Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
52868 views
1
/*
2
* AAC coefficients encoder
3
* Copyright (C) 2008-2009 Konstantin Shishkov
4
*
5
* This file is part of FFmpeg.
6
*
7
* FFmpeg is free software; you can redistribute it and/or
8
* modify it under the terms of the GNU Lesser General Public
9
* License as published by the Free Software Foundation; either
10
* version 2.1 of the License, or (at your option) any later version.
11
*
12
* FFmpeg is distributed in the hope that it will be useful,
13
* but WITHOUT ANY WARRANTY; without even the implied warranty of
14
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15
* Lesser General Public License for more details.
16
*
17
* You should have received a copy of the GNU Lesser General Public
18
* License along with FFmpeg; if not, write to the Free Software
19
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
*/
21
22
/**
23
* @file
24
* AAC coefficients encoder
25
*/
26
27
/***********************************
28
* TODOs:
29
* speedup quantizer selection
30
* add sane pulse detection
31
***********************************/
32
33
#include "libavutil/libm.h" // brought forward to work around cygwin header breakage
34
35
#include <float.h>
36
37
#include "libavutil/mathematics.h"
38
#include "mathops.h"
39
#include "avcodec.h"
40
#include "put_bits.h"
41
#include "aac.h"
42
#include "aacenc.h"
43
#include "aactab.h"
44
#include "aacenctab.h"
45
#include "aacenc_utils.h"
46
#include "aacenc_quantization.h"
47
48
#include "aacenc_is.h"
49
#include "aacenc_tns.h"
50
#include "aacenc_ltp.h"
51
#include "aacenc_pred.h"
52
53
#include "libavcodec/aaccoder_twoloop.h"
54
55
/* Parameter of f(x) = a*(lambda/100), defines the maximum fourier spread
56
* beyond which no PNS is used (since the SFBs contain tone rather than noise) */
57
#define NOISE_SPREAD_THRESHOLD 0.9f
58
59
/* Parameter of f(x) = a*(100/lambda), defines how much PNS is allowed to
60
* replace low energy non zero bands */
61
#define NOISE_LAMBDA_REPLACE 1.948f
62
63
#include "libavcodec/aaccoder_trellis.h"
64
65
/**
66
* structure used in optimal codebook search
67
*/
68
typedef struct BandCodingPath {
69
int prev_idx; ///< pointer to the previous path point
70
float cost; ///< path cost
71
int run;
72
} BandCodingPath;
73
74
/**
75
* Encode band info for single window group bands.
76
*/
77
static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
78
int win, int group_len, const float lambda)
79
{
80
BandCodingPath path[120][CB_TOT_ALL];
81
int w, swb, cb, start, size;
82
int i, j;
83
const int max_sfb = sce->ics.max_sfb;
84
const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
85
const int run_esc = (1 << run_bits) - 1;
86
int idx, ppos, count;
87
int stackrun[120], stackcb[120], stack_len;
88
float next_minrd = INFINITY;
89
int next_mincb = 0;
90
91
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
92
start = win*128;
93
for (cb = 0; cb < CB_TOT_ALL; cb++) {
94
path[0][cb].cost = 0.0f;
95
path[0][cb].prev_idx = -1;
96
path[0][cb].run = 0;
97
}
98
for (swb = 0; swb < max_sfb; swb++) {
99
size = sce->ics.swb_sizes[swb];
100
if (sce->zeroes[win*16 + swb]) {
101
for (cb = 0; cb < CB_TOT_ALL; cb++) {
102
path[swb+1][cb].prev_idx = cb;
103
path[swb+1][cb].cost = path[swb][cb].cost;
104
path[swb+1][cb].run = path[swb][cb].run + 1;
105
}
106
} else {
107
float minrd = next_minrd;
108
int mincb = next_mincb;
109
next_minrd = INFINITY;
110
next_mincb = 0;
111
for (cb = 0; cb < CB_TOT_ALL; cb++) {
112
float cost_stay_here, cost_get_here;
113
float rd = 0.0f;
114
if (cb >= 12 && sce->band_type[win*16+swb] < aac_cb_out_map[cb] ||
115
cb < aac_cb_in_map[sce->band_type[win*16+swb]] && sce->band_type[win*16+swb] > aac_cb_out_map[cb]) {
116
path[swb+1][cb].prev_idx = -1;
117
path[swb+1][cb].cost = INFINITY;
118
path[swb+1][cb].run = path[swb][cb].run + 1;
119
continue;
120
}
121
for (w = 0; w < group_len; w++) {
122
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb];
123
rd += quantize_band_cost(s, &sce->coeffs[start + w*128],
124
&s->scoefs[start + w*128], size,
125
sce->sf_idx[(win+w)*16+swb], aac_cb_out_map[cb],
126
lambda / band->threshold, INFINITY, NULL, NULL, 0);
127
}
128
cost_stay_here = path[swb][cb].cost + rd;
129
cost_get_here = minrd + rd + run_bits + 4;
130
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
131
!= run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
