with the ureido tail of; allantoin and serves to control the orientation of the hydantoin ring. The; ability of KpHpxA to interconvert the (R)- and (S)-enantiomers of allantoin is; demonstrated, and analysis of the steady-state kinetics of KpHpxA yielded a; k(cat)/K(m) of 6.0 x 10(5) M(-1) s(-1). Mutation of either of the active-site; cysteines, Cys79 or Cys184, to serine inactivates this enzyme. The data presented; provide new insights into the activity and substrate specificity of this enzyme; and enable us to propose a mechanism for catalysis that is consistent with the; two-base mechanism observed in other members of the aspartate/glutamate family.', 'AD': 'Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY; 14853, USA.', 'VI': '410', 'IS': '1089-8638 (Electronic); 0022-2836 (Linking)', 'PMC': 'PMC3129624', 'MID': 'NIHMS303787', 'AU': 'French JB; Neau DB; Ealick SE', 'MHDA': '2011/10/13 06:00', 'PHST': '2011/03/29 [received]; 2011/05/04 [revised]; 2011/05/10 [accepted]; 2011/05/17 [aheadofprint]', 'OID': 'NLM: NIHMS303787; NLM: PMC3129624', 'MH': 'Allantoin/chemistry/metabolism; Amino Acid Substitution; Bacterial Proteins/*chemistry/genetics/*metabolism; Binding Sites/genetics; Biocatalysis; Catalytic Domain; Crystallography, X-Ray; Cysteine/chemistry/genetics/metabolism; Humans; Kinetics; Klebsiella Infections/microbiology; Klebsiella pneumoniae/*enzymology/genetics; Models, Molecular; Mutation; Protein Multimerization; Protein Structure, Quaternary; Protein Structure, Secondary; Racemases and Epimerases/*chemistry/genetics/*metabolism; Serine/chemistry/genetics/metabolism; Stereoisomerism; Substrate Specificity', 'EDAT': '2011/05/28 06:00', 'SI': 'PDB/3QVJ; PDB/3QVK; PDB/3QVL', 'SO': 'J Mol Biol. 2011 Jul 15;410(3):447-60. doi: 10.1016/j.jmb.2011.05.016. Epub 2011; May 17.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 4900) {'LID': '10.1007/s10295-011-0971-2 [doi]', 'STAT': 'MEDLINE', 'IP': '11', 'DEP': '20110429', 'DA': '20111021', 'AID': '10.1007/s10295-011-0971-2 [doi]', 'FAU': 'Jordan, Douglas B; Wagschal, Kurt; Fan, Zhanmin; Yuan, Ling; Braker, Jay D; Heng, Chamroeun', 'DP': '2011 Nov', 'OWN': 'NLM', 'PT': 'Journal Article', 'LA': 'eng', 'CRDT': '2011/04/30 06:00', 'DCOM': '20120921', 'JT': 'Journal of industrial microbiology & biotechnology', 'LR': '20131121', 'PG': '1821-35', 'TI': 'Engineering lower inhibitor affinities in beta-D-xylosidase of Selenomonas; ruminantium by site-directed mutagenesis of Trp145.', 'RN': '8DUH1N11BX (Tryptophan); A1TA934AKO (Xylose); EC 3.2.1.- (Glycoside Hydrolases); EC 3.2.1.- (Xylosidases); EC 3.2.1.37 (exo-1,4-beta-D-xylosidase); EC 3.2.1.55 (alpha-N-arabinofuranosidase); IY9XDZ35W2 (Glucose)', 'PL': 'England', 'TA': 'J Ind Microbiol Biotechnol', 'JID': '9705544', 'AB': 'beta-D-Xylosidase/alpha-L-arabinofuranosidase from Selenomonas ruminantium is the; most active enzyme reported for catalyzing hydrolysis of; 1,4-beta-D-xylooligosaccharides to D-xylose. One property that could use; improvement is its relatively high affinities for D-glucose and D-xylose (K (i) ~; 10 mM), which would impede its performance as a catalyst in the saccharification; of lignocellulosic biomass for the production of biofuels and other value-added; products. Previously, we discovered that the W145G variant expresses; K(i)(D-glucose) and K(i)(D-xylose) twofold and threefold those of the wild-type; enzyme. However, in comparison to the wild type, the variant expresses 11% lower; k(cat)(D-xylobiose) and much lower stabilities to temperature and pH. Here, we; performed saturation mutagenesis of W145 and discovered that the variants express; K (i) values that are 1.5-2.7-fold (D-glucose) and 1.9-4.6-fold (D-xylose) those; of wild-type enzyme. W145F, W145L, and W145Y express good stability and,; respectively, 11, 6, and 1% higher k(cat)(D-xylobiose) than that of the wild; type. At 0.1 M D-xylobiose and 0.1 M D-xylose, kinetic parameters indicate that; W145F, W145L, and W145Y catalytic activities are respectively 46, 71, and 48%; greater than that of the wild-type enzyme.', 'AD': 'National Center for Agricultural Utilization Research, USDA Agricultural Research; Service, 1815 N. University Street, Peoria, IL 61604, USA.; [email protected]', 'VI': '38', 'IS': '1476-5535 (Electronic); 1367-5435 (Linking)', 'AU': 'Jordan DB; Wagschal K; Fan Z; Yuan L; Braker JD; Heng C', 'MHDA': '2012/09/22 06:00', 'PHST': '2011/02/28 [received]; 2011/04/01 [accepted]; 2011/04/29 [aheadofprint]', 'MH': 'Biocatalysis; Enzyme Stability; Glucose/metabolism; Glycoside Hydrolases/metabolism; Hydrolysis; Kinetics; Mutagenesis, Site-Directed; Selenomonas/*enzymology; Tryptophan/genetics; Xylose/metabolism; Xylosidases/chemistry/*genetics/*metabolism', 'EDAT': '2011/04/30 06:00', 'SO': 'J Ind Microbiol Biotechnol. 2011 Nov;38(11):1821-35. doi:', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 4900) {'LID': '10.1007/s10295-011-0971-2 [doi]', 'STAT': 'MEDLINE', 'IP': '11', 'DEP': '20110429', 'DA': '20111021', 'AID': '10.1007/s10295-011-0971-2 [doi]', 'FAU': 'Jordan, Douglas B; Wagschal, Kurt; Fan, Zhanmin; Yuan, Ling; Braker, Jay D; Heng, Chamroeun', 'DP': '2011 Nov', 'OWN': 'NLM', 'PT': 'Journal Article', 'LA': 'eng', 'CRDT': '2011/04/30 06:00', 'DCOM': '20120921', 'JT': 'Journal of industrial microbiology & biotechnology', 'LR': '20131121', 'PG': '1821-35', 'TI': 'Engineering lower inhibitor affinities in beta-D-xylosidase of Selenomonas; ruminantium by site-directed mutagenesis of Trp145.', 'RN': '8DUH1N11BX (Tryptophan); A1TA934AKO (Xylose); EC 3.2.1.- (Glycoside Hydrolases); EC 3.2.1.- (Xylosidases); EC 3.2.1.37 (exo-1,4-beta-D-xylosidase); EC 3.2.1.55 (alpha-N-arabinofuranosidase); IY9XDZ35W2 (Glucose)', 'PL': 'England', 'TA': 'J Ind Microbiol Biotechnol', 'JID': '9705544', 'AB': 'beta-D-Xylosidase/alpha-L-arabinofuranosidase from Selenomonas ruminantium is the; most active enzyme reported for catalyzing hydrolysis of; 1,4-beta-D-xylooligosaccharides to D-xylose. One property that could use; improvement is its relatively high affinities for D-glucose and D-xylose (K (i) ~; 10 mM), which would impede its performance as a catalyst in the saccharification; of lignocellulosic biomass for the production of biofuels and other value-added; products. Previously, we discovered that the W145G variant expresses; K(i)(D-glucose) and K(i)(D-xylose) twofold and threefold those of the wild-type; enzyme. However, in comparison to the wild type, the variant expresses 11% lower; k(cat)(D-xylobiose) and much lower stabilities to temperature and pH. Here, we; performed saturation mutagenesis of W145 and discovered that the variants express; K (i) values that are 1.5-2.7-fold (D-glucose) and 1.9-4.6-fold (D-xylose) those; of wild-type enzyme. W145F, W145L, and W145Y express good stability and,; respectively, 11, 6, and 1% higher k(cat)(D-xylobiose) than that of the wild; type. At 0.1 M D-xylobiose and 0.1 M D-xylose, kinetic parameters indicate that; W145F, W145L, and W145Y catalytic activities are respectively 46, 71, and 48%; greater than that of the wild-type enzyme.', 'AD': 'National Center for Agricultural Utilization Research, USDA Agricultural Research; Service, 1815 N. University Street, Peoria, IL 61604, USA.; [email protected]', 'VI': '38', 'IS': '1476-5535 (Electronic); 1367-5435 (Linking)', 'AU': 'Jordan DB; Wagschal K; Fan Z; Yuan L; Braker JD; Heng C', 'MHDA': '2012/09/22 06:00', 'PHST': '2011/02/28 [received]; 2011/04/01 [accepted]; 2011/04/29 [aheadofprint]', 'MH': 'Biocatalysis; Enzyme Stability; Glucose/metabolism; Glycoside Hydrolases/metabolism; Hydrolysis; Kinetics; Mutagenesis, Site-Directed; Selenomonas/*enzymology; Tryptophan/genetics; Xylose/metabolism; Xylosidases/chemistry/*genetics/*metabolism', 'EDAT': '2011/04/30 06:00', 'SO': 'J Ind Microbiol Biotechnol. 2011 Nov;38(11):1821-35. doi:; 10.1007/s10295-011-0971-2. Epub 2011 Apr 29.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 5000) {'LID': '10.1021/ol200447h [doi]', 'STAT': 'MEDLINE', 'IP': '9', 'DEP': '20110401', 'DA': '20110429', 'AID': '10.1021/ol200447h [doi]', 'FAU': 'Mo, Xuhua; Huang, Hongbo; Ma, Junying; Wang, Zhongwen; Wang, Bo; Zhang, Si; Zhang, Changsheng; Ju, Jianhua', 'DP': '2011 May 6', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2011/04/05 06:00', 'DCOM': '20110729', 'JT': 'Organic letters', 'PG': '2212-5', 'TI': 'Characterization of TrdL as a 10-hydroxy dehydrogenase and generation of new; analogues from a tirandamycin biosynthetic pathway.', 'RN': '0 (Aminoglycosides); EC 1.- (Oxidoreductases)', 'PL': 'United States', 'TA': 'Org Lett', 'JID': '100890393', 'AB': 'TrdL, encoding a flavin-dependent oxidoreductase in the tirandamycin gene; cluster, was inactivated to afford a DeltatrdL mutant, the fermentation of which; yielded a new intermediate, tirandamycin E (5), and an additional early; intermediate, tirandamycin F (6), if XAD-16 resin was introduced. TrdL was; overexpressed in E. coli, and the protein was shown to efficiently catalyze the; transformations from 5 to tirandamycin A (1) and from 6 to tirandamycin D (4),; demonstrating its function as a 10-hydroxy dehydrogenase.', 'AD': 'CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, RNAM Center; for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy; of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.', 'VI': '13', 'IS': '1523-7052 (Electronic); 1523-7052 (Linking)', 'AU': 'Mo X; Huang H; Ma J; Wang Z; Wang B; Zhang S; Zhang C; Ju J', 'MHDA': '2011/07/30 06:00', 'PHST': '2011/04/01 [aheadofprint]', 'MH': 'Aminoglycosides/*chemical synthesis/metabolism; Biocatalysis; Molecular Structure; Mutation; Oxidoreductases/genetics/*metabolism; Streptomyces/*enzymology/genetics; Substrate Specificity', 'EDAT': '2011/04/05 06:00', 'SO': 'Org Lett. 2011 May 6;13(9):2212-5. doi: 10.1021/ol200447h. Epub 2011 Apr 1.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 5100) {'LID': '10.1016/j.biortech.2011.02.026 [doi]', 'STAT': 'MEDLINE', 'IP': '10', 'DEP': '20110303', 'JID': '9889523', 'DA': '20110422', 'AID': 'S0960-8524(11)00211-2 [pii]; 10.1016/j.biortech.2011.02.026 [doi]', 'FAU': 'Garcia-Garcia, Maria Inmaculada; Sola-Carvajal, Agustin; Sanchez-Carron, Guiomar; Garcia-Carmona, Francisco; Sanchez-Ferrer, Alvaro', 'DP': '2011 May', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2011/03/08 06:00', 'DCOM': '20110823', 'JT': 'Bioresource technology', 'LR': '20131121', 'PG': '6186-91', 'TI': 'New stabilized FastPrep-CLEAs for sialic acid synthesis.', 'RN': '0 (Enzymes); GZP2782OP0 (N-Acetylneuraminic Acid)', 'PL': 'England', 'TA': 'Bioresour Technol', 'CI': 'Copyright (c) 2011 Elsevier Ltd. All rights reserved.', 'AB': 'N-acetyl-D-neuraminic acid aldolase, a key enzyme in the biotechnological; production of N-acetyl-D-neuraminic acid (sialic acid) from; N-acetyl-D-mannosamine and pyruvate, was immobilized as cross-linked enzyme; aggregates (CLEAs) by precipitation with 90% ammonium sulfate and crosslinking; with 1% glutaraldehyde. Because dispersion in a reciprocating disruptor; (FastPrep) was only able to recover 40% of the activity, improved CLEAs were then; prepared by co-aggregation of the enzyme with 10mg/mL bovine serum albumin; followed by a sodium borohydride treatment and final disruption by FastPrep; (FastPrep-CLEAs). This produced a twofold increase in activity up to 86%, which; is a 30% more than that reported for this aldolase in cross-linked inclusion; bodies (CLIBs). In addition, these FastPrep-CLEAs presented remarkable; biotechnological features for Neu5Ac synthesis, including, good activity and; stability at alkaline pHs, a high K(M) for ManNAc (lower for pyruvate) and good; operational stability. These results reinforce the practicability of using; FastPrep-CLEAs in biocatalysis, thus reducing production costs and favoring; reusability.', 'AD': 'Department of Biochemistry and Molecular Biology-A, Faculty of Biology,; University of Murcia, Campus Espinardo, E-30100 Murcia, Spain.', 'VI': '102', 'IS': '1873-2976 (Electronic); 0960-8524 (Linking)', 'AU': 'Garcia-Garcia MI; Sola-Carvajal A; Sanchez-Carron G; Garcia-Carmona F; Sanchez-Ferrer A', 'MHDA': '2011/08/24 06:00', 'PHST': '2010/12/22 [received]; 2011/02/04 [revised]; 2011/02/05 [accepted]; 2011/03/03 [aheadofprint]', 'MH': 'Biotechnology; Enzymes/*metabolism; N-Acetylneuraminic Acid/*chemical synthesis', 'EDAT': '2011/03/08 06:00', 'SO': 'Bioresour Technol. 2011 May;102(10):6186-91. doi: 10.1016/j.biortech.2011.02.026.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 5100) {'LID': '10.1016/j.biortech.2011.02.026 [doi]', 'STAT': 'MEDLINE', 'IP': '10', 'DEP': '20110303', 'JID': '9889523', 'DA': '20110422', 'AID': 'S0960-8524(11)00211-2 [pii]; 10.1016/j.biortech.2011.02.026 [doi]', 'FAU': 'Garcia-Garcia, Maria Inmaculada; Sola-Carvajal, Agustin; Sanchez-Carron, Guiomar; Garcia-Carmona, Francisco; Sanchez-Ferrer, Alvaro', 'DP': '2011 May', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2011/03/08 06:00', 'DCOM': '20110823', 'JT': 'Bioresource technology', 'LR': '20131121', 'PG': '6186-91', 'TI': 'New stabilized FastPrep-CLEAs for sialic acid synthesis.', 'RN': '0 (Enzymes); GZP2782OP0 (N-Acetylneuraminic Acid)', 'PL': 'England', 'TA': 'Bioresour Technol', 'CI': 'Copyright (c) 2011 Elsevier Ltd. All rights reserved.', 'AB': 'N-acetyl-D-neuraminic acid aldolase, a key enzyme in the biotechnological; production of N-acetyl-D-neuraminic acid (sialic acid) from; N-acetyl-D-mannosamine and pyruvate, was immobilized as cross-linked enzyme; aggregates (CLEAs) by precipitation with 90% ammonium sulfate and crosslinking; with 1% glutaraldehyde. Because dispersion in a reciprocating disruptor; (FastPrep) was only able to recover 40% of the activity, improved CLEAs were then; prepared by co-aggregation of the enzyme with 10mg/mL bovine serum albumin; followed by a sodium borohydride treatment and final disruption by FastPrep; (FastPrep-CLEAs). This produced a twofold increase in activity up to 86%, which; is a 30% more than that reported for this aldolase in cross-linked inclusion; bodies (CLIBs). In addition, these FastPrep-CLEAs presented remarkable; biotechnological features for Neu5Ac synthesis, including, good activity and; stability at alkaline pHs, a high K(M) for ManNAc (lower for pyruvate) and good; operational stability. These results reinforce the practicability of using; FastPrep-CLEAs in biocatalysis, thus reducing production costs and favoring; reusability.', 'AD': 'Department of Biochemistry and Molecular Biology-A, Faculty of Biology,; University of Murcia, Campus Espinardo, E-30100 Murcia, Spain.', 'VI': '102', 'IS': '1873-2976 (Electronic); 0960-8524 (Linking)', 'AU': 'Garcia-Garcia MI; Sola-Carvajal A; Sanchez-Carron G; Garcia-Carmona F; Sanchez-Ferrer A', 'MHDA': '2011/08/24 06:00', 'PHST': '2010/12/22 [received]; 2011/02/04 [revised]; 2011/02/05 [accepted]; 2011/03/03 [aheadofprint]', 'MH': 'Biotechnology; Enzymes/*metabolism; N-Acetylneuraminic Acid/*chemical synthesis', 'EDAT': '2011/03/08 06:00', 'SO': 'Bioresour Technol. 2011 May;102(10):6186-91. doi: 10.1016/j.biortech.2011.02.026.; Epub 2011 Mar 3.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 5200) {'LID': '10.1016/j.chemphyslip.2011.02.001 [doi]', 'STAT': 'MEDLINE', 'IP': '3', 'DEP': '20110218', 'JID': '0067206', 'DA': '20110315', 'AID': 'S0009-3084(11)00019-3 [pii]; 10.1016/j.chemphyslip.2011.02.001 [doi]', 'FAU': 'Kaki, Shiva Shanker; Adlercreutz, Patrick', 'DP': '2011 Mar', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2011/02/15 06:00', 'DCOM': '20110804', 'JT': 'Chemistry and physics of lipids', 'PG': '246-50', 'TI': 'Lipase-catalyzed synthesis and characterization of 1-butanoyl-2-palmitoyl; phosphatidylcholine, a potential lipidic prodrug of butyric acid.', 'RN': '0 (1-butanoyl-2-palmitoyl phosphatidylcholine); 0 (Enzymes, Immobilized); 0 (Phosphatidylcholines); 0 (Prodrugs); 107-92-6 (Butyric Acid); 2644-64-6 (1,2-Dipalmitoylphosphatidylcholine); EC 3.1.1.3 (Lipase)', 'PL': 'Ireland', 'TA': 'Chem Phys Lipids', 'CI': 'Copyright (c) 2011 Elsevier Ireland Ltd. All rights reserved.', 'AB': '1-Butanoyl-2-palmitoyl phosphatidylcholine was synthesized from; dipalmitoylphosphatidylcholine (DPPC) and butyric acid using a lipase catalyzed; transesterification in toluene at controlled water activity. A high fatty acid; concentration and low water activity were essential for the enzymatic synthesis.; The transesterification resulted in 97.3% incorporation of butyric acid in the; sn-1 position with negligible incorporation in the sn-2-position. In mixtures; with water, a liquid crystalline phase was formed in equilibrium with a micellar; phase. The prepared phospholipid derivative could find applications as a lipidic; anticancer prodrug of butyric acid.', 'AD': 'Dept. of Biotechnology, Lund University, Sweden.', 'VI': '164', 'IS': '1873-2941 (Electronic); 0009-3084 (Linking)', 'AU': 'Kaki SS; Adlercreutz P', 'MHDA': '2011/08/05 06:00', 'PHST': '2010/11/30 [received]; 2011/02/01 [revised]; 2011/02/02 [accepted]; 2011/02/18 [aheadofprint]', 'MH': '1,2-Dipalmitoylphosphatidylcholine/chemistry/metabolism; *Biocatalysis; Butyric Acid/chemistry/*metabolism; Enzymes, Immobilized/chemistry/metabolism; Lipase/*metabolism; Phosphatidylcholines/*biosynthesis/chemistry; Prodrugs/chemistry/*metabolism', 'EDAT': '2011/02/15 06:00', 'SO': 'Chem Phys Lipids. 2011 Mar;164(3):246-50. doi: 10.1016/j.chemphyslip.2011.02.001.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 5200) {'LID': '10.1016/j.chemphyslip.2011.02.001 [doi]', 'STAT': 'MEDLINE', 'IP': '3', 'DEP': '20110218', 'JID': '0067206', 'DA': '20110315', 'AID': 'S0009-3084(11)00019-3 [pii]; 10.1016/j.chemphyslip.2011.02.001 [doi]', 'FAU': 'Kaki, Shiva Shanker; Adlercreutz, Patrick', 'DP': '2011 Mar', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2011/02/15 06:00', 'DCOM': '20110804', 'JT': 'Chemistry and physics of lipids', 'PG': '246-50', 'TI': 'Lipase-catalyzed synthesis and characterization of 1-butanoyl-2-palmitoyl; phosphatidylcholine, a potential lipidic prodrug of butyric acid.', 'RN': '0 (1-butanoyl-2-palmitoyl phosphatidylcholine); 0 (Enzymes, Immobilized); 0 (Phosphatidylcholines); 0 (Prodrugs); 107-92-6 (Butyric Acid); 2644-64-6 (1,2-Dipalmitoylphosphatidylcholine); EC 3.1.1.3 (Lipase)', 'PL': 'Ireland', 'TA': 'Chem Phys Lipids', 'CI': 'Copyright (c) 2011 Elsevier Ireland Ltd. All rights reserved.', 'AB': '1-Butanoyl-2-palmitoyl phosphatidylcholine was synthesized from; dipalmitoylphosphatidylcholine (DPPC) and butyric acid using a lipase catalyzed; transesterification in toluene at controlled water activity. A high fatty acid; concentration and low water activity were essential for the enzymatic synthesis.; The transesterification resulted in 97.3% incorporation of butyric acid in the; sn-1 position with negligible incorporation in the sn-2-position. In mixtures; with water, a liquid crystalline phase was formed in equilibrium with a micellar; phase. The prepared phospholipid derivative could find applications as a lipidic; anticancer prodrug of butyric acid.', 'AD': 'Dept. of Biotechnology, Lund University, Sweden.', 'VI': '164', 'IS': '1873-2941 (Electronic); 0009-3084 (Linking)', 'AU': 'Kaki SS; Adlercreutz P', 'MHDA': '2011/08/05 06:00', 'PHST': '2010/11/30 [received]; 2011/02/01 [revised]; 2011/02/02 [accepted]; 2011/02/18 [aheadofprint]', 'MH': '1,2-Dipalmitoylphosphatidylcholine/chemistry/metabolism; *Biocatalysis; Butyric Acid/chemistry/*metabolism; Enzymes, Immobilized/chemistry/metabolism; Lipase/*metabolism; Phosphatidylcholines/*biosynthesis/chemistry; Prodrugs/chemistry/*metabolism', 'EDAT': '2011/02/15 06:00', 'SO': 'Chem Phys Lipids. 2011 Mar;164(3):246-50. doi: 10.1016/j.chemphyslip.2011.02.001.; Epub 2011 Feb 18.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 5300) {'LID': '10.1021/ja110733q [doi]', 'STAT': 'MEDLINE', 'IP': '6', 'DEP': '20110118', 'DA': '20120405', 'AID': '10.1021/ja110733q [doi]', 'FAU': 'Xu, Guogang; Kiefel, Milton J; Wilson, Jennifer C; Andrew, Peter W; Oggioni, Marco R; Taylor, Garry L', 'DP': '2011 Feb 16', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2011/01/20 06:00', 'DCOM': '20120618', 'JT': 'Journal of the American Chemical Society', 'PG': '1718-21', 'TI': 'Three Streptococcus pneumoniae sialidases: three different products.', 'RN': 'EC 3.2.1.18 (Neuraminidase)', 'PL': 'United States', 'TA': 'J Am Chem Soc', 'JID': '7503056', 'AB': 'Streptococcus penumoniae is a major human pathogen responsible for respiratory; tract infections, septicemia, and meningitis and continues to produce numerous; cases of disease with relatively high mortalities. S. pneumoniae encodes up to; three sialidases, NanA, NanB, and NanC, that have been implicated in pathogenesis; and are potential drug targets. NanA has been shown to be a promiscuous; sialidase, hydrolyzing the removal of Neu5Ac from a variety of glycoconjugates; with retention of configuration at the anomeric center, as we confirm by NMR.; NanB is an intramolecular trans-sialidase producing 2,7-anhydro-Neu5Ac; selectively from alpha2,3-sialosides. Here, we show that the first product of; NanC is 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en) that can be; slowly hydrated by the enzyme to Neu5Ac. We propose that the three pneumococcal; sialidases share a common catalytic mechanism up to the final product formation; step, and speculate on the roles of the enzymes in the lifecycle of the; bacterium.', 'AD': 'Biomedical Sciences Research Complex, University of St. Andrews, KY16 9ST, UK.', 'VI': '133', 'IS': '1520-5126 (Electronic); 0002-7863 (Linking)', 'AU': 'Xu G; Kiefel MJ; Wilson JC; Andrew PW; Oggioni MR; Taylor GL', 'MHDA': '2012/06/19 06:00', 'PHST': '2011/01/18 [aheadofprint]', 'MH': 'Biocatalysis; Catalytic Domain; Kinetics; Models, Molecular; Neuraminidase/chemistry/*metabolism; Streptococcus pneumoniae/*enzymology', 'EDAT': '2011/01/20 06:00', 'SO': 'J Am Chem Soc. 2011 Feb 16;133(6):1718-21. doi: 10.1021/ja110733q. Epub 2011 Jan', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 5300) {'LID': '10.1021/ja110733q [doi]', 'STAT': 'MEDLINE', 'IP': '6', 'DEP': '20110118', 'DA': '20120405', 'AID': '10.1021/ja110733q [doi]', 'FAU': 'Xu, Guogang; Kiefel, Milton J; Wilson, Jennifer C; Andrew, Peter W; Oggioni, Marco R; Taylor, Garry L', 'DP': '2011 Feb 16', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2011/01/20 06:00', 'DCOM': '20120618', 'JT': 'Journal of the American Chemical Society', 'PG': '1718-21', 'TI': 'Three Streptococcus pneumoniae sialidases: three different products.', 'RN': 'EC 3.2.1.18 (Neuraminidase)', 'PL': 'United States', 'TA': 'J Am Chem Soc', 'JID': '7503056', 'AB': 'Streptococcus penumoniae is a major human pathogen responsible for respiratory; tract infections, septicemia, and meningitis and continues to produce numerous; cases of disease with relatively high mortalities. S. pneumoniae encodes up to; three sialidases, NanA, NanB, and NanC, that have been implicated in pathogenesis; and are potential drug targets. NanA has been shown to be a promiscuous; sialidase, hydrolyzing the removal of Neu5Ac from a variety of glycoconjugates; with retention of configuration at the anomeric center, as we confirm by NMR.; NanB is an intramolecular trans-sialidase producing 2,7-anhydro-Neu5Ac; selectively from alpha2,3-sialosides. Here, we show that the first product of; NanC is 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en) that can be; slowly hydrated by the enzyme to Neu5Ac. We propose that the three pneumococcal; sialidases share a common catalytic mechanism up to the final product formation; step, and speculate on the roles of the enzymes in the lifecycle of the; bacterium.', 'AD': 'Biomedical Sciences Research Complex, University of St. Andrews, KY16 9ST, UK.', 'VI': '133', 'IS': '1520-5126 (Electronic); 0002-7863 (Linking)', 'AU': 'Xu G; Kiefel MJ; Wilson JC; Andrew PW; Oggioni MR; Taylor GL', 'MHDA': '2012/06/19 06:00', 'PHST': '2011/01/18 [aheadofprint]', 'MH': 'Biocatalysis; Catalytic Domain; Kinetics; Models, Molecular; Neuraminidase/chemistry/*metabolism; Streptococcus pneumoniae/*enzymology', 'EDAT': '2011/01/20 06:00', 'SO': 'J Am Chem Soc. 2011 Feb 16;133(6):1718-21. doi: 10.1021/ja110733q. Epub 2011 Jan; 18.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 5400) {'LID': '10.1371/journal.pone.0014165 [doi]', 'STAT': 'MEDLINE', 'IP': '11', 'DEP': '20101130', 'DA': '20101214', 'AID': '10.1371/journal.pone.0014165 [doi]', 'FAU': 'Pemble, Charles W 4th; Mehta, Perdeep K; Mehra, Smriti; Li, Zhenmei; Nourse, Amanda; Lee, Richard E; White, Stephen W', 'DP': '2010', 'GR': 'AI070721/AI/NIAID NIH HHS/United States; CA21765/CA/NCI NIH HHS/United States', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.", 'LA': 'eng', 'CRDT': '2010/12/15 06:00', 'DCOM': '20110427', 'JT': 'PloS one', 'LR': '20140821', 'PG': 'e14165', 'TI': 'Crystal structure of the 6-hydroxymethyl-7,8-dihydropterin; pyrophosphokinase*dihydropteroate synthase bifunctional enzyme from Francisella; tularensis.', 'RN': '0 (6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase-7,8-dihydropteroate; synthase); 0 (Bacterial Proteins); 0 (Enzyme Inhibitors); 0 (Multienzyme Complexes); EC 2.5.1.15 (Dihydropteroate Synthase); EC 2.7.6.- (Diphosphotransferases); EC 2.7.6.3 (2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase)', 'PL': 'United States', 'TA': 'PLoS One', 'JID': '101285081', 'AB': 'The 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) and; dihydropteroate synthase (DHPS) enzymes catalyze sequential metabolic reactions; in the folate biosynthetic pathway of bacteria and lower eukaryotes. Both enzymes; represent validated targets for the development of novel anti-microbial; therapies. We report herein that the genes which encode FtHPPK and FtDHPS from; the biowarfare agent Francisella tularensis are fused into a single polypeptide.; The potential of simultaneously targeting both modules with pterin binding; inhibitors prompted us to characterize the molecular details of the; multifunctional complex. Our high resolution crystallographic analyses reveal the; structural organization between FtHPPK and FtDHPS which are tethered together by; a short linker. Additional structural analyses of substrate complexes reveal that; the active sites of each module are virtually indistinguishable from those of the; monofunctional enzymes. The fused bifunctional enzyme therefore represents an; excellent vehicle for finding inhibitors that engage the pterin binding pockets; of both modules that have entirely different architectures. To demonstrate that; this approach has the potential of producing novel two-hit inhibitors of the; folate pathway, we identify and structurally characterize a fragment-like; molecule that simultaneously engages both active sites. Our study provides a; molecular framework to study the enzyme mechanisms of HPPK and DHPS, and to; design novel and much needed therapeutic compounds to treat infectious diseases.', 'AD': "Department of Structural Biology, St. Jude Children's Research Hospital, and; Department of Molecular Sciences, University of Tennessee Health Science Center,; Memphis, Tennessee, United States of America.", 'VI': '5', 'IS': '1932-6203 (Electronic); 1932-6203 (Linking)', 'PMC': 'PMC2994781', 'AU': 'Pemble CW 4th; Mehta PK; Mehra S; Li Z; Nourse A; Lee RE; White SW', 'MHDA': '2011/04/28 06:00', 'PHST': '2010/07/22 [received]; 2010/11/09 [accepted]; 2010/11/30 [epublish]', 'OID': 'NLM: PMC2994781', 'MH': 'Amino Acid Sequence; Bacterial Proteins/chemistry/genetics; Biocatalysis; Catalytic Domain; Crystallography, X-Ray; Dihydropteroate Synthase/*chemistry/genetics/metabolism; Diphosphotransferases/*chemistry/genetics/metabolism; Enzyme Inhibitors/chemistry/metabolism; Francisella tularensis/*enzymology; Models, Molecular; Molecular Sequence Data; Molecular Structure; Multienzyme Complexes/*chemistry/genetics/metabolism; Protein Binding; Protein Folding; Protein Structure, Secondary; Protein Structure, Tertiary; Sequence Homology, Amino Acid; Substrate Specificity', 'EDAT': '2010/12/15 06:00', 'SO': 'PLoS One. 2010 Nov 30;5(11):e14165. doi: 10.1371/journal.pone.0014165.', 'SB': 'IM', 'PST': 'epublish'} () ('Stored article number', 5500) {'LID': '10.1016/j.bbapap.2010.10.012 [doi]', 'STAT': 'MEDLINE', 'IP': '8', 'DEP': '20101106', 'JID': '0217513', 'DA': '20110613', 'AID': 'S1570-9639(10)00286-4 [pii]; 10.1016/j.bbapap.2010.10.012 [doi]', 'FAU': 'Kleckner, Ian R; Foster, Mark P', 'DP': '2011 Aug', 'GR': 'R01 GM067807/GM/NIGMS NIH HHS/United States; R01 GM067807-01A1/GM/NIGMS NIH HHS/United States; R01 GM077234/GM/NIGMS NIH HHS/United States; R01 GM077234-01A2/GM/NIGMS NIH HHS/United States', 'OWN': 'NLM', 'PT': 'Journal Article; Review', 'LA': 'eng', 'CRDT': '2010/11/10 06:00', 'DCOM': '20110805', 'JT': 'Biochimica et biophysica acta', 'LR': '20140917', 'PG': '942-68', 'TI': 'An introduction to NMR-based approaches for measuring protein dynamics.', 'RN': '0 (Proteins)', 'PL': 'Netherlands', 'TA': 'Biochim Biophys Acta', 'CI': 'Copyright (c) 2010 Elsevier B.V. All rights reserved.', 'AB': 'Proteins are inherently flexible at ambient temperature. At equilibrium, they are; characterized by a set of conformations that undergo continuous exchange within a; hierarchy of spatial and temporal scales ranging from nanometers to micrometers; and femtoseconds to hours. Dynamic properties of proteins are essential for; describing the structural bases of their biological functions including; catalysis, binding, regulation and cellular structure. Nuclear magnetic resonance; (NMR) spectroscopy represents a powerful technique for measuring these essential; features of proteins. Here we provide an introduction to NMR-based approaches for; studying protein dynamics, highlighting eight distinct methods with recent; examples, contextualized within a common experimental and analytical framework.; The selected methods are (1) Real-time NMR, (2) Exchange spectroscopy, (3); Lineshape analysis, (4) CPMG relaxation dispersion, (5) Rotating frame relaxation; dispersion, (6) Nuclear spin relaxation, (7) Residual dipolar coupling, (8); Paramagnetic relaxation enhancement. This article is part of a Special Issue; entitled: Protein Dynamics: Experimental and Computational Approaches.', 'AD': 'The Ohio State University Biophysics Program, 484 West 12th Ave Room 776,; Columbus, OH 43210, USA.', 'VI': '1814', 'IS': '0006-3002 (Print); 0006-3002 (Linking)', 'PMC': 'PMC3061256', 'MID': 'NIHMS251865', 'AU': 'Kleckner IR; Foster MP', 'MHDA': '2011/08/06 06:00', 'PHST': '2010/08/10 [received]; 2010/10/27 [revised]; 2010/10/29 [accepted]; 2010/11/06 [aheadofprint]', 'OID': 'NLM: NIHMS251865; NLM: PMC3061256', 'MH': 'Biocatalysis; Nuclear Magnetic Resonance, Biomolecular/*methods; Proteins/*chemistry', 'EDAT': '2010/11/10 06:00', 'SO': 'Biochim Biophys Acta. 2011 Aug;1814(8):942-68. doi: 10.1016/j.bbapap.2010.10.012.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 5500) {'LID': '10.1016/j.bbapap.2010.10.012 [doi]', 'STAT': 'MEDLINE', 'IP': '8', 'DEP': '20101106', 'JID': '0217513', 'DA': '20110613', 'AID': 'S1570-9639(10)00286-4 [pii]; 10.1016/j.bbapap.2010.10.012 [doi]', 'FAU': 'Kleckner, Ian R; Foster, Mark P', 'DP': '2011 Aug', 'GR': 'R01 GM067807/GM/NIGMS NIH HHS/United States; R01 GM067807-01A1/GM/NIGMS NIH HHS/United States; R01 GM077234/GM/NIGMS NIH HHS/United States; R01 GM077234-01A2/GM/NIGMS NIH HHS/United States', 'OWN': 'NLM', 'PT': 'Journal Article; Review', 'LA': 'eng', 'CRDT': '2010/11/10 06:00', 'DCOM': '20110805', 'JT': 'Biochimica et biophysica acta', 'LR': '20140917', 'PG': '942-68', 'TI': 'An introduction to NMR-based approaches for measuring protein dynamics.', 'RN': '0 (Proteins)', 'PL': 'Netherlands', 'TA': 'Biochim Biophys Acta', 'CI': 'Copyright (c) 2010 Elsevier B.V. All rights reserved.', 'AB': 'Proteins are inherently flexible at ambient temperature. At equilibrium, they are; characterized by a set of conformations that undergo continuous exchange within a; hierarchy of spatial and temporal scales ranging from nanometers to micrometers; and femtoseconds to hours. Dynamic properties of proteins are essential for; describing the structural bases of their biological functions including; catalysis, binding, regulation and cellular structure. Nuclear magnetic resonance; (NMR) spectroscopy represents a powerful technique for measuring these essential; features of proteins. Here we provide an introduction to NMR-based approaches for; studying protein dynamics, highlighting eight distinct methods with recent; examples, contextualized within a common experimental and analytical framework.; The selected methods are (1) Real-time NMR, (2) Exchange spectroscopy, (3); Lineshape analysis, (4) CPMG relaxation dispersion, (5) Rotating frame relaxation; dispersion, (6) Nuclear spin relaxation, (7) Residual dipolar coupling, (8); Paramagnetic relaxation enhancement. This article is part of a Special Issue; entitled: Protein Dynamics: Experimental and Computational Approaches.', 'AD': 'The Ohio State University Biophysics Program, 484 West 12th Ave Room 776,; Columbus, OH 43210, USA.', 'VI': '1814', 'IS': '0006-3002 (Print); 0006-3002 (Linking)', 'PMC': 'PMC3061256', 'MID': 'NIHMS251865', 'AU': 'Kleckner IR; Foster MP', 'MHDA': '2011/08/06 06:00', 'PHST': '2010/08/10 [received]; 2010/10/27 [revised]; 2010/10/29 [accepted]; 2010/11/06 [aheadofprint]', 'OID': 'NLM: NIHMS251865; NLM: PMC3061256', 'MH': 'Biocatalysis; Nuclear Magnetic Resonance, Biomolecular/*methods; Proteins/*chemistry', 'EDAT': '2010/11/10 06:00', 'SO': 'Biochim Biophys Acta. 2011 Aug;1814(8):942-68. doi: 10.1016/j.bbapap.2010.10.012.; Epub 2010 Nov 6.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 5600) {'LID': '10.1093/nar/gkq821 [doi]', 'STAT': 'MEDLINE', 'IP': '4', 'DEP': '20101008', 'DA': '20110301', 'AID': 'gkq821 [pii]; 10.1093/nar/gkq821 [doi]', 'FAU': 'Sokolowska, Monika; Czapinska, Honorata; Bochtler, Matthias', 'DP': '2011 Mar', 'GR': 'Howard Hughes Medical Institute/United States', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2010/10/12 06:00', 'DCOM': '20110512', 'JT': 'Nucleic acids research', 'LR': '20140821', 'PG': '1554-64', 'TI': 'Hpy188I-DNA pre- and post-cleavage complexes--snapshots of the GIY-YIG nuclease; mediated catalysis.', 'RN': '9007-49-2 (DNA); EC 3.1.21.- (endodeoxyribonuclease Hpy188I); EC 3.1.21.4 (Deoxyribonucleases, Type II Site-Specific); K848JZ4886 (Cysteine)', 'PL': 'England', 'TA': 'Nucleic Acids Res', 'JID': '0411011', 'AB': "The GIY-YIG nuclease domain is present in all kingdoms of life and has diverse; functions. It is found in the eukaryotic flap endonuclease and Holliday junction; resolvase Slx1-Slx4, the prokaryotic nucleotide excision repair proteins UvrC and; Cho, and in proteins of 'selfish' genetic elements. Here we present the; structures of the ternary pre- and post-cleavage complexes of the type II GIY-YIG; restriction endonuclease Hpy188I with DNA and a surrogate or catalytic metal ion,; respectively. Our structures suggest that GIY-YIG nucleases catalyze DNA; hydrolysis by a single substitution reaction. They are consistent with a previous; proposal that a tyrosine residue (which we expect to occur in its phenolate form); acts as a general base for the attacking water molecule. In contrast to the; earlier proposal, our data identify the general base with the GIY and not the YIG; tyrosine. A conserved glutamate residue (Glu149 provided in trans in Hpy188I); anchors a single metal cation in the active site. This metal ion contacts the; phosphate proS oxygen atom and the leaving group 3'-oxygen atom, presumably to; facilitate its departure. Taken together, our data reveal striking analogy in the; absence of homology between GIY-YIG and betabetaalpha-Me nucleases.", 'AD': 'International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw,; Poland.', 'VI': '39', 'IS': '1362-4962 (Electronic); 0305-1048 (Linking)', 'PMC': 'PMC3045582', 'AU': 'Sokolowska M; Czapinska H; Bochtler M', 'MHDA': '2011/05/13 06:00', 'PHST': '2010/10/08 [aheadofprint]', 'OID': 'NLM: PMC3045582', 'MH': 'Amino Acid Sequence; Base Sequence; Biocatalysis; Catalytic Domain; Crystallography, X-Ray; Cysteine/chemistry; DNA/*chemistry; DNA Cleavage; Deoxyribonucleases, Type II Site-Specific/*chemistry; Models, Molecular; Molecular Sequence Data; Protein Folding', 'EDAT': '2010/10/12 06:00', 'SI': 'PDB/3OQG; PDB/3OR3', 'SO': 'Nucleic Acids Res. 2011 Mar;39(4):1554-64. doi: 10.1093/nar/gkq821. Epub 2010 Oct', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 5600) {'LID': '10.1093/nar/gkq821 [doi]', 'STAT': 'MEDLINE', 'IP': '4', 'DEP': '20101008', 'DA': '20110301', 'AID': 'gkq821 [pii]; 10.1093/nar/gkq821 [doi]', 'FAU': 'Sokolowska, Monika; Czapinska, Honorata; Bochtler, Matthias', 'DP': '2011 Mar', 'GR': 'Howard Hughes Medical Institute/United States', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2010/10/12 06:00', 'DCOM': '20110512', 'JT': 'Nucleic acids research', 'LR': '20140821', 'PG': '1554-64', 'TI': 'Hpy188I-DNA pre- and post-cleavage complexes--snapshots of the GIY-YIG nuclease; mediated catalysis.', 'RN': '9007-49-2 (DNA); EC 3.1.21.- (endodeoxyribonuclease Hpy188I); EC 3.1.21.4 (Deoxyribonucleases, Type II Site-Specific); K848JZ4886 (Cysteine)', 'PL': 'England', 'TA': 'Nucleic Acids Res', 'JID': '0411011', 'AB': "The GIY-YIG nuclease domain is present in all kingdoms of life and has diverse; functions. It is found in the eukaryotic flap endonuclease and Holliday junction; resolvase Slx1-Slx4, the prokaryotic nucleotide excision repair proteins UvrC and; Cho, and in proteins of 'selfish' genetic elements. Here we present the; structures of the ternary pre- and post-cleavage complexes of the type II GIY-YIG; restriction endonuclease Hpy188I with DNA and a surrogate or catalytic metal ion,; respectively. Our structures suggest that GIY-YIG nucleases catalyze DNA; hydrolysis by a single substitution reaction. They are consistent with a previous; proposal that a tyrosine residue (which we expect to occur in its phenolate form); acts as a general base for the attacking water molecule. In contrast to the; earlier proposal, our data identify the general base with the GIY and not the YIG; tyrosine. A conserved glutamate residue (Glu149 provided in trans in Hpy188I); anchors a single metal cation in the active site. This metal ion contacts the; phosphate proS oxygen atom and the leaving group 3'-oxygen atom, presumably to; facilitate its departure. Taken together, our data reveal striking analogy in the; absence of homology between GIY-YIG and betabetaalpha-Me nucleases.", 'AD': 'International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw,; Poland.', 'VI': '39', 'IS': '1362-4962 (Electronic); 0305-1048 (Linking)', 'PMC': 'PMC3045582', 'AU': 'Sokolowska M; Czapinska H; Bochtler M', 'MHDA': '2011/05/13 06:00', 'PHST': '2010/10/08 [aheadofprint]', 'OID': 'NLM: PMC3045582', 'MH': 'Amino Acid Sequence; Base Sequence; Biocatalysis; Catalytic Domain; Crystallography, X-Ray; Cysteine/chemistry; DNA/*chemistry; DNA Cleavage; Deoxyribonucleases, Type II Site-Specific/*chemistry; Models, Molecular; Molecular Sequence Data; Protein Folding', 'EDAT': '2010/10/12 06:00', 'SI': 'PDB/3OQG; PDB/3OR3', 'SO': 'Nucleic Acids Res. 2011 Mar;39(4):1554-64. doi: 10.1093/nar/gkq821. Epub 2010 Oct; 8.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 5700) {'LID': '10.1021/jp106214v [doi]', 'STAT': 'MEDLINE', 'IP': '39', 'JT': 'The journal of physical chemistry. B', 'DA': '20100930', 'AID': '10.1021/jp106214v [doi]', 'FAU': 'Wang, Qian; Xu, Wang; Wu, Ping; Zhang, Hui; Cai, Chenxin; Zhao, Bo', 'DP': '2010 Oct 7', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2010/09/17 06:00', 'DCOM': '20110118', 'LR': '20131121', 'PG': '12754-64', 'TI': 'New insights into the effects of thermal treatment on the catalytic activity and; conformational structure of glucose oxidase studied by electrochemistry, IR; spectroscopy, and theoretical calculation.', 'RN': 'EC 1.1.3.4 (Glucose Oxidase); IY9XDZ35W2 (Glucose)', 'PL': 'United States', 'TA': 'J Phys Chem B', 'JID': '101157530', 'AB': 'Protein conformational changes may be associated with particular properties such; as its function, transportation, assembly, tendency to aggregate, and potential; cytotoxicity. In this study, the mechanism of the effects of thermal unfolding of; proteins on their catalytic activities and conformational structures were studied; by utilizing glucose oxidase (GOx) as a model protein. The characteristic kinetic; constants for the enzymatic reaction were evaluated by the use of an; electrochemical approach under a substrate-saturated condition. A combination of; quantitative second-derivative infrared analysis, two-dimensional infrared; correlation spectroscopy (2D IR), and theoretical calculation was used to; elucidate the conformational structures that were responsible for inactivation; and denaturation of GOx induced by heat. The IR analysis demonstrated that the; conformational structures of GOx, especially the alpha-helix and unordered; structures, were greatly dependent on the system temperature. Thermal treatment; resulted in the increase of the unordered structure accompanied by the loss of; the alpha-helical structure in GOx conformation. Molecular dynamics (MD); simulations and density functional theory (DFT) calculations revealed that; thermal treatment could significantly alter the electronic characteristics and; the intramolecular electron transfer ability of FAD (flavin adenine; dinucleotide), and hydrogen bond networks formed between FAD and the amino acid; residues around the cofactor, leading to the change of the secondary structure; and the catalytic activity of GOx. The study essentially paves an effective; approach to investigation of the mechanism of protein unfolding.', 'AD': "Jiangsu Key Laboratory of Biofunctional Materials, Laboratory of; Electrochemistry, College of Chemistry and Materials Science, Nanjing Normal; University, Nanjing 210097, People's Republic of China.", 'VI': '114', 'IS': '1520-5207 (Electronic); 1520-5207 (Linking)', 'AU': 'Wang Q; Xu W; Wu P; Zhang H; Cai C; Zhao B', 'MHDA': '2011/01/19 06:00', 'MH': 'Biocatalysis; Electrochemical Techniques; Glucose/metabolism; Glucose Oxidase/*chemistry/metabolism; Hydrogen Bonding; Kinetics; Models, Theoretical; Molecular Dynamics Simulation; Protein Denaturation; Protein Structure, Tertiary; Quantum Theory; Spectroscopy, Fourier Transform Infrared; Temperature', 'EDAT': '2010/09/17 06:00', 'SO': 'J Phys Chem B. 2010 Oct 7;114(39):12754-64. doi: 10.1021/jp106214v.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 5800) {'LID': '10.1002/asia.201000458 [doi]', 'STAT': 'MEDLINE', 'IP': '10', 'JT': 'Chemistry, an Asian journal', 'DA': '20100929', 'AID': '10.1002/asia.201000458 [doi]', 'FAU': 'Koizumi, Hifumi; Yokoshima, Satoshi; Fukuyama, Tohru', 'DP': '2010 Oct 4', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2010/08/18 06:00', 'DCOM': '20110118', 'LR': '20131121', 'PG': '2192-8', 'TI': 'Total synthesis of (-)-morphine.', 'RN': '0 (Enzymes); 76I7G6D29C (Morphine)', 'PL': 'Germany', 'TA': 'Chem Asian J', 'JID': '101294643', 'AB': 'We have developed an efficient total synthesis of (-)-morphine in 5% overall; yield with the longest linear sequence consisting of 17 steps from; 2-cyclohexen-1-one. The cyclohexenol unit was prepared by means of an enzymatic; resolution and a Suzuki-Miyaura coupling as key steps. Construction of the; morphinan core features an intramolecular aldol reaction and an intramolecular; 1,6-addition. Furthermore, mild deprotection conditions to remove the; 2,4-dinitrobenzenesulfonyl (DNs) group enabled the facile construction of the; morphinan skeleton. We have also established an efficient synthetic route to a; cyclohexenol unit containing an N-methyl-DNs-amide moiety.', 'AD': 'Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo,; Bunkyo-ku, Tokyo 113-0033, Japan.', 'VI': '5', 'IS': '1861-471X (Electronic); 1861-471X (Linking)', 'AU': 'Koizumi H; Yokoshima S; Fukuyama T', 'MHDA': '2011/01/19 06:00', 'MH': 'Biocatalysis; Enzymes/chemistry/metabolism; Morphine/*chemical synthesis/chemistry; Stereoisomerism', 'EDAT': '2010/08/18 06:00', 'SO': 'Chem Asian J. 2010 Oct 4;5(10):2192-8. doi: 10.1002/asia.201000458.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 5900) {'LID': '10.1016/j.aca.2010.06.014 [doi]', 'STAT': 'MEDLINE', 'IP': '1', 'DEP': '20100616', 'JID': '0370534', 'DA': '20100719', 'AID': 'S0003-2670(10)00752-X [pii]; 10.1016/j.aca.2010.06.014 [doi]', 'FAU': 'Chen, Bi; Ma, Ming; Su, Xiaoli', 'DP': '2010 Jul 26', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2010/07/20 06:00', 'DCOM': '20101202', 'JT': 'Analytica chimica acta', 'LR': '20131121', 'PG': '89-95', 'TI': 'An amperometric penicillin biosensor with enhanced sensitivity based on; co-immobilization of carbon nanotubes, hematein, and beta-lactamase on glassy; carbon electrode.', 'RN': '0 (Enzymes, Immobilized); 0 (Nanotubes, Carbon); 7440-44-0 (Carbon); 88Q1SYD10B (hematein); EC 3.5.2.6 (beta-Lactamases); YKM8PY2Z55 (Hematoxylin); Z61I075U2W (Penicillin V)', 'PL': 'Netherlands', 'TA': 'Anal Chim Acta', 'CI': 'Copyright 2010 Elsevier B.V. All rights reserved.', 'AB': 'An amperometric penicillin biosensor with enhanced sensitivity was successfully; developed by co-immobilization of multi-walled carbon nanotubes (MWCNTs),; hematein, and beta-lactamase on glassy carbon electrode using a layer-by-layer; assembly technique. Under catalysis of the immobilized enzyme, penicillin was; hydrolyzed, decreasing the local pH. The pH change was monitored amperometrically; with hematein as a pH-sensitive redox probe. MWCNTs were used as an electron; transfer enhancer as well as an efficient immobilization matrix for the; sensitivity enhancement. The effects of immobilization procedure, working; potential, enzyme quantity, buffer concentration, and sample matrix were; investigated. The biosensor offered a minimum detection limit of 50 nM (19 microg; L(-1)) for penicillin V, lower than those of the conventional pH change-based; biosensors by more than two orders of magnitude. The electrode-to-electrode; variation of the response sensitivity was 7.0% RSD.', 'AD': 'Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research; (Ministry of Education of China), College of Chemistry & Chemical Engineering,; Hunan Normal University, Changsha 410081, China.', 'VI': '674', 'IS': '1873-4324 (Electronic); 0003-2670 (Linking)', 'AU': 'Chen B; Ma M; Su X', 'MHDA': '2010/12/14 06:00', 'PHST': '2010/04/16 [received]; 2010/06/09 [revised]; 2010/06/09 [accepted]; 2010/06/16 [aheadofprint]', 'MH': 'Biocatalysis; Biosensing Techniques/instrumentation/*methods; Carbon/chemistry; Electrodes; Enzymes, Immobilized/chemistry/*metabolism; Glass/chemistry; Hematoxylin/*analogs & derivatives/chemistry; Hydrogen-Ion Concentration; Nanotubes, Carbon/*chemistry; Oxidation-Reduction; Penicillin V/*analysis; Surface Properties; beta-Lactamases/chemistry/*metabolism', 'EDAT': '2010/07/20 06:00', 'SO': 'Anal Chim Acta. 2010 Jul 26;674(1):89-95. doi: 10.1016/j.aca.2010.06.014. Epub', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 5900) {'LID': '10.1016/j.aca.2010.06.014 [doi]', 'STAT': 'MEDLINE', 'IP': '1', 'DEP': '20100616', 'JID': '0370534', 'DA': '20100719', 'AID': 'S0003-2670(10)00752-X [pii]; 10.1016/j.aca.2010.06.014 [doi]', 'FAU': 'Chen, Bi; Ma, Ming; Su, Xiaoli', 'DP': '2010 Jul 26', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2010/07/20 06:00', 'DCOM': '20101202', 'JT': 'Analytica chimica acta', 'LR': '20131121', 'PG': '89-95', 'TI': 'An amperometric penicillin biosensor with enhanced sensitivity based on; co-immobilization of carbon nanotubes, hematein, and beta-lactamase on glassy; carbon electrode.', 'RN': '0 (Enzymes, Immobilized); 0 (Nanotubes, Carbon); 7440-44-0 (Carbon); 88Q1SYD10B (hematein); EC 3.5.2.6 (beta-Lactamases); YKM8PY2Z55 (Hematoxylin); Z61I075U2W (Penicillin V)', 'PL': 'Netherlands', 'TA': 'Anal Chim Acta', 'CI': 'Copyright 2010 Elsevier B.V. All rights reserved.', 'AB': 'An amperometric penicillin biosensor with enhanced sensitivity was successfully; developed by co-immobilization of multi-walled carbon nanotubes (MWCNTs),; hematein, and beta-lactamase on glassy carbon electrode using a layer-by-layer; assembly technique. Under catalysis of the immobilized enzyme, penicillin was; hydrolyzed, decreasing the local pH. The pH change was monitored amperometrically; with hematein as a pH-sensitive redox probe. MWCNTs were used as an electron; transfer enhancer as well as an efficient immobilization matrix for the; sensitivity enhancement. The effects of immobilization procedure, working; potential, enzyme quantity, buffer concentration, and sample matrix were; investigated. The biosensor offered a minimum detection limit of 50 nM (19 microg; L(-1)) for penicillin V, lower than those of the conventional pH change-based; biosensors by more than two orders of magnitude. The electrode-to-electrode; variation of the response sensitivity was 7.0% RSD.', 'AD': 'Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research; (Ministry of Education of China), College of Chemistry & Chemical Engineering,; Hunan Normal University, Changsha 410081, China.', 'VI': '674', 'IS': '1873-4324 (Electronic); 0003-2670 (Linking)', 'AU': 'Chen B; Ma M; Su X', 'MHDA': '2010/12/14 06:00', 'PHST': '2010/04/16 [received]; 2010/06/09 [revised]; 2010/06/09 [accepted]; 2010/06/16 [aheadofprint]', 'MH': 'Biocatalysis; Biosensing Techniques/instrumentation/*methods; Carbon/chemistry; Electrodes; Enzymes, Immobilized/chemistry/*metabolism; Glass/chemistry; Hematoxylin/*analogs & derivatives/chemistry; Hydrogen-Ion Concentration; Nanotubes, Carbon/*chemistry; Oxidation-Reduction; Penicillin V/*analysis; Surface Properties; beta-Lactamases/chemistry/*metabolism', 'EDAT': '2010/07/20 06:00', 'SO': 'Anal Chim Acta. 2010 Jul 26;674(1):89-95. doi: 10.1016/j.aca.2010.06.014. Epub; 2010 Jun 16.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 6000) {'LID': '10.1111/j.1365-313X.2010.04281.x [doi]', 'STAT': 'MEDLINE', 'IP': '5', 'JT': 'The Plant journal : for cell and molecular biology', 'JID': '9207397', 'DA': '20101105', 'AID': 'TPJ4281 [pii]; 10.1111/j.1365-313X.2010.04281.x [doi]', 'FAU': 'Vlad, Florina; Droillard, Marie-Jo; Valot, Benoit; Khafif, Mehdi; Rodrigues, Americo; Brault, Mathias; Zivy, Michel; Rodriguez, Pedro L; Merlot, Sylvain; Lauriere, Christiane', 'DP': '2010 Sep', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2010/06/22 06:00', 'DCOM': '20110318', 'LR': '20131121', 'PG': '778-90', 'TI': 'Phospho-site mapping, genetic and in planta activation studies reveal key aspects; of the different phosphorylation mechanisms involved in activation of SnRK2s.', 'RN': '0 (Arabidopsis Proteins); 0 (Isoenzymes); 0 (Plant Growth Regulators); 0 (SnRK2 protein, Arabidopsis); 72S9A8J5GW (Abscisic Acid); EC 2.7.- (Protein Kinases); EC 2.7.- (SnRK2.10 protein, Arabidopsis); EC 2.7.1.- (OST1 protein, Arabidopsis); EC 2.7.11.1 (Protein-Serine-Threonine Kinases)', 'PL': 'England', 'TA': 'Plant J', 'CI': '(c) 2010 The Authors. Journal compilation (c) 2010 Blackwell Publishing Ltd.', 'AB': 'Snf1-related protein kinases 2 (SnRK2s) are major positive regulators of drought; stress tolerance. The kinases of this family are activated by hyperosmotic; stress, but only some of them are also responsive to abscisic acid (ABA).; Moreover, genetic evidence has indicated the ABA-independence of SnRK2 activation; in the fast response to osmotic stress. Although phosphorylation was demonstrated; to be crucial for the activation or activity of the kinases of both subgroups,; different phosphorylation mechanisms were suggested. Here, using one kinase from; each subgroup (SnRK2.6 and SnRK2.10), two phosphorylation sites within the; activation loop were identified by mass spectrometry after immunoprecipitation; from Arabidopsis cells treated by ABA or osmolarity. By site-directed; mutagenesis, the phosphorylation of only one of the two sites was shown to be; necessary for the catalytic activity of the kinase, whereas both sites are; necessary for the full activation of the two SnRK2s by hyperosmolarity or ABA.; Phosphoprotein staining together with two-dimensional PAGE followed by; immunoblotting indicated distinct phosphorylation mechanisms of the two kinases.; While SnRK2.6 seems to be activated through the independent phosphorylation of; these two sites, a sequential process occurs in SnRK2.10, where phosphorylation; of one serine is required for the phosphorylation of the other. In addition, a; subgroup of protein phosphatases 2C which interact and participate in the; regulation of SnRK2.6 do not interact with SnRK2.10. Taken together, our data; bring evidence for the involvement of distinct phosphorylation mechanisms in the; activation of SnRK2.6 and SnRK2.10, which may be conserved between the two; subgroups of SnRK2s depending on their ABA-responsiveness.', 'AD': 'Centre National de la Recherche Scientifique, Institut des Sciences du Vegetal,; UPR 2355, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex, France.', 'VI': '63', 'IS': '1365-313X (Electronic); 0960-7412 (Linking)', 'AU': 'Vlad F; Droillard MJ; Valot B; Khafif M; Rodrigues A; Brault M; Zivy M; Rodriguez PL; Merlot S; Lauriere C', 'MHDA': '2011/03/19 06:00', 'MH': 'Abscisic Acid/pharmacology; Arabidopsis/*enzymology/genetics; Arabidopsis Proteins/genetics/*metabolism; Binding Sites/genetics; Biocatalysis/drug effects; Blotting, Western; Electrophoresis, Gel, Two-Dimensional; Enzyme Activation/drug effects; Isoenzymes/genetics/metabolism; Mass Spectrometry; Mutagenesis, Site-Directed; Osmolar Concentration; Phosphorylation; Plant Growth Regulators/pharmacology; Protein Binding; Protein Kinases/genetics/*metabolism; Protein-Serine-Threonine Kinases/genetics/*metabolism', 'EDAT': '2010/06/22 06:00', 'SO': 'Plant J. 2010 Sep;63(5):778-90. doi: 10.1111/j.1365-313X.2010.04281.x.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 6100) {'LID': '10.1074/jbc.M110.113027 [doi]', 'STAT': 'MEDLINE', 'IP': '30', 'DEP': '20100513', 'DA': '20100719', 'AID': 'M110.113027 [pii]; 10.1074/jbc.M110.113027 [doi]', 'FAU': 'Chuankhayan, Phimonphan; Hsieh, Chih-Yu; Huang, Yen-Chieh; Hsieh, Yi-You; Guan, Hong-Hsiang; Hsieh, Yin-Cheng; Tien, Yueh-Chu; Chen, Chung-De; Chiang, Chien-Min; Chen, Chun-Jung', 'DP': '2010 Jul 23', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2010/05/15 06:00', 'DCOM': '20100817', 'JT': 'The Journal of biological chemistry', 'LR': '20140827', 'PG': '23251-64', 'TI': 'Crystal structures of Aspergillus japonicus fructosyltransferase complex with; donor/acceptor substrates reveal complete subsites in the active site for; catalysis.', 'RN': '0 (Enzyme Inhibitors); EC 2.4.1.- (Hexosyltransferases); EC 2.4.1.9 (inulosucrase); EC 3.2.1.- (Glycoside Hydrolases); IY9XDZ35W2 (Glucose)', 'PL': 'United States', 'TA': 'J Biol Chem', 'JID': '2985121R', 'AB': 'Fructosyltransferases catalyze the transfer of a fructose unit from one; sucrose/fructan to another and are engaged in the production of; fructooligosaccharide/fructan. The enzymes belong to the glycoside hydrolase; family 32 (GH32) with a retaining catalytic mechanism. Here we describe the; crystal structures of recombinant fructosyltransferase (AjFT) from Aspergillus; japonicus CB05 and its mutant D191A complexes with various donor/acceptor; substrates, including sucrose, 1-kestose, nystose, and raffinose. This is the; first structure of fructosyltransferase of the GH32 with a high; transfructosylation activity. The structure of AjFT comprises two domains with an; N-terminal catalytic domain containing a five-blade beta-propeller fold linked to; a C-terminal beta-sandwich domain. Structures of various mutant AjFT-substrate; complexes reveal complete four substrate-binding subsites (-1 to +3) in the; catalytic pocket with shapes and characters distinct from those of clan GH-J; enzymes. Residues Asp-60, Asp-191, and Glu-292 that are proposed for nucleophile,; transition-state stabilizer, and general acid/base catalyst, respectively, govern; the binding of the terminal fructose at the -1 subsite and the catalytic; reaction. Mutants D60A, D191A, and E292A completely lost their activities.; Residues Ile-143, Arg-190, Glu-292, Glu-318, and His-332 combine the hydrophobic; Phe-118 and Tyr-369 to define the +1 subsite for its preference of fructosyl and; glucosyl moieties. Ile-143 and Gln-327 define the +2 subsite for raffinose,; whereas Tyr-404 and Glu-405 define the +2 and +3 subsites for inulin-type; substrates with higher structural flexibilities. Structural geometries of; 1-kestose, nystose and raffinose are different from previous data. All results; shed light on the catalytic mechanism and substrate recognition of AjFT and other; clan GH-J fructosyltransferases.', 'AD': 'Life Science Group, Scientific Research Division, National Synchrotron Radiation; Research Center, Hsinchu 30076, Taiwan.', 'VI': '285', 'IS': '1083-351X (Electronic); 0021-9258 (Linking)', 'PMC': 'PMC2906318', 'AU': 'Chuankhayan P; Hsieh CY; Huang YC; Hsieh YY; Guan HH; Hsieh YC; Tien YC; Chen CD; Chiang CM; Chen CJ', 'MHDA': '2010/08/18 06:00', 'PHST': '2010/05/13 [aheadofprint]', 'OID': 'NLM: PMC2906318', 'MH': 'Amino Acid Sequence; Aspergillus/*enzymology; *Biocatalysis; *Catalytic Domain; Crystallography, X-Ray; Enzyme Inhibitors/metabolism/pharmacology; Glucose/metabolism/pharmacology; Glycoside Hydrolases/chemistry/metabolism; Hexosyltransferases/antagonists & inhibitors/*chemistry/*metabolism; Models, Molecular; Molecular Sequence Data; Structure-Activity Relationship', 'EDAT': '2010/05/15 06:00', 'SI': 'PDB/3LDK; PDB/3LDR; PDB/3LEM; PDB/3LF7; PDB/3LFI; PDB/3LIG; PDB/3LIH', 'SO': 'J Biol Chem. 2010 Jul 23;285(30):23251-64. doi: 10.1074/jbc.M110.113027. Epub', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 6100) {'LID': '10.1074/jbc.M110.113027 [doi]', 'STAT': 'MEDLINE', 'IP': '30', 'DEP': '20100513', 'DA': '20100719', 'AID': 'M110.113027 [pii]; 10.1074/jbc.M110.113027 [doi]', 'FAU': 'Chuankhayan, Phimonphan; Hsieh, Chih-Yu; Huang, Yen-Chieh; Hsieh, Yi-You; Guan, Hong-Hsiang; Hsieh, Yin-Cheng; Tien, Yueh-Chu; Chen, Chung-De; Chiang, Chien-Min; Chen, Chun-Jung', 'DP': '2010 Jul 23', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2010/05/15 06:00', 'DCOM': '20100817', 'JT': 'The Journal of biological chemistry', 'LR': '20140827', 'PG': '23251-64', 'TI': 'Crystal structures of Aspergillus japonicus fructosyltransferase complex with; donor/acceptor substrates reveal complete subsites in the active site for; catalysis.', 'RN': '0 (Enzyme Inhibitors); EC 2.4.1.- (Hexosyltransferases); EC 2.4.1.9 (inulosucrase); EC 3.2.1.- (Glycoside Hydrolases); IY9XDZ35W2 (Glucose)', 'PL': 'United States', 'TA': 'J Biol Chem', 'JID': '2985121R', 'AB': 'Fructosyltransferases catalyze the transfer of a fructose unit from one; sucrose/fructan to another and are engaged in the production of; fructooligosaccharide/fructan. The enzymes belong to the glycoside hydrolase; family 32 (GH32) with a retaining catalytic mechanism. Here we describe the; crystal structures of recombinant fructosyltransferase (AjFT) from Aspergillus; japonicus CB05 and its mutant D191A complexes with various donor/acceptor; substrates, including sucrose, 1-kestose, nystose, and raffinose. This is the; first structure of fructosyltransferase of the GH32 with a high; transfructosylation activity. The structure of AjFT comprises two domains with an; N-terminal catalytic domain containing a five-blade beta-propeller fold linked to; a C-terminal beta-sandwich domain. Structures of various mutant AjFT-substrate; complexes reveal complete four substrate-binding subsites (-1 to +3) in the; catalytic pocket with shapes and characters distinct from those of clan GH-J; enzymes. Residues Asp-60, Asp-191, and Glu-292 that are proposed for nucleophile,; transition-state stabilizer, and general acid/base catalyst, respectively, govern; the binding of the terminal fructose at the -1 subsite and the catalytic; reaction. Mutants D60A, D191A, and E292A completely lost their activities.; Residues Ile-143, Arg-190, Glu-292, Glu-318, and His-332 combine the hydrophobic; Phe-118 and Tyr-369 to define the +1 subsite for its preference of fructosyl and; glucosyl moieties. Ile-143 and Gln-327 define the +2 subsite for raffinose,; whereas Tyr-404 and Glu-405 define the +2 and +3 subsites for inulin-type; substrates with higher structural flexibilities. Structural geometries of; 1-kestose, nystose and raffinose are different from previous data. All results; shed light on the catalytic mechanism and substrate recognition of AjFT and other; clan GH-J fructosyltransferases.', 'AD': 'Life Science Group, Scientific Research Division, National Synchrotron Radiation; Research Center, Hsinchu 30076, Taiwan.', 'VI': '285', 'IS': '1083-351X (Electronic); 0021-9258 (Linking)', 'PMC': 'PMC2906318', 'AU': 'Chuankhayan P; Hsieh CY; Huang YC; Hsieh YY; Guan HH; Hsieh YC; Tien YC; Chen CD; Chiang CM; Chen CJ', 'MHDA': '2010/08/18 06:00', 'PHST': '2010/05/13 [aheadofprint]', 'OID': 'NLM: PMC2906318', 'MH': 'Amino Acid Sequence; Aspergillus/*enzymology; *Biocatalysis; *Catalytic Domain; Crystallography, X-Ray; Enzyme Inhibitors/metabolism/pharmacology; Glucose/metabolism/pharmacology; Glycoside Hydrolases/chemistry/metabolism; Hexosyltransferases/antagonists & inhibitors/*chemistry/*metabolism; Models, Molecular; Molecular Sequence Data; Structure-Activity Relationship', 'EDAT': '2010/05/15 06:00', 'SI': 'PDB/3LDK; PDB/3LDR; PDB/3LEM; PDB/3LF7; PDB/3LFI; PDB/3LIG; PDB/3LIH', 'SO': 'J Biol Chem. 2010 Jul 23;285(30):23251-64. doi: 10.1074/jbc.M110.113027. Epub; 2010 May 13.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 6200) {'LID': '10.1021/ja100974t [doi]', 'STAT': 'MEDLINE', 'IP': '18', 'JT': 'Journal of the American Chemical Society', 'DA': '20100505', 'AID': '10.1021/ja100974t [doi]', 'FAU': 'Cliff, Matthew J; Bowler, Matthew W; Varga, Andrea; Marston, James P; Szabo, Judit; Hounslow, Andrea M; Baxter, Nicola J; Blackburn, G Michael; Vas, Maria; Waltho, Jonathan P', 'DP': '2010 May 12', 'GR': 'BB/D01798X/1/Biotechnology and Biological Sciences Research Council/United; Kingdom; Biotechnology and Biological Sciences Research Council/United Kingdom', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2010/04/20 06:00', 'DCOM': '20100805', 'LR': '20141125', 'PG': '6507-16', 'TI': 'Transition state analogue structures of human phosphoglycerate kinase establish; the importance of charge balance in catalysis.', 'RN': '0 (Aluminum Compounds); 0 (Glyceric Acids); 0 (Isoenzymes); 21340-02-3 (tetrafluoroaluminate); 61D2G4IYVH (Adenosine Diphosphate); 820-11-1 (3-phosphoglycerate); EC 2.7.2.3 (Phosphoglycerate Kinase); I38ZP9992A (Magnesium); Q80VPU408O (Fluorides)', 'PL': 'United States', 'TA': 'J Am Chem Soc', 'JID': '7503056', 'AB': 'Transition state analogue (TSA) complexes formed by phosphoglycerate kinase (PGK); have been used to test the hypothesis that balancing of charge within the; transition state dominates enzyme-catalyzed phosphoryl transfer. High-resolution; structures of trifluoromagnesate (MgF(3)(-)) and tetrafluoroaluminate (AlF(4)(-)); complexes of PGK have been determined using X-ray crystallography and (19)F-based; NMR methods, revealing the nature of the catalytically relevant state of this; archetypal metabolic kinase. Importantly, the side chain of K219, which; coordinates the alpha-phosphate group in previous ground state structures, is; sequestered into coordinating the metal fluoride, thereby creating a charge; environment complementary to the transferring phosphoryl group. In line with the; dominance of charge balance in transition state organization, the substitution; K219A induces a corresponding reduction in charge in the bound aluminum fluoride; species, which changes to a trifluoroaluminate (AlF(3)(0)) complex. The AlF(3)(0); moiety retains the octahedral geometry observed within AlF(4)(-) TSA complexes,; which endorses the proposal that some of the widely reported trigonal AlF(3)(0); complexes of phosphoryl transfer enzymes may have been misassigned and in reality; contain MgF(3)(-).', 'AD': 'The Krebs Institute & The Department of Molecular Biology and Biotechnology, The; University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.', 'VI': '132', 'IS': '1520-5126 (Electronic); 0002-7863 (Linking)', 'AU': 'Cliff MJ; Bowler MW; Varga A; Marston JP; Szabo J; Hounslow AM; Baxter NJ; Blackburn GM; Vas M; Waltho JP', 'MHDA': '2010/08/06 06:00', 'MH': 'Adenosine Diphosphate/chemistry/metabolism; Aluminum Compounds/chemistry/metabolism; *Biocatalysis; Biophysical Processes; *Electrons; Fluorides/chemistry/metabolism; Glyceric Acids/chemistry/metabolism; Humans; Isoenzymes/chemistry/genetics/metabolism; Magnesium/chemistry/metabolism; Models, Molecular; Phosphoglycerate Kinase/*chemistry/genetics/*metabolism; Point Mutation; Protein Structure, Tertiary', 'EDAT': '2010/04/20 06:00', 'SO': 'J Am Chem Soc. 2010 May 12;132(18):6507-16. doi: 10.1021/ja100974t.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 6300) {'LID': '10.1016/j.cbpa.2010.02.019 [doi]', 'STAT': 'MEDLINE', 'IP': '2', 'DEP': '20100319', 'DA': '20100330', 'AID': 'S1367-5931(10)00024-4 [pii]; 10.1016/j.cbpa.2010.02.019 [doi]', 'FAU': 'Reymond, Jean-Louis; Sheldon, Roger A', 'DP': '2010 Apr', 'OWN': 'NLM', 'PT': 'Editorial; Introductory Journal Article', 'LA': 'eng', 'CRDT': '2010/03/23 06:00', 'DCOM': '20100628', 'JT': 'Current opinion in chemical biology', 'PG': '113-4', 'TI': 'Future turnovers in enzyme catalysis.', 'RN': '0 (Polymers)', 'PL': 'England', 'TA': 'Curr Opin Chem Biol', 'JID': '9811312', 'VI': '14', 'IS': '1879-0402 (Electronic); 1367-5931 (Linking)', 'AU': 'Reymond JL; Sheldon RA', 'MHDA': '2010/06/29 06:00', 'PHST': '2010/03/19 [aheadofprint]', 'MH': '*Biocatalysis; Biomimetics; Biotransformation; Isomerism; Polymers/chemical synthesis', 'EDAT': '2010/03/23 06:00', 'SO': 'Curr Opin Chem Biol. 2010 Apr;14(2):113-4. doi: 10.1016/j.cbpa.2010.02.019. Epub', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 6300) {'LID': '10.1016/j.cbpa.2010.02.019 [doi]', 'STAT': 'MEDLINE', 'IP': '2', 'DEP': '20100319', 'DA': '20100330', 'AID': 'S1367-5931(10)00024-4 [pii]; 10.1016/j.cbpa.2010.02.019 [doi]', 'FAU': 'Reymond, Jean-Louis; Sheldon, Roger A', 'DP': '2010 Apr', 'OWN': 'NLM', 'PT': 'Editorial; Introductory Journal Article', 'LA': 'eng', 'CRDT': '2010/03/23 06:00', 'DCOM': '20100628', 'JT': 'Current opinion in chemical biology', 'PG': '113-4', 'TI': 'Future turnovers in enzyme catalysis.', 'RN': '0 (Polymers)', 'PL': 'England', 'TA': 'Curr Opin Chem Biol', 'JID': '9811312', 'VI': '14', 'IS': '1879-0402 (Electronic); 1367-5931 (Linking)', 'AU': 'Reymond JL; Sheldon RA', 'MHDA': '2010/06/29 06:00', 'PHST': '2010/03/19 [aheadofprint]', 'MH': '*Biocatalysis; Biomimetics; Biotransformation; Isomerism; Polymers/chemical synthesis', 'EDAT': '2010/03/23 06:00', 'SO': 'Curr Opin Chem Biol. 2010 Apr;14(2):113-4. doi: 10.1016/j.cbpa.2010.02.019. Epub; 2010 Mar 19.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 6400) {'LID': '10.1021/ja910223x [doi]', 'STAT': 'MEDLINE', 'IP': '9', 'JT': 'Journal of the American Chemical Society', 'MID': 'NIHMS179956', 'DA': '20100303', 'AID': '10.1021/ja910223x [doi]', 'FAU': 'Kim, Hak Joong; White-Phillip, Jess A; Ogasawara, Yasushi; Shin, Nara; Isiorho, Eta A; Liu, Hung-Wen', 'DP': '2010 Mar 10', 'GR': 'GM35906/GM/NIGMS NIH HHS/United States; R01 GM035906/GM/NIGMS NIH HHS/United States; R01 GM035906-26/GM/NIGMS NIH HHS/United States', 'OWN': 'NLM', 'PT': 'Journal Article; Research Support, N.I.H., Extramural', 'LA': 'eng', 'CRDT': '2010/02/18 06:00', 'DCOM': '20100614', 'LR': '20140916', 'PG': '2901-3', 'TI': 'Biosynthesis of spinosyn in Saccharopolyspora spinosa: synthesis of permethylated; rhamnose and characterization of the functions of SpnH, SpnI, and SpnK.', 'RN': '0 (Macrolides); 0 (spinosyn A); EC 2.1.1.- (Methyltransferases); QN34XC755A (Rhamnose)', 'PL': 'United States', 'TA': 'J Am Chem Soc', 'JID': '7503056', 'AB': "Spinosyn A is a polyketide-derived macrolide produced by Saccharopolyspora; spinosa and is an active ingredient in several commercial insecticides. It is; glycosylated by a tri-O-methylated rhamnose at C-9 and a forosamine at C-17.; Previous studies indicated that the rhamnose methyltransferases are encoded by; the spnH, spnI, and spnK genes. To verify the functions of these; methyltransferases and to study how they are coordinated to achieve the desired; level of methylation of rhamnose, we studied the catalytic properties of the; spnH, spnI, and spnK gene products and validated their roles in the; permethylation process of spinosyn A. Our data reported herein firmly established; that SpnH, SpnI, and SpnK are the respective rhamnose 4'-, 2'-, and; 3'-O-methyltransferase. Investigation of the order of the methylation events; revealed that only one route catalyzed by SpnI, SpnK, and SpnH in sequence is; productive for the permethylation of the rhamnose moiety. Moreover, the; completion of rhamnose permethylation is likely achieved by the proper control of; the expression levels of the methyltransferase genes involved. These results set; the stage for future exploitation of the spinosyn biosynthetic pathway to produce; targeted spinosyn derivatives and, perhaps, new analogues.", 'AD': 'Division of Medicinal Chemistry, College of Pharmacy, Department of Chemistry and; Biochemistry, and Institute of Cellular & Molecular Biology, University of Texas; at Austin, Austin, Texas 78712, USA.', 'VI': '132', 'IS': '1520-5126 (Electronic); 0002-7863 (Linking)', 'PMC': 'PMC2832084', 'AU': 'Kim HJ; White-Phillip JA; Ogasawara Y; Shin N; Isiorho EA; Liu HW', 'MHDA': '2010/06/15 06:00', 'OID': 'NLM: NIHMS179956; NLM: PMC2832084', 'MH': 'Biocatalysis; Macrolides/chemistry/*metabolism; Methylation; Methyltransferases/genetics/*metabolism; Rhamnose/*biosynthesis/chemistry; Saccharopolyspora/enzymology/genetics/*metabolism', 'EDAT': '2010/02/18 06:00', 'SO': 'J Am Chem Soc. 2010 Mar 10;132(9):2901-3. doi: 10.1021/ja910223x.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 6500) {'LID': '10.1016/j.jmb.2010.01.020 [doi]', 'STAT': 'MEDLINE', 'IP': '1', 'DEP': '20100118', 'JID': '2985088R', 'DA': '20100301', 'AID': 'S0022-2836(10)00036-7 [pii]; 10.1016/j.jmb.2010.01.020 [doi]', 'FAU': 'Podzelinska, Kateryna; Latimer, Ryan; Bhattacharya, Anupam; Vining, Leo C; Zechel, David L; Jia, Zongchao', 'DP': '2010 Mar 19', 'GR': 'Canadian Institutes of Health Research/Canada', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2010/01/19 06:00', 'DCOM': '20100402', 'JT': 'Journal of molecular biology', 'LR': '20131121', 'PG': '316-31', 'TI': 'Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent; halogenase showing a covalent flavin-aspartate bond.', 'RN': '0 (Acids); 0 (Bacterial Proteins); 0 (Flavins); 0 (Mutant Proteins); 146-14-5 (Flavin-Adenine Dinucleotide); 30KYC7MIAI (Aspartic Acid); 66974FR9Q1 (Chloramphenicol); EC 1.- (Oxidoreductases)', 'PL': 'England', 'TA': 'J Mol Biol', 'CI': 'Copyright (c) 2010 Elsevier Ltd. All rights reserved.', 'AB': "Chloramphenicol is a halogenated natural product bearing an unusual; dichloroacetyl moiety that is critical for its antibiotic activity. The operon; for chloramphenicol biosynthesis in Streptomyces venezuelae encodes the; chloramphenicol halogenase CmlS, which belongs to the large and diverse family of; flavin-dependent halogenases (FDH's). CmlS was previously shown to be essential; for the formation of the dichloroacetyl group. Here we report the X-ray crystal; structure of CmlS determined at 2.2 A resolution, revealing a flavin; monooxygenase domain shared by all FDHs, but also a unique 'winged-helix'; C-terminal domain that creates a T-shaped tunnel leading to the halogenation; active site. Intriguingly, the C-terminal tail of this domain blocks access to; the halogenation active site, suggesting a structurally dynamic role during; catalysis. The halogenation active site is notably nonpolar and shares nearly; identical residues with Chondromyces crocatus tyrosyl halogenase (CndH),; including the conserved Lys (K71) that forms the reactive chloramine; intermediate. The exception is Y350, which could be used to stabilize enolate; formation during substrate halogenation. The strictly conserved residue E44,; located near the isoalloxazine ring of the bound flavin adenine dinucleotide; (FAD) cofactor, is optimally positioned to function as a remote general acid,; through a water-mediated proton relay, which could accelerate the reaction of the; chloramine intermediate during substrate halogenation, or the oxidation of; chloride by the FAD(C4alpha)-OOH intermediate. Strikingly, the 8alpha carbon of; the FAD cofactor is observed to be covalently attached to D277 of CmlS, a residue; that is highly conserved in the FDH family. In addition to representing a new; type of flavin modification, this has intriguing implications for the mechanism; of FDHs. Based on the crystal structure and in analogy to known halogenases, we; propose a reaction mechanism for CmlS.", 'AD': "Department of Biochemistry, Queen's University, Kingston, Ontario, Canada K7L; 3N6.", 'VI': '397', 'IS': '1089-8638 (Electronic); 0022-2836 (Linking)', 'AU': 'Podzelinska K; Latimer R; Bhattacharya A; Vining LC; Zechel DL; Jia Z', 'MHDA': '2010/04/03 06:00', 'PHST': '2009/07/02 [received]; 2010/01/08 [revised]; 2010/01/10 [accepted]; 2010/01/18 [aheadofprint]', 'MH': 'Acids; Amino Acid Sequence; Aspartic Acid/*metabolism; Bacterial Proteins/*chemistry; Biocatalysis; Catalytic Domain; Chloramphenicol/*biosynthesis; Crystallography, X-Ray; Flavin-Adenine Dinucleotide/metabolism; Flavins/*metabolism; Halogenation; Models, Molecular; Molecular Sequence Data; Mutant Proteins/chemistry/metabolism; Oxidoreductases/*chemistry/*metabolism; Protein Denaturation; Protein Structure, Tertiary; Spectrometry, Mass, Electrospray Ionization; Static Electricity; Streptomyces/*enzymology; Structural Homology, Protein', 'EDAT': '2010/01/19 06:00', 'SI': 'PDB/3I3L', 'SO': 'J Mol Biol. 2010 Mar 19;397(1):316-31. doi: 10.1016/j.jmb.2010.01.020. Epub 2010', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 6500) {'LID': '10.1016/j.jmb.2010.01.020 [doi]', 'STAT': 'MEDLINE', 'IP': '1', 'DEP': '20100118', 'JID': '2985088R', 'DA': '20100301', 'AID': 'S0022-2836(10)00036-7 [pii]; 10.1016/j.jmb.2010.01.020 [doi]', 'FAU': 'Podzelinska, Kateryna; Latimer, Ryan; Bhattacharya, Anupam; Vining, Leo C; Zechel, David L; Jia, Zongchao', 'DP': '2010 Mar 19', 'GR': 'Canadian Institutes of Health Research/Canada', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2010/01/19 06:00', 'DCOM': '20100402', 'JT': 'Journal of molecular biology', 'LR': '20131121', 'PG': '316-31', 'TI': 'Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent; halogenase showing a covalent flavin-aspartate bond.', 'RN': '0 (Acids); 0 (Bacterial Proteins); 0 (Flavins); 0 (Mutant Proteins); 146-14-5 (Flavin-Adenine Dinucleotide); 30KYC7MIAI (Aspartic Acid); 66974FR9Q1 (Chloramphenicol); EC 1.- (Oxidoreductases)', 'PL': 'England', 'TA': 'J Mol Biol', 'CI': 'Copyright (c) 2010 Elsevier Ltd. All rights reserved.', 'AB': "Chloramphenicol is a halogenated natural product bearing an unusual; dichloroacetyl moiety that is critical for its antibiotic activity. The operon; for chloramphenicol biosynthesis in Streptomyces venezuelae encodes the; chloramphenicol halogenase CmlS, which belongs to the large and diverse family of; flavin-dependent halogenases (FDH's). CmlS was previously shown to be essential; for the formation of the dichloroacetyl group. Here we report the X-ray crystal; structure of CmlS determined at 2.2 A resolution, revealing a flavin; monooxygenase domain shared by all FDHs, but also a unique 'winged-helix'; C-terminal domain that creates a T-shaped tunnel leading to the halogenation; active site. Intriguingly, the C-terminal tail of this domain blocks access to; the halogenation active site, suggesting a structurally dynamic role during; catalysis. The halogenation active site is notably nonpolar and shares nearly; identical residues with Chondromyces crocatus tyrosyl halogenase (CndH),; including the conserved Lys (K71) that forms the reactive chloramine; intermediate. The exception is Y350, which could be used to stabilize enolate; formation during substrate halogenation. The strictly conserved residue E44,; located near the isoalloxazine ring of the bound flavin adenine dinucleotide; (FAD) cofactor, is optimally positioned to function as a remote general acid,; through a water-mediated proton relay, which could accelerate the reaction of the; chloramine intermediate during substrate halogenation, or the oxidation of; chloride by the FAD(C4alpha)-OOH intermediate. Strikingly, the 8alpha carbon of; the FAD cofactor is observed to be covalently attached to D277 of CmlS, a residue; that is highly conserved in the FDH family. In addition to representing a new; type of flavin modification, this has intriguing implications for the mechanism; of FDHs. Based on the crystal structure and in analogy to known halogenases, we; propose a reaction mechanism for CmlS.", 'AD': "Department of Biochemistry, Queen's University, Kingston, Ontario, Canada K7L; 3N6.", 'VI': '397', 'IS': '1089-8638 (Electronic); 0022-2836 (Linking)', 'AU': 'Podzelinska K; Latimer R; Bhattacharya A; Vining LC; Zechel DL; Jia Z', 'MHDA': '2010/04/03 06:00', 'PHST': '2009/07/02 [received]; 2010/01/08 [revised]; 2010/01/10 [accepted]; 2010/01/18 [aheadofprint]', 'MH': 'Acids; Amino Acid Sequence; Aspartic Acid/*metabolism; Bacterial Proteins/*chemistry; Biocatalysis; Catalytic Domain; Chloramphenicol/*biosynthesis; Crystallography, X-Ray; Flavin-Adenine Dinucleotide/metabolism; Flavins/*metabolism; Halogenation; Models, Molecular; Molecular Sequence Data; Mutant Proteins/chemistry/metabolism; Oxidoreductases/*chemistry/*metabolism; Protein Denaturation; Protein Structure, Tertiary; Spectrometry, Mass, Electrospray Ionization; Static Electricity; Streptomyces/*enzymology; Structural Homology, Protein', 'EDAT': '2010/01/19 06:00', 'SI': 'PDB/3I3L', 'SO': 'J Mol Biol. 2010 Mar 19;397(1):316-31. doi: 10.1016/j.jmb.2010.01.020. Epub 2010; Jan 18.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 6600) {'STAT': 'MEDLINE', 'IP': '12', 'DEP': '20091207', 'DA': '20091224', 'AID': 'JST.JSTAGE/bbb/90624 [pii]; 10.1271/bbb.90624 [doi]', 'FAU': 'Furuya, Toshiki; Kino, Kuniki', 'DP': '2009 Dec', 'OWN': 'NLM', 'PT': 'Journal Article', 'LA': 'eng', 'CRDT': '2009/12/08 06:00', 'DCOM': '20100308', 'JT': 'Bioscience, biotechnology, and biochemistry', 'PG': '2796-9', 'TI': 'Biocatalytic synthesis of dihydroxynaphthoic acids by cytochrome P450 CYP199A2.', 'RN': '0 (Naphthols); 9035-51-2 (Cytochrome P-450 Enzyme System)', 'PL': 'Japan', 'TA': 'Biosci Biotechnol Biochem', 'JID': '9205717', 'AB': 'CYP199A2, a bacterial P450 monooxygenase from Rhodopseudomonas palustris, was; found to exhibit oxidation activity towards three hydroxynaphthoic acids. Whole; cells of the recombinant Escherichia coli strain expressing CYP199A2 efficiently; catalyzed the regioselective oxidation of 1-, 3-, and 6-hydroxy-2-naphthoic acids; to produce 1,7-, 3,7-, and 6,7-dihydroxynaphthoic acid respectively. These; results suggest that CYP199A2 might be a useful oxidation biocatalyst for the; synthesis of dihydroxynaphthoic acids.', 'AD': 'Department of Applied Chemistry, Faculty of Science and Engineering, Waseda; University, Tokyo, Japan.', 'VI': '73', 'IS': '1347-6947 (Electronic); 0916-8451 (Linking)', 'AU': 'Furuya T; Kino K', 'MHDA': '2010/03/10 06:00', 'PHST': '2009/12/07 [aheadofprint]', 'MH': '*Biocatalysis; Chromatography, High Pressure Liquid; Cytochrome P-450 Enzyme System/*metabolism; Naphthols/chemistry/*metabolism; Rhodopseudomonas/enzymology', 'EDAT': '2009/12/08 06:00', 'SO': 'Biosci Biotechnol Biochem. 2009 Dec;73(12):2796-9. Epub 2009 Dec 7.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 6700) {'LID': '10.1016/j.chembiol.2009.09.017 [doi]', 'STAT': 'MEDLINE', 'IP': '10', 'JT': 'Chemistry & biology', 'MID': 'NIHMS152165', 'DA': '20091030', 'AID': 'S1074-5521(09)00327-5 [pii]; 10.1016/j.chembiol.2009.09.017 [doi]', 'FAU': 'Gao, Xue; Xie, Xinkai; Pashkov, Inna; Sawaya, Michael R; Laidman, Janel; Zhang, Wenjun; Cacho, Ralph; Yeates, Todd O; Tang, Yi', 'DP': '2009 Oct 30', 'GR': '1R21HL091197/HL/NHLBI NIH HHS/United States; R21 HL091197/HL/NHLBI NIH HHS/United States; R21 HL091197-02/HL/NHLBI NIH HHS/United States', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2009/10/31 06:00', 'DCOM': '20100122', 'LR': '20140921', 'PG': '1064-74', 'TI': 'Directed evolution and structural characterization of a simvastatin synthase.', 'RN': '0 (Recombinant Proteins); AGG2FN16EV (Simvastatin); EC 2.3.- (Acyltransferases)', 'PL': 'United States', 'TA': 'Chem Biol', 'JID': '9500160', 'AB': 'Enzymes from natural product biosynthetic pathways are attractive candidates for; creating tailored biocatalysts to produce semisynthetic pharmaceutical compounds.; LovD is an acyltransferase that converts the inactive monacolin J acid (MJA) into; the cholesterol-lowering lovastatin. LovD can also synthesize the blockbuster; drug simvastatin using MJA and a synthetic alpha-dimethylbutyryl thioester,; albeit with suboptimal properties as a biocatalyst. Here we used directed; evolution to improve the properties of LovD toward semisynthesis of simvastatin.; Mutants with improved catalytic efficiency, solubility, and thermal stability; were obtained, with the best mutant displaying an approximately 11-fold increase; in an Escherichia coli-based biocatalytic platform. To understand the structural; basis of LovD enzymology, seven X-ray crystal structures were determined,; including the parent LovD, an improved mutant G5, and G5 cocrystallized with; ligands. Comparisons between the structures reveal that beneficial mutations; stabilize the structure of G5 in a more compact conformation that is favorable; for catalysis.', 'AD': 'Department of Chemical and Biomolecular Engineering, University of California,; Los Angeles, Los Angeles, CA 90095, USA.', 'VI': '16', 'IS': '1879-1301 (Electronic); 1074-5521 (Linking)', 'PMC': 'PMC2798062', 'AU': 'Gao X; Xie X; Pashkov I; Sawaya MR; Laidman J; Zhang W; Cacho R; Yeates TO; Tang Y', 'MHDA': '2010/01/23 06:00', 'PHST': '2009/09/12 [received]; 2009/09/24 [revised]; 2009/09/28 [accepted]', 'OID': 'NLM: NIHMS152165; NLM: PMC2798062', 'MH': 'Acyltransferases/*chemistry/genetics/metabolism; Amino Acid Sequence; Biocatalysis; Catalytic Domain; Crystallography, X-Ray; Directed Molecular Evolution; Evolution, Molecular; Kinetics; Molecular Sequence Data; Mutagenesis, Site-Directed; Protein Structure, Tertiary; Recombinant Proteins/chemistry/genetics/metabolism; Sequence Alignment; Simvastatin/chemistry/*metabolism', 'EDAT': '2009/10/31 06:00', 'SI': 'PDB/3HL9; PDB/3HLB; PDB/3HLC; PDB/3HLD; PDB/3HLE; PDB/3HLF; PDB/3HLG', 'SO': 'Chem Biol. 2009 Oct 30;16(10):1064-74. doi: 10.1016/j.chembiol.2009.09.017.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 6800) {'LID': '10.1021/bi901353v [doi]', 'STAT': 'MEDLINE', 'IP': '44', 'JT': 'Biochemistry', 'MID': 'NIHMS151188', 'DA': '20091103', 'AID': '10.1021/bi901353v [doi]', 'FAU': 'Chakravorty, Dhruva K; Soudackov, Alexander V; Hammes-Schiffer, Sharon', 'DP': '2009 Nov 10', 'GR': 'GM56207/GM/NIGMS NIH HHS/United States; R01 GM056207/GM/NIGMS NIH HHS/United States; R01 GM056207-12/GM/NIGMS NIH HHS/United States', 'OWN': 'NLM', 'PT': 'Journal Article; Research Support, N.I.H., Extramural', 'LA': 'eng', 'CRDT': '2009/10/06 06:00', 'DCOM': '20091116', 'LR': '20140916', 'PG': '10608-19', 'TI': 'Hybrid quantum/classical molecular dynamics simulations of the proton transfer; reactions catalyzed by ketosteroid isomerase: analysis of hydrogen bonding,; conformational motions, and electrostatics.', 'RN': '0 (Protons); EC 5.3.3.- (Steroid Isomerases)', 'PL': 'United States', 'TA': 'Biochemistry', 'JID': '0370623', 'AB': 'Hybrid quantum/classical molecular dynamics simulations of the two proton; transfer reactions catalyzed by ketosteroid isomerase are presented. The; potential energy surfaces for the proton transfer reactions are described with; the empirical valence bond method. Nuclear quantum effects of the transferring; hydrogen increase the rates by a factor of approximately 8, and dynamical barrier; recrossings decrease the rates by a factor of 3-4. For both proton transfer; reactions, the donor-acceptor distance decreases substantially at the transition; state. The carboxylate group of the Asp38 side chain, which serves as the proton; acceptor and donor in the first and second steps, respectively, rotates; significantly between the two proton transfer reactions. The hydrogen-bonding; interactions within the active site are consistent with the hydrogen bonding of; both Asp99 and Tyr14 to the substrate. The simulations suggest that a hydrogen; bond between Asp99 and the substrate is present from the beginning of the first; proton transfer step, whereas the hydrogen bond between Tyr14 and the substrate; is virtually absent in the first part of this step but forms nearly concurrently; with the formation of the transition state. Both hydrogen bonds are present; throughout the second proton transfer step until partial dissociation of the; product. The hydrogen bond between Tyr14 and Tyr55 is present throughout both; proton transfer steps. The active site residues are more mobile during the first; step than during the second step. The van der Waals interaction energy between; the substrate and the enzyme remains virtually constant along the reaction; pathway, but the electrostatic interaction energy is significantly stronger for; the dienolate intermediate than for the reactant and product. Mobile loop regions; distal to the active site exhibit significant structural rearrangements and, in; some cases, qualitative changes in the electrostatic potential during the; catalytic reaction. These results suggest that relatively small conformational; changes of the enzyme active site and substrate strengthen the hydrogen bonds; that stabilize the intermediate, thereby facilitating the proton transfer; reactions. Moreover, the conformational and electrostatic changes associated with; these reactions are not limited to the active site but rather extend throughout; the entire enzyme.', 'AD': 'Department of Chemistry, 104 Chemistry Building, The Pennsylvania State; University, University Park, Pennsylvania 16802, USA.', 'VI': '48', 'IS': '1520-4995 (Electronic); 0006-2960 (Linking)', 'PMC': 'PMC2783618', 'AU': 'Chakravorty DK; Soudackov AV; Hammes-Schiffer S', 'MHDA': '2009/11/17 06:00', 'OID': 'NLM: NIHMS151188; NLM: PMC2783618', 'MH': 'Biocatalysis; Hydrogen Bonding; Models, Molecular; Protein Conformation; Protons; *Quantum Theory; *Static Electricity; Steroid Isomerases/*chemistry/metabolism', 'EDAT': '2009/10/06 06:00', 'SO': 'Biochemistry. 2009 Nov 10;48(44):10608-19. doi: 10.1021/bi901353v.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 6900) {'LID': '10.1021/jo9009563 [doi]', 'STAT': 'MEDLINE', 'IP': '18', 'JT': 'The Journal of organic chemistry', 'DA': '20090911', 'AID': '10.1021/jo9009563 [doi]', 'FAU': 'Cox, Brad M; Bilsborrow, Joshua B; Walker, Kevin D', 'DP': '2009 Sep 18', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, U.S. Gov't, Non-P.H.S.", 'LA': 'eng', 'CRDT': '2009/08/29 09:00', 'DCOM': '20100104', 'LR': '20131121', 'PG': '6953-9', 'TI': 'Enhanced conversion of racemic alpha-arylalanines to (R)-beta-arylalanines by; coupled racemase/aminomutase catalysis.', 'RN': '0 (Benzene Derivatives); EC 4.3.1.24 (Phenylalanine Ammonia-Lyase); EC 5.1.- (Racemases and Epimerases); OF5P57N2ZX (Alanine)', 'PL': 'United States', 'TA': 'J Org Chem', 'JID': '2985193R', 'AB': 'The Taxus phenylalanine aminomutase (PAM) enzyme converts several; (S)-alpha-arylalanines to their corresponding (R)-beta-arylalanines. After; incubating various racemic substrates with 100 microg of PAM for 20 h at 31; degrees C, each (S)-alpha-arylalanine was enantioselectively isomerized to its; corresponding (R)-beta-product. With racemic starting materials, the ratio of; (R)-beta-arylalanine product to the (S)-alpha-substrate ranged between 0.4 and; 1.8, and the remaining nonproductive (R)-alpha-arylalanine became enriched. To; utilize the (R)-alpha-isomer, the catalysis of a promiscuous alanine racemase; from Pseudomonas putida (KT2440) was coupled with that of PAM to increase the; production of enantiopure (R)-beta-arylalanines from racemic alpha-arylalanine; substrates. The inclusion of a biocatalytic racemization along with the; PAM-catalyzed reaction moderately increased the overall reaction yield of; enantiopure beta-arylalanines between 4% and 19% (depending on the arylalanine),; which corresponded to as much as a 63% increase compared to the turnover with the; aminomutase reaction alone. The use of these biocatalysts, in tandem, could; potentially find application in the production of chiral beta-arylalanine; building blocks, particularly, as refinements to the process are made that; increase reaction flux, such as by selectively removing the desired; (R)-beta-arylalanine product from the reaction mixture.', 'AD': 'Department of Chemistry, Michigan State University, East Lansing, Michigan 48824,; USA.', 'VI': '74', 'IS': '1520-6904 (Electronic); 0022-3263 (Linking)', 'AU': 'Cox BM; Bilsborrow JB; Walker KD', 'MHDA': '2010/01/05 06:00', 'MH': 'Alanine/analogs & derivatives/*biosynthesis/*chemistry; Benzene Derivatives/*chemistry; Binding Sites; Biocatalysis; Phenylalanine Ammonia-Lyase/*metabolism; Pseudomonas putida/*enzymology; Racemases and Epimerases/*metabolism; Stereoisomerism; Taxus/*enzymology', 'EDAT': '2009/08/29 09:00', 'SO': 'J Org Chem. 2009 Sep 18;74(18):6953-9. doi: 10.1021/jo9009563.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 7000) {'LID': '10.1016/j.bioelechem.2009.06.012 [doi]', 'STAT': 'MEDLINE', 'IP': '1', 'DEP': '20090624', 'DA': '20091005', 'AID': 'S1567-5394(09)00123-6 [pii]; 10.1016/j.bioelechem.2009.06.012 [doi]', 'FAU': 'Wang, Xuemei; Zhou, Jian; Tam, Tsz Kin; Katz, Evgeny; Pita, Marcos', 'DP': '2009 Nov', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.", 'LA': 'eng', 'CRDT': '2009/07/23 09:00', 'DCOM': '20100225', 'JT': 'Bioelectrochemistry (Amsterdam, Netherlands)', 'PG': '69-73', 'TI': 'Switchable electrode controlled by Boolean logic gates using enzymes as input; signals.', 'RN': '0 (Enzymes)', 'PL': 'Netherlands', 'TA': 'Bioelectrochemistry', 'JID': '100953583', 'AB': 'Application of Boolean logic operations performed by enzymes to control; electrochemical systems is presented. Indium-tin oxide (ITO) electrodes with the; surface modified with poly-4-vinyl pyridine (P4VP) brush were synthesized and; used as switchable electrochemical systems. The switch ON and OFF of the; electrode activity were achieved by pH changes generated in situ by biocatalytic; reactions in the presence of enzymes used as input signals. Two logic gates; operating as AND/OR Boolean functions were designed using invertase and glucose; oxidase or esterase and glucose oxidase as input signals, respectively. The; electrode surface coated with a shrunk P4VP polymer at neutral pH values was not; electrochemically active because of the blocking effect of the polymer film. The; positive outputs of the logic operations yielded a pH drop to acidic conditions,; resulting in the protonation and swelling of the P4VP polymer allowing; penetration of a soluble redox probe to the conducting support, thus switching; the electrode activity ON. The electrode interface was reset to the initial OFF; state, with the inhibited electrochemical reaction, upon in situ pH increase; generated by another enzymatic reaction in the presence of urease. Logically; processed biochemical inputs of various enzymes allowed reversible; activation-inactivation of the electrochemical reaction.', 'AD': 'State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096,; China.', 'VI': '77', 'IS': '1878-562X (Electronic); 1567-5394 (Linking)', 'AU': 'Wang X; Zhou J; Tam TK; Katz E; Pita M', 'MHDA': '2010/02/26 06:00', 'PHST': '2009/05/07 [received]; 2009/06/13 [revised]; 2009/06/17 [accepted]; 2009/06/24 [aheadofprint]', 'MH': 'Animals; Biocatalysis; Electric Impedance; Electrochemistry; Electrodes; Enzymes/chemistry/*metabolism; Hydrogen-Ion Concentration; *Logic; Time Factors', 'EDAT': '2009/07/23 09:00', 'SO': 'Bioelectrochemistry. 2009 Nov;77(1):69-73. doi: 10.1016/j.bioelechem.2009.06.012.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 7000) {'LID': '10.1016/j.bioelechem.2009.06.012 [doi]', 'STAT': 'MEDLINE', 'IP': '1', 'DEP': '20090624', 'DA': '20091005', 'AID': 'S1567-5394(09)00123-6 [pii]; 10.1016/j.bioelechem.2009.06.012 [doi]', 'FAU': 'Wang, Xuemei; Zhou, Jian; Tam, Tsz Kin; Katz, Evgeny; Pita, Marcos', 'DP': '2009 Nov', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.", 'LA': 'eng', 'CRDT': '2009/07/23 09:00', 'DCOM': '20100225', 'JT': 'Bioelectrochemistry (Amsterdam, Netherlands)', 'PG': '69-73', 'TI': 'Switchable electrode controlled by Boolean logic gates using enzymes as input; signals.', 'RN': '0 (Enzymes)', 'PL': 'Netherlands', 'TA': 'Bioelectrochemistry', 'JID': '100953583', 'AB': 'Application of Boolean logic operations performed by enzymes to control; electrochemical systems is presented. Indium-tin oxide (ITO) electrodes with the; surface modified with poly-4-vinyl pyridine (P4VP) brush were synthesized and; used as switchable electrochemical systems. The switch ON and OFF of the; electrode activity were achieved by pH changes generated in situ by biocatalytic; reactions in the presence of enzymes used as input signals. Two logic gates; operating as AND/OR Boolean functions were designed using invertase and glucose; oxidase or esterase and glucose oxidase as input signals, respectively. The; electrode surface coated with a shrunk P4VP polymer at neutral pH values was not; electrochemically active because of the blocking effect of the polymer film. The; positive outputs of the logic operations yielded a pH drop to acidic conditions,; resulting in the protonation and swelling of the P4VP polymer allowing; penetration of a soluble redox probe to the conducting support, thus switching; the electrode activity ON. The electrode interface was reset to the initial OFF; state, with the inhibited electrochemical reaction, upon in situ pH increase; generated by another enzymatic reaction in the presence of urease. Logically; processed biochemical inputs of various enzymes allowed reversible; activation-inactivation of the electrochemical reaction.', 'AD': 'State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096,; China.', 'VI': '77', 'IS': '1878-562X (Electronic); 1567-5394 (Linking)', 'AU': 'Wang X; Zhou J; Tam TK; Katz E; Pita M', 'MHDA': '2010/02/26 06:00', 'PHST': '2009/05/07 [received]; 2009/06/13 [revised]; 2009/06/17 [accepted]; 2009/06/24 [aheadofprint]', 'MH': 'Animals; Biocatalysis; Electric Impedance; Electrochemistry; Electrodes; Enzymes/chemistry/*metabolism; Hydrogen-Ion Concentration; *Logic; Time Factors', 'EDAT': '2009/07/23 09:00', 'SO': 'Bioelectrochemistry. 2009 Nov;77(1):69-73. doi: 10.1016/j.bioelechem.2009.06.012.; Epub 2009 Jun 24.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 7100) {'LID': '10.1016/j.bioelechem.2009.05.008 [doi]', 'STAT': 'MEDLINE', 'IP': '1', 'DEP': '20090530', 'DA': '20091005', 'AID': 'S1567-5394(09)00111-X [pii]; 10.1016/j.bioelechem.2009.05.008 [doi]', 'FAU': 'Wu, Xuee; Zhao, Feng; Varcoe, John R; Thumser, Alfred E; Avignone-Rossa, Claudio; Slade, Robert C T', 'DP': '2009 Nov', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2009/06/19 09:00', 'DCOM': '20100225', 'JT': 'Bioelectrochemistry (Amsterdam, Netherlands)', 'PG': '64-8', 'TI': 'Direct electron transfer of glucose oxidase immobilized in an ionic liquid; reconstituted cellulose-carbon nanotube matrix.', 'RN': '0 (1-butyl-3-methylimidazolium chloride); 0 (1-ethyl-3-methylimidazolium); 0 (Enzymes, Immobilized); 0 (Imidazoles); 0 (Ionic Liquids); 0 (Nanotubes, Carbon); 0 (Solutions); 0 (Solvents); 9004-34-6 (Cellulose); EC 1.1.3.4 (Glucose Oxidase)', 'PL': 'Netherlands', 'TA': 'Bioelectrochemistry', 'JID': '100953583', 'AB': 'Conductive cellulose-multiwalled carbon nanotube (MWCNT) matrix with a porous; structure and good biocompatibility has been prepared using a room temperature; ionic liquid (1-ethyl-3-methylimidazolium acetate) as solvent. Glucose oxidase; (GOx) was encapsulated in this matrix and thereby immobilized on a glassy carbon; surface. The direct electron transfer and electrocatalysis of the encapsulated; GOx has been investigated using cyclic voltammetry and chronoamperometry. The GOx; exhibited a pair of stable, well defined and nearly symmetric reversible redox; peaks. The experimental results also demonstrate that the immobilized GOx retains; its biocatalytic activity toward the oxidation of glucose and therefore can be; employed in a glucose biosensor. The results show that the bioelectrode modified; by the cellulose-MWCNT matrix has potential for use in biosensors and other; bioelectronics devices.', 'AD': 'Chemical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom.; [email protected]', 'VI': '77', 'IS': '1878-562X (Electronic); 1567-5394 (Linking)', 'AU': 'Wu X; Zhao F; Varcoe JR; Thumser AE; Avignone-Rossa C; Slade RC', 'MHDA': '2010/02/26 06:00', 'PHST': '2009/03/23 [received]; 2009/05/16 [revised]; 2009/05/23 [accepted]; 2009/05/30 [aheadofprint]', 'MH': 'Aspergillus niger/enzymology; Biocatalysis; Biosensing Techniques; Catalytic Domain; Cellulose/*chemistry; Electrochemistry; Electron Transport; Enzyme Stability; Enzymes, Immobilized/*chemistry/*metabolism; Glucose Oxidase/*chemistry/*metabolism; Hydrogen-Ion Concentration; Imidazoles/chemistry; Ionic Liquids/*chemistry; Nanotubes, Carbon/*chemistry; Reproducibility of Results; Solutions; Solvents/chemistry', 'EDAT': '2009/06/19 09:00', 'SO': 'Bioelectrochemistry. 2009 Nov;77(1):64-8. doi: 10.1016/j.bioelechem.2009.05.008.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 7100) {'LID': '10.1016/j.bioelechem.2009.05.008 [doi]', 'STAT': 'MEDLINE', 'IP': '1', 'DEP': '20090530', 'DA': '20091005', 'AID': 'S1567-5394(09)00111-X [pii]; 10.1016/j.bioelechem.2009.05.008 [doi]', 'FAU': 'Wu, Xuee; Zhao, Feng; Varcoe, John R; Thumser, Alfred E; Avignone-Rossa, Claudio; Slade, Robert C T', 'DP': '2009 Nov', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2009/06/19 09:00', 'DCOM': '20100225', 'JT': 'Bioelectrochemistry (Amsterdam, Netherlands)', 'PG': '64-8', 'TI': 'Direct electron transfer of glucose oxidase immobilized in an ionic liquid; reconstituted cellulose-carbon nanotube matrix.', 'RN': '0 (1-butyl-3-methylimidazolium chloride); 0 (1-ethyl-3-methylimidazolium); 0 (Enzymes, Immobilized); 0 (Imidazoles); 0 (Ionic Liquids); 0 (Nanotubes, Carbon); 0 (Solutions); 0 (Solvents); 9004-34-6 (Cellulose); EC 1.1.3.4 (Glucose Oxidase)', 'PL': 'Netherlands', 'TA': 'Bioelectrochemistry', 'JID': '100953583', 'AB': 'Conductive cellulose-multiwalled carbon nanotube (MWCNT) matrix with a porous; structure and good biocompatibility has been prepared using a room temperature; ionic liquid (1-ethyl-3-methylimidazolium acetate) as solvent. Glucose oxidase; (GOx) was encapsulated in this matrix and thereby immobilized on a glassy carbon; surface. The direct electron transfer and electrocatalysis of the encapsulated; GOx has been investigated using cyclic voltammetry and chronoamperometry. The GOx; exhibited a pair of stable, well defined and nearly symmetric reversible redox; peaks. The experimental results also demonstrate that the immobilized GOx retains; its biocatalytic activity toward the oxidation of glucose and therefore can be; employed in a glucose biosensor. The results show that the bioelectrode modified; by the cellulose-MWCNT matrix has potential for use in biosensors and other; bioelectronics devices.', 'AD': 'Chemical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom.; [email protected]', 'VI': '77', 'IS': '1878-562X (Electronic); 1567-5394 (Linking)', 'AU': 'Wu X; Zhao F; Varcoe JR; Thumser AE; Avignone-Rossa C; Slade RC', 'MHDA': '2010/02/26 06:00', 'PHST': '2009/03/23 [received]; 2009/05/16 [revised]; 2009/05/23 [accepted]; 2009/05/30 [aheadofprint]', 'MH': 'Aspergillus niger/enzymology; Biocatalysis; Biosensing Techniques; Catalytic Domain; Cellulose/*chemistry; Electrochemistry; Electron Transport; Enzyme Stability; Enzymes, Immobilized/*chemistry/*metabolism; Glucose Oxidase/*chemistry/*metabolism; Hydrogen-Ion Concentration; Imidazoles/chemistry; Ionic Liquids/*chemistry; Nanotubes, Carbon/*chemistry; Reproducibility of Results; Solutions; Solvents/chemistry', 'EDAT': '2009/06/19 09:00', 'SO': 'Bioelectrochemistry. 2009 Nov;77(1):64-8. doi: 10.1016/j.bioelechem.2009.05.008.; Epub 2009 May 30.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 7200) {'LID': '10.1002/jcb.22190 [doi]', 'STAT': 'MEDLINE', 'IP': '5', 'JT': 'Journal of cellular biochemistry', 'JID': '8205768', 'DA': '20090722', 'AID': '10.1002/jcb.22190 [doi]', 'FAU': 'Tseng, Huan-Chin; Lin, Han-Jia; Tang, Jyh-Bing; Gandhi, P S Sudhakar; Chang, Wei-Chao; Chen, Yee-Hsiung', 'DP': '2009 Aug 1', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2009/05/20 09:00', 'DCOM': '20091013', 'LR': '20131121', 'PG': '899-907', 'TI': 'Identification of the major TG4 cross-linking sites in the androgen-dependent SVS; I exclusively expressed in mouse seminal vesicle.', 'RN': '0 (Amines); 0 (Androgens); 0 (Codon); 0 (Cross-Linking Reagents); 0 (Membrane Glycoproteins); 0 (Peptides); 0 (RNA, Messenger); 0 (Recombinant Proteins); 0 (SVS-1 protein, mouse); 115416-38-1 (5-(biotinamido)pentylamine); 6SO6U10H04 (Biotin); 9014-25-9 (RNA, Transfer); EC 2.3.2.- (transglutaminase 2); EC 2.3.2.- (transglutaminase 4); EC 2.3.2.13 (Transglutaminases); EC 3.6.1.- (GTP-Binding Proteins)', 'PL': 'United States', 'TA': 'J Cell Biochem', 'CI': '(c) 2009 Wiley-Liss, Inc.', 'AB': "SVS I was exclusively expressed in seminal vesicle in which the protein was; immunolocalized primarily to the luminal epithelium of mucosal folds. The; developmental profile of its mRNA expression was shown to be androgen-dependent,; manifesting a positive correlation with the animal's maturation. There are 43; glutamine and 43 lysine residues in one molecule of SVS I, which is one of the; seven major monomer proteins tentatively assigned on reducing SDS-PAGE during the; resolution of mouse seminal vesicle secretion. Based on the fact that SVS; I-deduced protein sequence consists of 796 amino acid residues, we produced 7; recombinant polypeptide fragments including residues 1-78/F1, residues 79-259/F2,; residues 260-405/F3, residues 406-500/F4, residues 501-650/F5, residues; 651-715/F6, and residues 716-796/F7, and measured the covalent incorporation of; 5-(biotinamido)pentylamine (BPNH(2)) or biotin-TVQQEL (A25 peptide) to each of; F1-to-F7 by type 4 transglutaminase (TG(4)) from the coagulating gland secretion.; F2 was active to a greater extent than the other fragments during the; BPNH(2)-glutamine incorporation, and a relatively low extent of A25-lysine cross; link was observed with all of the seven fragments. The MS analysis of BPNH(2)-F2; conjugate identified Q(232) and Q(254) as the two major TG(4) cross-linking; sites. This was substantiated by the result that much less BPNH(2) was; cross-linked to any one of the three F2 mutants, including Q232G and Q254G; obtained from single-site mutation, and Q232G/Q254G from double-site mutation.", 'AD': 'Institute of Biochemical Sciences, College of Life Science, National Taiwan; University, Taipei, Taiwan.', 'VI': '107', 'IS': '1097-4644 (Electronic); 0730-2312 (Linking)', 'AU': 'Tseng HC; Lin HJ; Tang JB; Gandhi PS; Chang WC; Chen YH', 'MHDA': '2009/10/14 06:00', 'MH': 'Amines/pharmacology; Amino Acid Sequence; Androgens/*pharmacology; Animals; Base Sequence; Biocatalysis/drug effects; Biotin/analogs & derivatives/pharmacology; Biotinylation/drug effects; Codon/genetics; Cross-Linking Reagents/*metabolism; Epithelium/drug effects/metabolism; GTP-Binding Proteins/metabolism; Male; Membrane Glycoproteins/chemistry/genetics/*metabolism; Mice; Molecular Sequence Data; Peptides/metabolism; RNA, Messenger/genetics/metabolism; RNA, Transfer/genetics; Recombinant Proteins/metabolism; Seminal Vesicles/*drug effects/*enzymology; Transglutaminases/*metabolism', 'EDAT': '2009/05/20 09:00', 'SO': 'J Cell Biochem. 2009 Aug 1;107(5):899-907. doi: 10.1002/jcb.22190.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 7300) {'LID': '10.1021/bm900205r [doi]', 'STAT': 'MEDLINE', 'IP': '6', 'JT': 'Biomacromolecules', 'DA': '20090608', 'AID': '10.1021/bm900205r [doi]', 'FAU': 'Ge, Jun; Lu, Diannan; Wang, Jun; Liu, Zheng', 'DP': '2009 Jun 8', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2009/04/14 09:00', 'DCOM': '20091009', 'LR': '20131121', 'PG': '1612-8', 'TI': 'Lipase nanogel catalyzed transesterification in anhydrous dimethyl sulfoxide.', 'RN': '0 (Gels); EC 3.1.1.3 (Lipase); YOW8V9698H (Dimethyl Sulfoxide)', 'PL': 'United States', 'TA': 'Biomacromolecules', 'JID': '100892849', 'AB': 'The present work showed that Candida rugosa lipase, which is inactive in; anhydrous dimethyl sulfoxide (DMSO), has been granted its original catalytic; activity and greatly enhanced stability when encapsulated into a polyacrylamide; nanogel. The molecular simulation and structural analysis suggested that the; polyacrylamide nanogel shielded the extraction of essential water and maintained; the native configuration of encapsulated lipase in anhydrous DMSO at an elevated; temperature. The electron and fluorescence microscopy showed that the lipase; nanogel would be well dispersed in anhydrous DMSO where its native counterpart; aggregated. The encapsulated lipase behaved as a stable catalyst for; transesterification between dextran and vinyl decanoate in anhydrous DMSO at 60; degrees C for 240 h and yielded a dextran-based polymeric surfactant with; regioselectivity toward the C-2 hydroxyl group in the glucopyranosyl unit of; dextran. All these indicated a high potential of enzyme nanogel for nonaqueous; biocatalysis.', 'AD': 'Department of Chemical Engineering, Tsinghua University, Beijing, China.', 'VI': '10', 'IS': '1526-4602 (Electronic); 1525-7797 (Linking)', 'AU': 'Ge J; Lu D; Wang J; Liu Z', 'MHDA': '2009/10/10 06:00', 'MH': 'Biocatalysis; Candida/enzymology; Dimethyl Sulfoxide/*chemistry; Esterification; Gels; Hydrogen Bonding; Lipase/*metabolism; Microscopy, Electron, Scanning; Microscopy, Electron, Transmission; *Nanostructures', 'EDAT': '2009/04/14 09:00', 'SO': 'Biomacromolecules. 2009 Jun 8;10(6):1612-8. doi: 10.1021/bm900205r.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 7400) {'STAT': 'Publisher', 'IP': '4', 'JT': 'Inorganica chimica acta', 'MID': 'NIHMS43142', 'DA': '20110404', 'AID': '10.1016/j.ica.2007.06.047 [doi]', 'CRDT': '2009/03/06 09:00', 'DP': '2008 Mar 3', 'GR': 'R01 GM047365/GM/NIGMS NIH HHS/United States; R01 GM047365-13/GM/NIGMS NIH HHS/United States; R01 GM047365-14/GM/NIGMS NIH HHS/United States; R01 GM047365-15/GM/NIGMS NIH HHS/United States; R01 GM047365-16/GM/NIGMS NIH HHS/United States', 'OWN': 'NLM', 'PT': 'JOURNAL ARTICLE', 'LA': 'ENG', 'FAU': 'York, John T; Bar-Nahum, Itsik; Tolman, William B', 'PG': '885-893', 'TI': 'Copper-Sulfur Complexes Supported by N-Donor Ligands: Towards Models of the Cu(Z); Site in Nitrous Oxide Reductase.', 'TA': 'Inorganica Chim Acta', 'JID': '9875013', 'AB': 'The distinctive structure of the [(his)(7)Cu(4)(mu-S)](n+) cluster in the "Cu(Z)"; active site of nitrous oxide reductase and the intriguing mechanistic hypotheses; for its catalytic reactivity provide inspiration for synthetic model studies; aimed at characterizing relevant copper-sulfur compounds and obtaining; fundamental insights into structure and bonding. In this brief review, we; summarize such studies that have focused on the synthesis and characterization of; a range of copper-sulfur complexes supported by N-donor ligands. Compounds with; variable nuclearities and sulfur redox levels have been isolated, with the nature; of the species obtained being dependent on the supporting ligand, sulfur source,; and the reaction conditions. Spectroscopic data and theoretical calculations,; often performed with a view toward drawing comparisons to oxygen analogs, have; provided insight into the nature of the copper-sulfur bonding interactions in the; complexes.', 'AD': 'Department of Chemistry and Center for Metals in Biocatalysis, University of; Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, USA.', 'VI': '361', 'IS': '0020-1693 (Print); 0020-1693 (Linking)', 'PMC': 'PMC2390864', 'AU': 'York JT; Bar-Nahum I; Tolman WB', 'MHDA': '2009/03/06 09:00', 'EDAT': '2009/03/06 09:00', 'SO': 'Inorganica Chim Acta. 2008 Mar 3;361(4):885-893.', 'PST': 'ppublish'} () ('Stored article number', 7500) {'LID': '10.1016/j.febslet.2009.01.004 [doi]', 'STAT': 'MEDLINE', 'IP': '3', 'DEP': '20090121', 'DA': '20090202', 'AID': 'S0014-5793(09)00031-3 [pii]; 10.1016/j.febslet.2009.01.004 [doi]', 'FAU': 'Pilet, Eric; Nicolet, Yvain; Mathevon, Carole; Douki, Thierry; Fontecilla-Camps, Juan C; Fontecave, Marc', 'DP': '2009 Feb 4', 'OWN': 'NLM', 'PT': 'Journal Article', 'LA': 'eng', 'CRDT': '2009/01/27 09:00', 'DCOM': '20090216', 'JT': 'FEBS letters', 'LR': '20091119', 'PG': '506-11', 'TI': 'The role of the maturase HydG in [FeFe]-hydrogenase active site synthesis and; assembly.', 'RN': '0 (Bacterial Proteins); 0 (Iron-Sulfur Proteins); 0 (Ligands); EC 1.12.- (iron hydrogenase); EC 1.12.7.2 (Hydrogenase); EC 2.7.7.- (Nucleotidyltransferases); EC 3.1.- (Endoribonucleases)', 'PL': 'Netherlands', 'TA': 'FEBS Lett', 'JID': '0155157', 'AB': '[FeFe]-hydrogenases catalyze the protons/hydrogen interconversion through a; unique di-iron active site consisting of three CO and two CN ligands, and a; non-protein SCH(2)XCH(2)S (X=N or O) dithiolate bridge. Site assembly requires; two "Radical-S-adenosylmethionine (SAM or AdoMet)" iron-sulfur enzymes, HydE and; HydG, and one GTPase, HydF. The sequence homology between HydG and ThiH, a; Radical-SAM enzyme which cleaves tyrosine into p-cresol and dehydroglycine, and; the finding of a similar cleavage reaction catalyzed by HydG suggests a mechanism; for hydrogenase maturation. Here we propose that HydG is specifically involved in; the synthesis of the dithiolate ligand, with two tyrosine-derived dehydroglycines; as precursors along with an [FeS] cluster of HydG functioning both as electron; shuttle and source of the sulfur atoms.', 'AD': 'Laboratoire de Chimie et Biologie des Metaux, Universite Joseph Fourier, UMR; 5249-CNRS, IRTSV/CEA-Grenoble, Grenoble Cedex, France.', 'VI': '583', 'IS': '1873-3468 (Electronic); 0014-5793 (Linking)', 'AU': 'Pilet E; Nicolet Y; Mathevon C; Douki T; Fontecilla-Camps JC; Fontecave M', 'MHDA': '2009/02/17 09:00', 'PHST': '2008/12/04 [received]; 2009/01/07 [revised]; 2009/01/08 [accepted]; 2009/01/21 [aheadofprint]', 'MH': 'Amino Acid Sequence; Bacterial Proteins/chemistry/*metabolism; Biocatalysis; Catalytic Domain; Endoribonucleases/chemistry/*metabolism; Hydrogenase/chemistry/*metabolism; Iron-Sulfur Proteins/chemistry/*metabolism; Ligands; Models, Molecular; Molecular Sequence Data; Nucleotidyltransferases/chemistry/*metabolism; Sequence Alignment; Sequence Homology, Amino Acid', 'EDAT': '2009/01/27 09:00', 'SO': 'FEBS Lett. 2009 Feb 4;583(3):506-11. doi: 10.1016/j.febslet.2009.01.004. Epub', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 7500) {'LID': '10.1016/j.febslet.2009.01.004 [doi]', 'STAT': 'MEDLINE', 'IP': '3', 'DEP': '20090121', 'DA': '20090202', 'AID': 'S0014-5793(09)00031-3 [pii]; 10.1016/j.febslet.2009.01.004 [doi]', 'FAU': 'Pilet, Eric; Nicolet, Yvain; Mathevon, Carole; Douki, Thierry; Fontecilla-Camps, Juan C; Fontecave, Marc', 'DP': '2009 Feb 4', 'OWN': 'NLM', 'PT': 'Journal Article', 'LA': 'eng', 'CRDT': '2009/01/27 09:00', 'DCOM': '20090216', 'JT': 'FEBS letters', 'LR': '20091119', 'PG': '506-11', 'TI': 'The role of the maturase HydG in [FeFe]-hydrogenase active site synthesis and; assembly.', 'RN': '0 (Bacterial Proteins); 0 (Iron-Sulfur Proteins); 0 (Ligands); EC 1.12.- (iron hydrogenase); EC 1.12.7.2 (Hydrogenase); EC 2.7.7.- (Nucleotidyltransferases); EC 3.1.- (Endoribonucleases)', 'PL': 'Netherlands', 'TA': 'FEBS Lett', 'JID': '0155157', 'AB': '[FeFe]-hydrogenases catalyze the protons/hydrogen interconversion through a; unique di-iron active site consisting of three CO and two CN ligands, and a; non-protein SCH(2)XCH(2)S (X=N or O) dithiolate bridge. Site assembly requires; two "Radical-S-adenosylmethionine (SAM or AdoMet)" iron-sulfur enzymes, HydE and; HydG, and one GTPase, HydF. The sequence homology between HydG and ThiH, a; Radical-SAM enzyme which cleaves tyrosine into p-cresol and dehydroglycine, and; the finding of a similar cleavage reaction catalyzed by HydG suggests a mechanism; for hydrogenase maturation. Here we propose that HydG is specifically involved in; the synthesis of the dithiolate ligand, with two tyrosine-derived dehydroglycines; as precursors along with an [FeS] cluster of HydG functioning both as electron; shuttle and source of the sulfur atoms.', 'AD': 'Laboratoire de Chimie et Biologie des Metaux, Universite Joseph Fourier, UMR; 5249-CNRS, IRTSV/CEA-Grenoble, Grenoble Cedex, France.', 'VI': '583', 'IS': '1873-3468 (Electronic); 0014-5793 (Linking)', 'AU': 'Pilet E; Nicolet Y; Mathevon C; Douki T; Fontecilla-Camps JC; Fontecave M', 'MHDA': '2009/02/17 09:00', 'PHST': '2008/12/04 [received]; 2009/01/07 [revised]; 2009/01/08 [accepted]; 2009/01/21 [aheadofprint]', 'MH': 'Amino Acid Sequence; Bacterial Proteins/chemistry/*metabolism; Biocatalysis; Catalytic Domain; Endoribonucleases/chemistry/*metabolism; Hydrogenase/chemistry/*metabolism; Iron-Sulfur Proteins/chemistry/*metabolism; Ligands; Models, Molecular; Molecular Sequence Data; Nucleotidyltransferases/chemistry/*metabolism; Sequence Alignment; Sequence Homology, Amino Acid', 'EDAT': '2009/01/27 09:00', 'SO': 'FEBS Lett. 2009 Feb 4;583(3):506-11. doi: 10.1016/j.febslet.2009.01.004. Epub; 2009 Jan 21.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 7600) {'LID': '10.1093/jb/mvn166 [doi]', 'STAT': 'MEDLINE', 'IP': '3', 'DEP': '20081206', 'DA': '20090303', 'AID': 'mvn166 [pii]; 10.1093/jb/mvn166 [doi]', 'FAU': 'Yasukawa, Kiyoshi; Mizuno, Masaki; Inouye, Kuniyo', 'DP': '2009 Mar', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2008/12/09 09:00', 'DCOM': '20090609', 'JT': 'Journal of biochemistry', 'PG': '315-24', 'TI': 'Characterization of Moloney murine leukaemia virus/avian myeloblastosis virus; chimeric reverse transcriptases.', 'RN': '0 (Recombinant Proteins); EC 2.7.7.49 (RNA-Directed DNA Polymerase); EC 3.1.26.4 (Ribonuclease H)', 'PL': 'Japan', 'TA': 'J Biochem', 'JID': '0376600', 'AB': 'Reverse transcriptases (RTs) from Moloney murine leukaemia virus (MMLV) and avian; myeloblastosis virus (AMV) contain all the fingers, palm, thumb, connection and; RNase H domains. The fingers, palm and thumb domains are thought to be involved; in the reverse transcription activity, and the RNase H domain is in the RNase H; activity. In this study, we characterized four chimeric RTs which comprise one of; the fingers, palm, thumb and RNase H domains originated from AMV RT and the other; three and connection domains originated from MMLV RT. Unexpectedly, all chimeric; RTs exhibited the same characteristics: their specific reverse transcription; activities decreased to less than 0.1% of that of MMLV RT, while their specific; RNase H activities were approximately 20% of that of MMLV RT. The decreases in; the two activities of the chimeric RTs were ascribed to the decreases in k(cat).; Based on that the reverse transcription activity of MMLV RT was impaired by; substituting its RNase H domain with that from AMV RT, we propose that in MMLV; RT, there might be an interaction between the fingers/palm/thumb domain and the; RNase H domain.', 'AD': 'Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto; University, Sakyo-ku, Kyoto 606-8502, Japan. [email protected]', 'VI': '145', 'IS': '1756-2651 (Electronic); 0021-924X (Linking)', 'AU': 'Yasukawa K; Mizuno M; Inouye K', 'MHDA': '2009/06/10 09:00', 'PHST': '2008/12/06 [aheadofprint]', 'MH': 'Amino Acid Sequence; Avian myeloblastosis virus/*enzymology; Biocatalysis; Cloning, Molecular; Electrophoresis, Polyacrylamide Gel; Kinetics; Molecular Sequence Data; Moloney murine leukemia virus/*enzymology; RNA-Directed DNA Polymerase/chemistry/*metabolism; Recombinant Proteins/chemistry/*metabolism; Reverse Transcription; Ribonuclease H/metabolism; Sequence Alignment; Temperature', 'EDAT': '2008/12/09 09:00', 'SO': 'J Biochem. 2009 Mar;145(3):315-24. doi: 10.1093/jb/mvn166. Epub 2008 Dec 6.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 7700) {'LID': '10.1016/j.jmb.2008.09.090 [doi]', 'STAT': 'MEDLINE', 'IP': '5', 'DEP': '20081014', 'DA': '20081205', 'AID': 'S0022-2836(08)01258-8 [pii]; 10.1016/j.jmb.2008.09.090 [doi]', 'FAU': 'Atkin, Kate E; Reiss, Renate; Koehler, Valentin; Bailey, Kevin R; Hart, Sam; Turkenburg, Johan P; Turner, Nicholas J; Brzozowski, A Marek; Grogan, Gideon', 'DP': '2008 Dec 31', 'GR': 'Biotechnology and Biological Sciences Research Council/United Kingdom', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2008/10/28 09:00', 'DCOM': '20090107', 'JT': 'Journal of molecular biology', 'LR': '20131121', 'PG': '1218-31', 'TI': 'The structure of monoamine oxidase from Aspergillus niger provides a molecular; context for improvements in activity obtained by directed evolution.', 'RN': '0 (Mutant Proteins); 146-14-5 (Flavin-Adenine Dinucleotide); 9DLQ4CIU6V (Proline); EC 1.4.3.4 (Monoamine Oxidase)', 'PL': 'England', 'TA': 'J Mol Biol', 'JID': '2985088R', 'AB': "Monoamine oxidase from Aspergillus niger (MAO-N) is a flavoenzyme that catalyses; the oxidative deamination of primary amines. MAO-N has been used as the starting; model for a series of directed evolution experiments, resulting in mutants of; improved activity and broader substrate specificity, suitable for application in; the preparative deracemisation of primary, secondary and tertiary amines when; used as part of a chemoenzymatic oxidation-reduction cycle. The structures of a; three-point mutant (Asn336Ser/Met348Lys/Ile246Met or MAO-N-D3) and a five-point; mutant (Asn336Ser/Met348Lys/Ile246Met/Thr384Asn/Asp385Ser or MAO-N-D5) have been; obtained using a multiple-wavelength anomalous diffraction experiment on a; selenomethionine derivative of the truncated MAO-N-D5 enzyme. MAO-N exists as a; homotetramer with a large channel at its centre and shares some structural; features with human MAO B (MAO-B). A hydrophobic cavity extends from the protein; surface to the active site, where a non-covalently bound flavin adenine; dinucleotide (FAD) sits at the base of an 'aromatic cage,' the sides of which are; formed by Trp430 and Phe466. A molecule of l-proline was observed near the FAD,; and this ligand superimposed well with isatin, a reversible inhibitor of MAO-B,; when the structures of MAO-N proline and MAO-B-isatin were overlaid. Of the; mutations that confer the ability to catalyse the oxidation of secondary amines; in MAO-N-D3, Asn336Ser reduces steric bulk behind Trp430 of the aromatic cage and; Ile246Met confers greater flexibility within the substrate binding site. The two; additional mutations, Thr384Asn and Asp385Ser, that occur in the MAO-N-D5; variant, which is able to oxidise tertiary amines, appear to influence the; active-site environment remotely through changes in tertiary structure that; perturb the side chain of Phe382, again altering the steric and electronic; character of the active site near FAD. The possible implications of the change in; steric and electronic environment caused by relevant mutations are discussed with; respect to the improved catalytic efficiency of the MAO-N variants described in; the literature.", 'AD': 'York Structural Biology Laboratory, Department of Chemistry, University of York,; York YO10 5YW, UK.', 'VI': '384', 'IS': '1089-8638 (Electronic); 0022-2836 (Linking)', 'AU': 'Atkin KE; Reiss R; Koehler V; Bailey KR; Hart S; Turkenburg JP; Turner NJ; Brzozowski AM; Grogan G', 'MHDA': '2009/01/08 09:00', 'PHST': '2008/08/29 [received]; 2008/09/26 [revised]; 2008/09/29 [accepted]; 2008/10/14 [aheadofprint]', 'MH': 'Amino Acid Sequence; Aspergillus niger/*enzymology/genetics; Binding Sites; Biocatalysis; Catalytic Domain; *Directed Molecular Evolution; Flavin-Adenine Dinucleotide/metabolism; Humans; Hydrophobic and Hydrophilic Interactions; Isomerism; Molecular Sequence Data; Monoamine Oxidase/*chemistry/genetics/*metabolism; Mutant Proteins/chemistry; Mutation/genetics; Oxidation-Reduction; Proline/metabolism; Protein Structure, Secondary; Sequence Alignment; Static Electricity; Substrate Specificity', 'EDAT': '2008/10/28 09:00', 'SI': 'PDB/2VVL; PDB/2VVM', 'SO': 'J Mol Biol. 2008 Dec 31;384(5):1218-31. doi: 10.1016/j.jmb.2008.09.090. Epub 2008', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 7700) {'LID': '10.1016/j.jmb.2008.09.090 [doi]', 'STAT': 'MEDLINE', 'IP': '5', 'DEP': '20081014', 'DA': '20081205', 'AID': 'S0022-2836(08)01258-8 [pii]; 10.1016/j.jmb.2008.09.090 [doi]', 'FAU': 'Atkin, Kate E; Reiss, Renate; Koehler, Valentin; Bailey, Kevin R; Hart, Sam; Turkenburg, Johan P; Turner, Nicholas J; Brzozowski, A Marek; Grogan, Gideon', 'DP': '2008 Dec 31', 'GR': 'Biotechnology and Biological Sciences Research Council/United Kingdom', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2008/10/28 09:00', 'DCOM': '20090107', 'JT': 'Journal of molecular biology', 'LR': '20131121', 'PG': '1218-31', 'TI': 'The structure of monoamine oxidase from Aspergillus niger provides a molecular; context for improvements in activity obtained by directed evolution.', 'RN': '0 (Mutant Proteins); 146-14-5 (Flavin-Adenine Dinucleotide); 9DLQ4CIU6V (Proline); EC 1.4.3.4 (Monoamine Oxidase)', 'PL': 'England', 'TA': 'J Mol Biol', 'JID': '2985088R', 'AB': "Monoamine oxidase from Aspergillus niger (MAO-N) is a flavoenzyme that catalyses; the oxidative deamination of primary amines. MAO-N has been used as the starting; model for a series of directed evolution experiments, resulting in mutants of; improved activity and broader substrate specificity, suitable for application in; the preparative deracemisation of primary, secondary and tertiary amines when; used as part of a chemoenzymatic oxidation-reduction cycle. The structures of a; three-point mutant (Asn336Ser/Met348Lys/Ile246Met or MAO-N-D3) and a five-point; mutant (Asn336Ser/Met348Lys/Ile246Met/Thr384Asn/Asp385Ser or MAO-N-D5) have been; obtained using a multiple-wavelength anomalous diffraction experiment on a; selenomethionine derivative of the truncated MAO-N-D5 enzyme. MAO-N exists as a; homotetramer with a large channel at its centre and shares some structural; features with human MAO B (MAO-B). A hydrophobic cavity extends from the protein; surface to the active site, where a non-covalently bound flavin adenine; dinucleotide (FAD) sits at the base of an 'aromatic cage,' the sides of which are; formed by Trp430 and Phe466. A molecule of l-proline was observed near the FAD,; and this ligand superimposed well with isatin, a reversible inhibitor of MAO-B,; when the structures of MAO-N proline and MAO-B-isatin were overlaid. Of the; mutations that confer the ability to catalyse the oxidation of secondary amines; in MAO-N-D3, Asn336Ser reduces steric bulk behind Trp430 of the aromatic cage and; Ile246Met confers greater flexibility within the substrate binding site. The two; additional mutations, Thr384Asn and Asp385Ser, that occur in the MAO-N-D5; variant, which is able to oxidise tertiary amines, appear to influence the; active-site environment remotely through changes in tertiary structure that; perturb the side chain of Phe382, again altering the steric and electronic; character of the active site near FAD. The possible implications of the change in; steric and electronic environment caused by relevant mutations are discussed with; respect to the improved catalytic efficiency of the MAO-N variants described in; the literature.", 'AD': 'York Structural Biology Laboratory, Department of Chemistry, University of York,; York YO10 5YW, UK.', 'VI': '384', 'IS': '1089-8638 (Electronic); 0022-2836 (Linking)', 'AU': 'Atkin KE; Reiss R; Koehler V; Bailey KR; Hart S; Turkenburg JP; Turner NJ; Brzozowski AM; Grogan G', 'MHDA': '2009/01/08 09:00', 'PHST': '2008/08/29 [received]; 2008/09/26 [revised]; 2008/09/29 [accepted]; 2008/10/14 [aheadofprint]', 'MH': 'Amino Acid Sequence; Aspergillus niger/*enzymology/genetics; Binding Sites; Biocatalysis; Catalytic Domain; *Directed Molecular Evolution; Flavin-Adenine Dinucleotide/metabolism; Humans; Hydrophobic and Hydrophilic Interactions; Isomerism; Molecular Sequence Data; Monoamine Oxidase/*chemistry/genetics/*metabolism; Mutant Proteins/chemistry; Mutation/genetics; Oxidation-Reduction; Proline/metabolism; Protein Structure, Secondary; Sequence Alignment; Static Electricity; Substrate Specificity', 'EDAT': '2008/10/28 09:00', 'SI': 'PDB/2VVL; PDB/2VVM', 'SO': 'J Mol Biol. 2008 Dec 31;384(5):1218-31. doi: 10.1016/j.jmb.2008.09.090. Epub 2008; Oct 14.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 7800) {'LID': '10.1263/jbb.106.65 [doi]', 'STAT': 'MEDLINE', 'IP': '1', 'JT': 'Journal of bioscience and bioengineering', 'DA': '20080811', 'AID': 'S1389-1723(08)70143-9 [pii]; 10.1263/jbb.106.65 [doi]', 'FAU': 'Yu, Hui-Lei; Xu, Jian-He; Su, Jin-Huan; Lu, Wen-Ya; Lin, Guo-Qiang', 'DP': '2008 Jul', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2008/08/12 09:00', 'DCOM': '20081017', 'PG': '65-8', 'TI': 'Synthesis of novel salidroside esters by lipase-mediated acylation with various; functional acyl groups.', 'RN': '0 (Esters); 0 (Glucosides); 0 (Phenols); 10338-51-9 (rhodioloside); EC 3.1.1.- (Novozyme 435); EC 3.1.1.3 (Lipase)', 'PL': 'Japan', 'TA': 'J Biosci Bioeng', 'JID': '100888800', 'AB': "Salidroside, a natural glycoside, was enzymatically derived for the first time; into novel esters using lipase as biocatalyst. The reaction system of glycoside; acylation was optimized, and the effect of solvent nature, concentrations of; substrate and biocatalyst, and acyl donors' structure on the acylation was; studied. In the optimal system, various structures of acyl donors, either natural; or unnatural, including short alkyl acyl groups, long chain acyl groups and acyl; donors with aryl group were connected to molecular backbone of the glycoside,; forming various structures of novel glycoside esters.", 'AD': 'Laboratory of Biocatalysis and Bioprocessing, State Key Laboratory of Bioreactor; Engineering, East China University of Science and Technology, Shanghai 200237,; China.', 'VI': '106', 'IS': '1347-4421 (Electronic); 1347-4421 (Linking)', 'AU': 'Yu HL; Xu JH; Su JH; Lu WY; Lin GQ', 'MHDA': '2008/10/18 09:00', 'PHST': '2008/02/04 [received]; 2008/04/11 [accepted]', 'MH': 'Acylation; Esters; Glucosides/*chemical synthesis; Lipase/*chemistry; Phenols/*chemical synthesis', 'EDAT': '2008/08/12 09:00', 'SO': 'J Biosci Bioeng. 2008 Jul;106(1):65-8. doi: 10.1263/jbb.106.65.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 7900) {'LID': '10.1007/s00253-008-1384-7 [doi]', 'STAT': 'MEDLINE', 'IP': '6', 'DEP': '20080227', 'DA': '20080324', 'AID': '10.1007/s00253-008-1384-7 [doi]', 'FAU': 'Leathers, Timothy D; Cote, Gregory L', 'DP': '2008 Apr', 'OWN': 'NLM', 'PT': 'Comparative Study; Journal Article', 'LA': 'eng', 'CRDT': '2008/02/28 09:00', 'DCOM': '20080701', 'JT': 'Applied microbiology and biotechnology', 'PG': '1025-31', 'TI': 'Biofilm formation by exopolysaccharide mutants of Leuconostoc mesenteroides; strain NRRL B-1355.', 'RN': '0 (Polysaccharides, Bacterial); EC 2.4.- (Glycosyltransferases); EC 2.4.1.140 (alternansucrase)', 'PL': 'Germany', 'TA': 'Appl Microbiol Biotechnol', 'JID': '8406612', 'AB': 'Leuconostoc mesenteroides strain NRRL B-1355 produces the soluble; exopolysaccharides alternan and dextran in planktonic cultures. Mutants of this; strain are available that are deficient in the production of alternan, dextran,; or both. Another mutant of NRRL B-1355, strain R1510, produces an insoluble; glucan in place of alternan and dextran. To test the effect of exopolysaccharide; production on biofilm formation, these strains were cultured in a biofilm; reactor. All strains grew well as biofilms, with comparable cell densities,; including strain NRRL B-21414, which produces neither alternan nor dextran in; planktonic cultures. However, the exopolysaccharide phenotype clearly affected; the appearance of the biofilms and the sloughed-off biofilm material produced by; these biofilms. For all strains, soluble glucansucrases and soluble; polysaccharides produced by biofilm cultures appeared to be similar to those; produced by planktonic cultures. Biofilms from all strains also contained; insoluble polysaccharides. Strain R1510 biofilms contained an insoluble; polysaccharide similar to that produced by planktonic cultures. For most other; strains, the insoluble biofilm polysaccharides resembled a mixture of alternan; and dextran.', 'AD': 'Bioproducts and Biocatalysis Research Unit, National Center for Agricultural; Utilization Research, ARS, USDA, Peoria, IL 61604, USA. [email protected]', 'VI': '78', 'IS': '0175-7598 (Print); 0175-7598 (Linking)', 'AU': 'Leathers TD; Cote GL', 'MHDA': '2008/07/02 09:00', 'PHST': '2007/11/19 [received]; 2008/01/25 [accepted]; 2008/01/22 [revised]; 2008/02/27 [aheadofprint]', 'MH': 'Bacterial Adhesion; Biofilms/*growth & development; Bioreactors; Glycosyltransferases/metabolism; Leuconostoc/enzymology/genetics/growth & development/*physiology; *Mutation; Polysaccharides, Bacterial/chemistry/*genetics/*metabolism', 'EDAT': '2008/02/28 09:00', 'SO': 'Appl Microbiol Biotechnol. 2008 Apr;78(6):1025-31. doi:', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 7900) {'LID': '10.1007/s00253-008-1384-7 [doi]', 'STAT': 'MEDLINE', 'IP': '6', 'DEP': '20080227', 'DA': '20080324', 'AID': '10.1007/s00253-008-1384-7 [doi]', 'FAU': 'Leathers, Timothy D; Cote, Gregory L', 'DP': '2008 Apr', 'OWN': 'NLM', 'PT': 'Comparative Study; Journal Article', 'LA': 'eng', 'CRDT': '2008/02/28 09:00', 'DCOM': '20080701', 'JT': 'Applied microbiology and biotechnology', 'PG': '1025-31', 'TI': 'Biofilm formation by exopolysaccharide mutants of Leuconostoc mesenteroides; strain NRRL B-1355.', 'RN': '0 (Polysaccharides, Bacterial); EC 2.4.- (Glycosyltransferases); EC 2.4.1.140 (alternansucrase)', 'PL': 'Germany', 'TA': 'Appl Microbiol Biotechnol', 'JID': '8406612', 'AB': 'Leuconostoc mesenteroides strain NRRL B-1355 produces the soluble; exopolysaccharides alternan and dextran in planktonic cultures. Mutants of this; strain are available that are deficient in the production of alternan, dextran,; or both. Another mutant of NRRL B-1355, strain R1510, produces an insoluble; glucan in place of alternan and dextran. To test the effect of exopolysaccharide; production on biofilm formation, these strains were cultured in a biofilm; reactor. All strains grew well as biofilms, with comparable cell densities,; including strain NRRL B-21414, which produces neither alternan nor dextran in; planktonic cultures. However, the exopolysaccharide phenotype clearly affected; the appearance of the biofilms and the sloughed-off biofilm material produced by; these biofilms. For all strains, soluble glucansucrases and soluble; polysaccharides produced by biofilm cultures appeared to be similar to those; produced by planktonic cultures. Biofilms from all strains also contained; insoluble polysaccharides. Strain R1510 biofilms contained an insoluble; polysaccharide similar to that produced by planktonic cultures. For most other; strains, the insoluble biofilm polysaccharides resembled a mixture of alternan; and dextran.', 'AD': 'Bioproducts and Biocatalysis Research Unit, National Center for Agricultural; Utilization Research, ARS, USDA, Peoria, IL 61604, USA. [email protected]', 'VI': '78', 'IS': '0175-7598 (Print); 0175-7598 (Linking)', 'AU': 'Leathers TD; Cote GL', 'MHDA': '2008/07/02 09:00', 'PHST': '2007/11/19 [received]; 2008/01/25 [accepted]; 2008/01/22 [revised]; 2008/02/27 [aheadofprint]', 'MH': 'Bacterial Adhesion; Biofilms/*growth & development; Bioreactors; Glycosyltransferases/metabolism; Leuconostoc/enzymology/genetics/growth & development/*physiology; *Mutation; Polysaccharides, Bacterial/chemistry/*genetics/*metabolism', 'EDAT': '2008/02/28 09:00', 'SO': 'Appl Microbiol Biotechnol. 2008 Apr;78(6):1025-31. doi:; 10.1007/s00253-008-1384-7. Epub 2008 Feb 27.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 8000) {'STAT': 'MEDLINE', 'IP': '2', 'JT': 'Biotechnology and bioengineering', 'CI': '(c) 2007 Wiley Periodicals, Inc.', 'DA': '20071224', 'AID': '10.1002/bit.21546 [doi]', 'FAU': 'McLachlan, Michael J; Johannes, Tyler W; Zhao, Huimin', 'DP': '2008 Feb 1', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.", 'LA': 'eng', 'CRDT': '2007/07/07 09:00', 'DCOM': '20080122', 'LR': '20081121', 'PG': '268-74', 'TI': 'Further improvement of phosphite dehydrogenase thermostability by saturation; mutagenesis.', 'RN': '53-59-8 (NADP); EC 1.6.- (NADH, NADPH Oxidoreductases); EC 1.6.99.- (NAD phosphite oxidoreductase)', 'PL': 'United States', 'TA': 'Biotechnol Bioeng', 'JID': '7502021', 'AB': 'Phosphite dehydrogenase represents a new enzymatic system for regenerating; reduced nicotinamide cofactors for industrial biocatalysis. We previously; engineered a variant of phosphite dehydrogenase with relaxed cofactor specificity; and significantly increased activity and stability. Here we performed one round; of random mutagenesis followed by comprehensive saturation mutagenesis to further; improve the enzyme thermostability while maintaining its activity. Two new; thermostabilizing mutations were identified. These, along with the 12 mutations; previously identified, were subjected to saturation mutagenesis using the parent; enzyme or the engineered thermostable variant 12x as a template, followed by; screening of variants with increased thermostability. Of the 12 previously; identified sites, 6 yielded new variants with improved stability over the parent; enzyme. Several mutations were found to be context-dependent. On the basis of; molecular modeling and biochemical analysis, various mechanisms of; thermostabilization were identified. Combining the most thermostabilizing; mutation at each site resulted in a variant that showed a 100-fold increase in; half-life at 62 degrees C over the 12x mutant. The final mutant has improved the; half-life of thermal inactivation at 45 degrees C by 23,000-fold over the parent; enzyme. The engineered phosphite dehydrogenase will be useful in NAD(P)H; regeneration.', 'AD': 'Center for Biophysics and Computational Biology, University of Illinois at; Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.', 'VI': '99', 'IS': '1097-0290 (Electronic); 0006-3592 (Linking)', 'AU': 'McLachlan MJ; Johannes TW; Zhao H', 'MHDA': '2008/01/23 09:00', 'MH': 'Directed Molecular Evolution/*methods; Enzyme Stability/genetics; Hot Temperature/adverse effects; *Mutagenesis; NADH, NADPH Oxidoreductases/*metabolism; NADP/metabolism; Structure-Activity Relationship', 'EDAT': '2007/07/07 09:00', 'SO': 'Biotechnol Bioeng. 2008 Feb 1;99(2):268-74.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 8100) {'STAT': 'MEDLINE', 'IP': '5', 'DEP': '20061122', 'DA': '20070822', 'AID': '10.1007/s10532-006-9091-5 [doi]', 'FAU': 'Rappert, Sugima; Li, Renjie; Kokova, Mariya; Antholz, Mathias; Nagorny, Stephanie; Francke, Wittko; Muller, Rudolf', 'DP': '2007 Oct', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2006/11/23 09:00', 'DCOM': '20071214', 'JT': 'Biodegradation', 'LR': '20131121', 'PG': '585-96', 'TI': 'Degradation of 2,5-dimethylpyrazine by Rhodococcus erythropolis strain DP-45; isolated from a waste gas treatment plant of a fishmeal processing company.', 'RN': '0 (Flavins); 0 (Gases); 0 (Industrial Waste); 0 (Phenylhydrazines); 0 (Pyrazines); 0 (Triazoles); 064F424C9K (phenylhydrazine); 1614-12-6 (1-aminobenzotriazole); 7440-44-0 (Carbon); N762921K75 (Nitrogen); S88TT14065 (Oxygen); V99Y0MUY1Q (2,5-dimethylpyrazine)', 'PL': 'Netherlands', 'TA': 'Biodegradation', 'JID': '9100834', 'AB': 'A bacterium, strain DP-45, capable of degrading 2,5-dimethylpyrazine (2,5-DMP); was isolated and identified as Rhodococcus erythropolis. The strain also grew on; many other pyrazines found in the waste gases of food industries, like; 2,3-dimethylpyrazine (2,3-DMP), 2,6-dimethylpyrazine (2,6-DMP),; 2-ethyl-5(6)-dimethylpyrazine (EMP), 2-ethylpyrazine (EP), 2-methylpyrazine (MP),; and 2,3,5-trimethylpyrazine (TMP). The strain utilized 2,5-DMP as sole source of; carbon and nitrogen and grew optimally at 25 degrees C with a doubling time of; 7.6 h. The degradation of 2,5-DMP was accompanied by the growth of the strain and; by the accumulation of a first intermediate, identified as; 2-hydroxy-3,6-dimethylpyrazine (HDMP). The disappearance of HDMP was accompanied; by the release of ammonium into the medium. No other metabolite was detected. The; degradation of 2,5-DMP and HDMP by strain DP-45 required molecular oxygen. The; expression of the first enzyme in the pathway was induced by 2,5-DMP and HDMP; whereas the second enzyme was constitutively expressed. The activity of the first; enzyme was inhibited by diphenyliodonium (DPI), a flavoprotein inhibitor,; methimazole, a competitive inhibitor of flavin-containing monooxygenases, and by; cytochrome P450 inhibitors, 1-aminobenzotriazole (ABT) and phenylhydrazine (PHZ).; The activity of the second enzyme was inhibited by DPI, ABT, and PHZ. Sodium; tungstate, a specific antagonist of molybdate, had no influence on growth and; consumption of 2,5-DMP by strain DP-45. These results led us to propose that a; flavin-dependent monooxygenase or a cytochrome P450-dependent monooxygenase; rather than a molybdenum hydroxylase catalyzed the initial hydroxylation step and; that a cytochrome P450 enzyme is responsible for the transformation of HDMP in; the second step.', 'AD': 'Institute of Technical Biocatalysis, Technical University Hamburg-Harburg,; Denickestr. 15, 21071 Hamburg, Germany.', 'VI': '18', 'IS': '0923-9820 (Print); 0923-9820 (Linking)', 'AU': 'Rappert S; Li R; Kokova M; Antholz M; Nagorny S; Francke W; Muller R', 'MHDA': '2007/12/15 09:00', 'PHST': '2006/06/12 [received]; 2006/10/31 [accepted]; 2006/11/22 [aheadofprint]', 'MH': 'Animals; *Biodegradation, Environmental; Carbon/chemistry; Fishes; Flavins/chemistry; Food Industry/methods; *Gases; *Industrial Waste; Nitrogen/chemistry; Oxygen/chemistry; Phenylhydrazines/chemistry; Pyrazines/*chemistry/metabolism; Rhodococcus/*metabolism; Temperature; Triazoles/chemistry', 'EDAT': '2006/11/23 09:00', 'SO': 'Biodegradation. 2007 Oct;18(5):585-96. Epub 2006 Nov 22.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 8200) {'STAT': 'MEDLINE', 'IP': '2', 'DEP': '20060302', 'DA': '20060529', 'AID': 'S0003-2697(06)00115-1 [pii]; 10.1016/j.ab.2006.02.014 [doi]', 'FAU': 'De Mey, Marjan; Lequeux, Gaspard; Maertens, Jo; De Maeseneire, Sofie; Soetaert, Wim; Vandamme, Erick', 'DP': '2006 Jun 15', 'OWN': 'NLM', 'PT': "Comparative Study; Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '2006/03/21 09:00', 'DCOM': '20060821', 'JT': 'Analytical biochemistry', 'LR': '20061115', 'PG': '198-203', 'TI': 'Comparison of DNA and RNA quantification methods suitable for parameter; estimation in metabolic modeling of microorganisms.', 'RN': '0 (Coloring Agents); 0 (DNA, Bacterial); 0 (DNA, Fungal); 0 (Fluorescent Dyes); 0 (RNA, Bacterial); 0 (RNA, Fungal)', 'PL': 'United States', 'TA': 'Anal Biochem', 'JID': '0370535', 'AB': 'Recent developments in cellular and molecular biology require the accurate; quantification of DNA and RNA in large numbers of samples at a sensitivity that; enables determination on small quantities. In this study, five current methods; for nucleic acid quantification were compared: (i) UV absorbance spectroscopy at; 260 nm, (ii) colorimetric reaction with orcinol reagent, (iii) colorimetric; reaction based on diphenylamine, (iv) fluorescence detection with Hoechst 33258; reagent, and (v) fluorescence detection with thiazole orange reagent. Genomic DNA; of three different microbial species (with widely different G+C content) was; used, as were two different types of yeast RNA and a mixture of equal quantities; of DNA and RNA. We can conclude that for nucleic acid quantification, a standard; curve with DNA of the microbial strain under study is the best reference.; Fluorescence detection with Hoechst 33258 reagent is a sensitive and precise; method for DNA quantification if the G+C content is less than 50%. In addition,; this method allows quantification of very low levels of DNA (nanogram scale).; Moreover, the samples can be crude cell extracts. Also, UV absorbance at 260 nm; and fluorescence detection with thiazole orange reagent are sensitive methods for; nucleic acid detection, but only if purified nucleic acids need to be measured.', 'AD': 'Laboratory of Industrial Microbiology and Biocatalysis, Department of Biochemical; and Microbial Technology, Faculty of Bioscience Engineering, Ghent University,; B-9000 Ghent, Belgium.', 'VI': '353', 'IS': '0003-2697 (Print); 0003-2697 (Linking)', 'AU': 'De Mey M; Lequeux G; Maertens J; De Maeseneire S; Soetaert W; Vandamme E', 'MHDA': '2006/08/22 09:00', 'PHST': '2006/01/13 [received]; 2006/02/06 [revised]; 2006/02/07 [accepted]; 2006/03/02 [aheadofprint]', 'MH': 'Colorimetry/methods; Coloring Agents/chemistry/metabolism; DNA, Bacterial/*analysis/chemistry; DNA, Fungal/*analysis/chemistry; Fluorescent Dyes/chemistry/metabolism; Models, Biological; RNA, Bacterial/*analysis/chemistry; RNA, Fungal/*analysis/chemistry; Sensitivity and Specificity; Spectrometry, Fluorescence/methods; Spectrophotometry/*methods; Spectrophotometry, Ultraviolet/methods', 'EDAT': '2006/03/21 09:00', 'SO': 'Anal Biochem. 2006 Jun 15;353(2):198-203. Epub 2006 Mar 2.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 8300) {'STAT': 'MEDLINE', 'JT': 'Advances in biochemical engineering/biotechnology', 'DA': '20050328', 'DCOM': '20050421', 'DP': '2005', 'OWN': 'NLM', 'PT': 'Journal Article; Review', 'LA': 'eng', 'CRDT': '2005/03/29 09:00', 'FAU': 'Woltinger, Jens; Karau, Andreas; Leuchtenberger, Wolfgang; Drauz, Karlheinz', 'RF': '26', 'LR': '20060417', 'PG': '289-316', 'TI': 'Membrane reactors at Degussa.', 'RN': '0 (Enzymes, Immobilized); 0 (Membranes, Artificial)', 'PL': 'Germany', 'TA': 'Adv Biochem Eng Biotechnol', 'JID': '8307733', 'AB': 'The review covers the development of membrane reactor technologies at Degussa for; the synthesis of fine chemicals. The operation of fed-batch or continuous; biocatalytic processes in the enzyme membrane reactor (EMR) is well established; at Degussa. Degussa has experience of running EMRs from laboratory gram scale up; to a production scale of several hundreds of tons per year. The transfer of the; enzyme membrane reactor from biocatalysis to chemical catalysis in the chemzyme; membrane reactor (CMR) is discussed. Various homogeneous catalysts have been; investigated in the CMR, and the scope and limitation of this new technique is; discussed.', 'AD': 'Degussa AG, Business Unit Exclusive Synthesis & Catalysts, Rodenbacher Chaussee; 4, 63457 Hanau-Wolfgang, Germany. [email protected]', 'VI': '92', 'IS': '0724-6145 (Print); 0724-6145 (Linking)', 'AU': 'Woltinger J; Karau A; Leuchtenberger W; Drauz K', 'MHDA': '2005/04/22 09:00', 'MH': '*Bioreactors; Biotechnology/*instrumentation/*methods; Catalysis; Enzymes, Immobilized/*chemistry; *Membranes, Artificial; Ultrafiltration/*instrumentation/*methods', 'EDAT': '2005/03/29 09:00', 'SO': 'Adv Biochem Eng Biotechnol. 2005;92:289-316.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 8400) {'STAT': 'MEDLINE', 'IP': '18', 'DEP': '20040213', 'DA': '20040426', 'AID': '10.1074/jbc.M311355200 [doi]; M311355200 [pii]', 'FAU': 'Zlateva, Theodora; Quaroni, Luca; Que, Lawrence; Stankovich, Marian T', 'DP': '2004 Apr 30', 'GR': 'GM29344/GM/NIGMS NIH HHS/United States', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, U.S. Gov't, Non-P.H.S.; Research Support, U.S. Gov't, P.H.S.", 'LA': 'eng', 'CRDT': '2004/02/18 05:00', 'DCOM': '20040610', 'JT': 'The Journal of biological chemistry', 'LR': '20131121', 'PG': '18742-7', 'TI': 'Redox studies of subunit interactivity in aerobic ribonucleotide reductase from; Escherichia coli.', 'RN': '0 (Escherichia coli Proteins); 0 (Protein Subunits); 0 (Purine Nucleotides); 0 (Pyrimidine Nucleotides); E1UOL152H7 (Iron); EC 1.17.4.- (Ribonucleotide Reductases); S88TT14065 (Oxygen)', 'PL': 'United States', 'TA': 'J Biol Chem', 'JID': '2985121R', 'AB': 'Ribonucleotide reductase is a heterodimeric (alpha(2)beta(2)) allosteric enzyme; that catalyzes the conversion of ribonucleotides to deoxyribonucleotides, an; essential step in DNA biosynthesis and repair. In the enzymatically active form; aerobic Escherichia coli ribonucleotide reductase is a complex of homodimeric R1; and R2 proteins. We use electrochemical studies of the dinuclear center to; clarify the interplay of subunit interaction, the binding of allosteric effectors; and substrate selectivity. Our studies show for the first time that; electrochemical reduction of active R2 generates a distinct Met form of the; diiron cluster, with a midpoint potential (-163 +/- 3 mV) different from that of; R2(Met) produced by hydroxyurea (-115 +/- 2 mV). The redox potentials of both Met; forms experience negative shifts when measured in the presence of R1, becoming; -223 +/- 6 and -226 +/- 3 mV, respectively, demonstrating that R1-triggered; conformational changes favor one configuration of the diiron cluster. We show; that the association of a substrate analog and specificity effector (dGDP/dTTP or; GMP/dTTP) with R1 regulates the redox properties of the diiron centers in R2.; Their midpoint potential in the complex shifts to -192 +/- 2 mV for dGDP/dTTP and; to -203 +/- 3 mV for GMP/dTTP. In contrast, reduction potential measurements show; that the diiron cluster is not affected by ATP (0.35-1.45 mm) and dATP (0.3-0.6; mm) binding to R1. Binding of these effectors to the R1-R2 complex does not; perturb the normal docking modes between R1 and R2 as similar redox shifts are; observed for ATP or dATP associated with the R1-R2 complex.', 'AD': 'Department of Chemistry and Center for Metals in Biocatalysis, University of; Minnesota, Minneapolis, Minnesota 55455, USA.', 'VI': '279', 'IS': '0021-9258 (Print); 0021-9258 (Linking)', 'AU': 'Zlateva T; Quaroni L; Que L; Stankovich MT', 'MHDA': '2004/06/21 10:00', 'PHST': '2004/02/13 [aheadofprint]', 'MH': 'Allosteric Regulation; Electron Transport; Escherichia coli Proteins/*chemistry; Iron/chemistry; Oxidation-Reduction; Oxygen/chemistry; Protein Binding; Protein Conformation; Protein Subunits/*chemistry; Purine Nucleotides/chemistry; Pyrimidine Nucleotides/chemistry; Ribonucleotide Reductases/*chemistry; Titrimetry', 'EDAT': '2004/02/18 05:00', 'SO': 'J Biol Chem. 2004 Apr 30;279(18):18742-7. Epub 2004 Feb 13.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 8500) {'STAT': 'MEDLINE', 'IP': '6', 'JT': 'Current opinion in biotechnology', 'DA': '20021216', 'AID': 'S0958166902003609 [pii]', 'FAU': 'Straathof, Adrie J J; Panke, Sven; Schmid, Andreas', 'DP': '2002 Dec', 'OWN': 'NLM', 'PT': 'Journal Article; Review', 'LA': 'eng', 'CRDT': '2002/12/17 04:00', 'DCOM': '20030521', 'RF': '48', 'LR': '20051116', 'PG': '548-56', 'TI': 'The production of fine chemicals by biotransformations.', 'RN': '0 (Enzymes); 0 (Pharmaceutical Preparations)', 'PL': 'England', 'TA': 'Curr Opin Biotechnol', 'JID': '9100492', 'AB': 'Today, biocatalysis is a standard technology for the production of chemicals. An; analysis of 134 industrial biotransformations reveals that hydrolases (44%) and; redox biocatalysts (30%) are the most prominent categories. Most products are; chiral (89%) and are used as fine chemicals. In the chemical industry, successful; product developments involve on average a yield of 78%, a volumetric productivity; of 15.5 g/(L.h) and a final product concentration of 108 g/L. By contrast, the; pharmaceutical industry focuses on time-to-market. The implications of this for; future research and development on biocatalysis are discussed.', 'AD': 'Delft University of Technology, Kluyver Laboratory for Biotechnology, Julianalaan; 67, NL-2628 BC, Delft, The Netherlands. [email protected]', 'VI': '13', 'IS': '0958-1669 (Print); 0958-1669 (Linking)', 'AU': 'Straathof AJ; Panke S; Schmid A', 'MHDA': '2003/05/22 05:00', 'MH': 'Biotechnology/*methods; *Biotransformation; Catalysis; Chemical Industry/*methods/trends; Drug Industry/*methods/trends; Enzymes/*chemical synthesis/*metabolism; Industrial Microbiology/methods/trends; Pharmaceutical Preparations/*chemical synthesis; Quality Control', 'EDAT': '2002/12/17 04:00', 'SO': 'Curr Opin Biotechnol. 2002 Dec;13(6):548-56.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 8600) {'STAT': 'Publisher', 'IP': '4-5', 'JT': 'Journal of industrial microbiology & biotechnology', 'DA': '20010625', 'AID': '10.1038/sj/jim/2900715 [doi]', 'FAU': 'Gibson, D T', 'DP': '1999 Oct', 'OWN': 'NLM', 'PT': 'JOURNAL ARTICLE', 'LA': 'ENG', 'CRDT': '2001/06/26 10:00', 'PG': '284-293', 'TI': 'Beijerinckia sp strain B1: a strain by any other name.', 'TA': 'J Ind Microbiol Biotechnol', 'JID': '9705544', 'AB': 'Beijerinckia sp strain B1 grows with biphenyl as its sole source of carbon and; energy. A mutant, strain B8/36, oxidized biphenyl to; cis-(2S,3R)-dihydroxy-l-phenylcyclohexa-4,6-diene (cis-biphenyl dihydrodiol).; Strain B8/36 oxidized anthracene, phenanthrene, benz[a]anthracene and; benzo[a]pyrene to cis-dihydrodiols. Other substrates oxidized to cis-dihydrodiols; were dibenzofuran, dibenzothiophene and dibenzo-p-dioxin. Biphenyl dioxygenase; activity was observed in cells of Beijerinckia B1 and B8/36 after growth in the; presence of biphenyl, m-, p-xylene and salicylate. Recent studies have led to the; reclassification of Beijerinckia B1 as Sphingomonas yanoikuyae strain B1.; Subsequent biotransformation studies showed that S. yanoikuyae B8/36 oxidized; chrysene to a bis-cis-diol with hydroxyl substituents at the 3,4- and; 9,10-positions. Dihydronaphthalene was oxidized to; cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene, naphthalene,; cis-1,2-dihydroxy-1,2-dihydronaphthalene and 2-hydroxy-1,2-dihydronaphthalene.; Anisole and phenetole were oxidized to phenol. Thus the S. yanoikuyae biphenyl; dioxygenase catalyzes cis-dihydroxylation, benzylic monohydroxylation,; desaturation and dealkylation reactions. To date, the genes encoding biphenyl; dioxygenase have not been cloned. However, the nucleotide sequence of a S.; yanoikuyaeB1 DNA fragment contains five different alpha subunits as determined by; conserved amino acids coordinating iron in a Rieske [2Fe-2S] center and; mononuclear iron at the catalytic site. The specific role of the different; putative oxygenases in biotransformation reactions catalyzed by S. yanoikuyae is; not known and presents an exciting challenge for future studies.', 'AD': 'Department of Microbiology and Center for Biocatalysis and Bioprocessing, College; of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA.', 'VI': '23', 'IS': '1476-5535 (Electronic); 1367-5435 (Linking)', 'AU': 'Gibson DT', 'MHDA': '2001/06/26 10:00', 'PHST': '1999/05/29 [received]; 1999/06/23 [accepted]', 'EDAT': '2001/06/26 10:00', 'SO': 'J Ind Microbiol Biotechnol. 1999 Oct;23(4-5):284-293.', 'PST': 'ppublish'} () ('Stored article number', 8700) {'STAT': 'MEDLINE', 'IP': '13', 'JT': 'Bioorganic & medicinal chemistry letters', 'DA': '19991014', 'AID': 'S0960-894X(99)00292-9 [pii]', 'FAU': 'Shulman, H; Keinan, E', 'DP': '1999 Jul 5', 'OWN': 'NLM', 'PT': "Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.", 'LA': 'eng', 'CRDT': '1999/07/16 00:00', 'DCOM': '19991014', 'LR': '20061115', 'PG': '1745-50', 'TI': 'Substrate-selective mechanisms in biocatalysis demonstrated with a versatile and; efficient aldolase antibody.', 'RN': '0 (Antibodies, Catalytic); 0 (Schiff Bases); EC 4.1.2.13 (Fructose-Bisphosphate Aldolase)', 'PL': 'ENGLAND', 'TA': 'Bioorg Med Chem Lett', 'JID': '9107377', 'AB': 'A structure-activity relationship study with a series of aldol substrates shows; that the mechanism of the antibody 38C2-catalyzed retrograde aldol reaction; depends on the nature of the substrate With electron-deficient substrates an; early deprotonation precedes the C-C bond cleavage while with electron-rich; substrates the catalytic mechanism involves an initial C-C bond cleavage leading; to a positively charged intermediate.', 'AD': 'Department of Chemistry, Technion-Israel Institute of Technology, Technion City,; Haifa.', 'VI': '9', 'IS': '0960-894X (Print); 0960-894X (Linking)', 'AU': 'Shulman H; Keinan E', 'MHDA': '1999/07/16 00:01', 'MH': 'Antibodies, Catalytic/*chemistry; Fructose-Bisphosphate Aldolase/*chemistry/*immunology; Kinetics; Models, Chemical; Schiff Bases; Structure-Activity Relationship', 'EDAT': '1999/07/16', 'SO': 'Bioorg Med Chem Lett. 1999 Jul 5;9(13):1745-50.', 'SB': 'IM', 'PST': 'ppublish'} () ('Stored article number', 8800) {'STAT': 'MEDLINE', 'IP': '1', 'JT': 'Biochemical Society transactions', 'DA': '19950626', 'FAU': 'Alston, M J; Freedman, R B', 'DP': '1995 Feb', 'OWN': 'NLM', 'PT': "Comparative Study; Journal Article; Research Support, Non-U.S. Gov't", 'LA': 'eng', 'CRDT': '1995/02/01 00:00', 'DCOM': '19950626', 'LR': '20131121', 'PG': '70S', 'TI': 'The importance of water to biocatalysis in organic solvents.', 'RN': '0 (Lactones); 0 (Palmitic Acids); 0 (Solvents); 059QF0KO0R (Water); 7IPP3U0F3I (16-hydroxypalmitic acid); EC 3.1.1.3 (Lipase)', 'PL': 'ENGLAND', 'TA': 'Biochem Soc Trans', 'JID': '7506897', 'AD': 'Research School of Biosciences, University of Kent, Canterbury, U.K.', 'VI': '23', 'IS': '0300-5127 (Print); 0300-5127 (Linking)', 'AU': 'Alston MJ; Freedman RB', 'MHDA': '1995/02/01 00:01', 'MH': 'Catalysis; Kinetics; Lactones; Lipase/*metabolism; Palmitic Acids/*metabolism; Pseudomonas fluorescens/enzymology; *Solvents; *Water', 'EDAT': '1995/02/01', 'SO': 'Biochem Soc Trans. 1995 Feb;23(1):70S.', 'SB': 'IM', 'PST': 'ppublish'} ()
import json with open('Data/Output/biocatalysis_JSON.txt', 'r') as f: data = json.load(f) f.close() ## Is this the Index file?? with open('Data/Output/biocatalysis_nation.txt', 'r') as f: index = json.load(f) f.close()
thesauri = {} with open('Data/country_thesauri.txt', 'r') as f: for line in f: line = line.strip() entry = line.split(",") key = entry[0] value = entry[1] thesauri[key]=value f.close() pub = [] with open('Data/country_pub.txt', 'r') as f: for n,line in enumerate(f): line = line.strip() entry = line.split(",") if (n == 0): header = entry else: pub.append(entry) f.close()
print article
{u'immobil': 1, u'key': 1, u"5'o": 1, u'excel': 1, u'laurat': 2, u'group': 1, u'high': 3, u'rate': 2, u'acyl': 3, u'058': 1, u'regioselect': 4, u'50': 1, u'effici': 1, u'novozym': 1, u'optimum': 1, u'primari': 1, u'highli': 1, u'variabl': 1, u'convers': 2, u'ratio': 1, u'influenc': 1, u'systemat': 1, u'activ': 1, u'catalyz': 1, u'pyridin': 1, u'mm/min': 1, u'5': 1, u'30:1': 1, u'conduct': 1, u'condit': 1, u'type': 1, u'product': 1, u'medium': 1, u'desir': 1, u'optim': 1, u"5'olauroyl5azacytidin": 1, u'initi': 2, u'substrat': 1, u'temperatur': 1, u'007': 1, u'hydroxyl': 1, u'examin': 1, u'water': 1, u'candida': 2, u'lauroyl5azacytidin': 1, u'synthesi': 1, u'molar': 1, u'reaction': 5, u'enzymat': 2, u'5azacytidin': 3, u'success': 1, u'prepar': 1, u'955%': 1, u'antarctica': 2, u'>99%': 1, u'degre': 1, u'place': 1, u'time': 2, u'allstopwords': 64, u'found': 1, u'lipas': 2, u'435': 1, u'vinyl': 2}
article1 = data['24965656']
print(article1.keys())
[u'chain', u'approv', u'clinic', u'paper', u'reson', u'find', u'dynam', u'entiti', u'catalyt', u'intermedi', u'molecul', u'electron', u'streptomyc', u'polyketid', u'relev', u'reveal', u'enabl', u'synthes', u'divers', u'chamber', u'architectur', u'ketoreductas', u'conform', u'domain', u'natur', u'dramat', u'design', u'cyclotron', u'constitut', u'reduct', u'confirm', u'crucial', u'acpbound', u'state', u'acyltransferas', u'chemic', u'venezuela', u'ketosynthas', u'core', u'gener', u'modular', u'key', u'reaction', u'enzymat', u'extens', u'betaketo', u'precis', u'carrier', u'therapeut', u'betahydroxi', u'allstopwords', u'bottomup', u'undergo', u'block', u'load', u'carri', u'activ', u'modul', u'transfer', u'interact', u'transform', u'implic', u'process', u'pk', u'biochem', u'function', u'acyl', u'pikromycin', u'line', u'substrat', u'synthas', u'accompani', u'pharmacolog', u'spectrometri', u'intramodul', u'structur', u'posit', u'fulllength', u'creat', u'chromatography/fouri', u'site', u'agent', u'cryomicroscopi', u'protein', u'rearrang', u'bioactiv', u'assembl', u'differenti', u'engin', u'sequenti', u'acp', u'build', u'elong', u'pathway', u'complet', u'product', u'optim', u'ion', u'megaenzym', u'liquid', u'cycl', u'mass', u'determin']
import collections as c journal_counter = c.Counter() for article_id in data: article = data[article_id] if ('PL' in article): cite=article['PL'] cite_part = cite.split('. ') journal = cite_part[0] journal_counter[journal]+=1 new_list=journal_counter.most_common(10) print("The top ten nations in this set are:") for pair in new_list: print(pair[0],pair[1])
The top ten nations in this set are:
import pandas as pd df = pd.DataFrame.from_dict(index, orient='index') df = df.fillna(0) df.head()
--------------------------------------------------------------------------- NameError Traceback (most recent call last) <ipython-input-1-d786cb484d6b> in <module>() 1 import pandas as pd 2 ----> 3 df = pd.DataFrame.from_dict(index, orient='index') 4 df = df.fillna(0) 5 df.head() NameError: name 'index' is not defined
--------------------------------------------------------------------------- NameError Traceback (most recent call last) <ipython-input-2-adc09daf24f7> in <module>() 1 # create a dictionary to save your work 2 counter_dict = {} ----> 3 all_words = c.Counter() 4 5 # Get the article id NameError: name 'c' is not defined
import json import numpy as np with open('Data/Output/biocatalysis_JSON.txt') as fh: year_supp = json.load(fh) sup_lookup = {} for el in year_supp: article_id = el[0] year = el[1] cite = el[2] sup_lookup[article_id] = (year,cite)
import matplotlib.cm as cmx import matplotlib.colors as colors pyl.rcParams['figure.figsize'] = (9.0, 7.0) x4,y4 = X2[:,0],X2[:,1] plt.suptitle('Biocatalysis Citation Regions', fontsize=14) plt.hexbin(x4,y4,cite_list,gridsize=nbins,cmap=cmx.rainbow,norm=colors.LogNorm()) plt.colorbar() plt.show()
--------------------------------------------------------------------------- NameError Traceback (most recent call last) <ipython-input-7-23c90ea8aeb4> in <module>() 3 #pyl.rcParams['figure.figsize'] = (9.0, 7.0) 4 ----> 5 x4,y4 = X2[:,0],X2[:,1] 6 7 plt.suptitle('Biocatalysis Citation Regions', fontsize=14) NameError: name 'X2' is not defined
import json with open('Data/Output/biocatalysis_JSON.txt') as fh: word_counters = json.load(fh) len(word_counters)
8889
sample_counter = {} sample_size = 1000 for n,el in enumerate(word_counters.items()): if (n < 1000): key = el[0] value = el[1] sample_counter[key]=value
##wordcloud package is not supported by MathSageCloud import matplotlib.pyplot as plt from wordcloud import WordCloud n_top_words = 20 wordcloudobj = WordCloud( background_color='white') for i, topic in enumerate(topic_word): topic_words = word_array[np.argsort(topic)][:-n_top_words:-1] word_cloud_string =' '.join(topic_words) wordcloud = wordcloudobj.generate(word_cloud_string) plt.imshow(wordcloud) plt.axis("off") plt.show()
--------------------------------------------------------------------------- ImportError Traceback (most recent call last) <ipython-input-10-3aa01d448a5a> in <module>() 1 import matplotlib.pyplot as plt ----> 2 from wordcloud import WordCloud 3 4 n_top_words = 36 5 wordcloudobj = WordCloud( background_color='white') ImportError: No module named wordcloud
import json with open('Data/Output/biocatalysis_nation.txt') as fh: bio_nat = json.load(fh) N = nx.Graph() for key in bio_nat: nat_list = bio_nat[key] N.add_nodes_from(bio_nat) l = list(it.combinations(nat_list,2)) if (len(l) > 0): for e in l: a = e[0] b = e[1] if (N.has_edge(a,b)): N[a][b]['weight'] += 1 else: N.add_edge(a,b,weight=1)
--------------------------------------------------------------------------- NameError Traceback (most recent call last) <ipython-input-12-f0b0764eebab> in <module>() 4 bio_nat = json.load(fh) 5 ----> 6 N = nx.Graph() 7 8 for key in bio_nat: NameError: name 'nx' is not defined