132
cost_stay_here += run_bits;
133
if (cost_get_here < cost_stay_here) {
134
path[swb+1][cb].prev_idx = mincb;
135
path[swb+1][cb].cost = cost_get_here;
136
path[swb+1][cb].run = 1;
137
} else {
138
path[swb+1][cb].prev_idx = cb;
139
path[swb+1][cb].cost = cost_stay_here;
140
path[swb+1][cb].run = path[swb][cb].run + 1;
141
}
142
if (path[swb+1][cb].cost < next_minrd) {
143
next_minrd = path[swb+1][cb].cost;
144
next_mincb = cb;
145
}
146
}
147
}
148
start += sce->ics.swb_sizes[swb];
149
}
150
151
//convert resulting path from backward-linked list
152
stack_len = 0;
153
idx = 0;
154
for (cb = 1; cb < CB_TOT_ALL; cb++)
155
if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
156
idx = cb;
157
ppos = max_sfb;
158
while (ppos > 0) {
159
av_assert1(idx >= 0);
160
cb = idx;
161
stackrun[stack_len] = path[ppos][cb].run;
162
stackcb [stack_len] = cb;
163
idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
164
ppos -= path[ppos][cb].run;
165
stack_len++;
166
}
167
//perform actual band info encoding
168
start = 0;
169
for (i = stack_len - 1; i >= 0; i--) {
170
cb = aac_cb_out_map[stackcb[i]];
171
put_bits(&s->pb, 4, cb);
172
count = stackrun[i];
173
memset(sce->zeroes + win*16 + start, !cb, count);
174
//XXX: memset when band_type is also uint8_t
175
for (j = 0; j < count; j++) {
176
sce->band_type[win*16 + start] = cb;
177
start++;
178
}
179
while (count >= run_esc) {
180
put_bits(&s->pb, run_bits, run_esc);
181
count -= run_esc;
182
}
183
put_bits(&s->pb, run_bits, count);
184
}
185
}
186
187
188
typedef struct TrellisPath {
189
float cost;
190
int prev;
191
} TrellisPath;
192
193
#define TRELLIS_STAGES 121
194
#define TRELLIS_STATES (SCALE_MAX_DIFF+1)
195
196
static void set_special_band_scalefactors(AACEncContext *s, SingleChannelElement *sce)
197
{
198
int w, g;
199
int prevscaler_n = -255, prevscaler_i = 0;
200
int bands = 0;
201
202
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
203
for (g = 0; g < sce->ics.num_swb; g++) {
204
if (sce->zeroes[w*16+g])
205
continue;
206
if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
207
sce->sf_idx[w*16+g] = av_clip(roundf(log2f(sce->is_ener[w*16+g])*2), -155, 100);
208
bands++;
209
} else if (sce->band_type[w*16+g] == NOISE_BT) {
210
sce->sf_idx[w*16+g] = av_clip(3+ceilf(log2f(sce->pns_ener[w*16+g])*2), -100, 155);
211
if (prevscaler_n == -255)
212
prevscaler_n = sce->sf_idx[w*16+g];
213
bands++;
214
}
215
}
216
}
217
218
if (!bands)
219
return;
220
221
/* Clip the scalefactor indices */
222
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
223
for (g = 0; g < sce->ics.num_swb; g++) {
224
if (sce->zeroes[w*16+g])
225
continue;
226
if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
227
sce->sf_idx[w*16+g] = prevscaler_i = av_clip(sce->sf_idx[w*16+g], prevscaler_i - SCALE_MAX_DIFF, prevscaler_i + SCALE_MAX_DIFF);
228
} else if (sce->band_type[w*16+g] == NOISE_BT) {
229
sce->sf_idx[w*16+g] = prevscaler_n = av_clip(sce->sf_idx[w*16+g], prevscaler_n - SCALE_MAX_DIFF, prevscaler_n + SCALE_MAX_DIFF);
230
}
231
}
232
}
233
}
234
235
static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
236
SingleChannelElement *sce,
237
const float lambda)
238
{
239
int q, w, w2, g, start = 0;
240
int i, j;
241
int idx;
242
TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
243
int bandaddr[TRELLIS_STAGES];
244
int minq;
245
float mincost;
246
float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
247
int q0, q1, qcnt = 0;
248
249
for (i = 0; i < 1024; i++) {
250
float t = fabsf(sce->coeffs[i]);
251
if (t > 0.0f) {
252
q0f = FFMIN(q0f, t);
253
q1f = FFMAX(q1f, t);
254
qnrgf += t*t;
255
qcnt++;
256
}
257
}
258
259
if (!qcnt) {
260
memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
261
memset(sce->zeroes, 1, sizeof(sce->zeroes));
262
return;
263
}
264
265
//minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
266
q0 = av_clip(coef2minsf(q0f), 0, SCALE_MAX_POS-1);
267
//maximum scalefactor index is when maximum coefficient after quantizing is still not zero
268
q1 = av_clip(coef2maxsf(q1f), 1, SCALE_MAX_POS);
269
if (q1 - q0 > 60) {
270
int q0low = q0;
271
int q1high = q1;
272
//minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
273
int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
274
q1 = qnrg + 30;
275
q0 = qnrg - 30;
276
if (q0 < q0low) {
277
q1 += q0low - q0;
278
q0 = q0low;
279
} else if (q1 > q1high) {
280
q0 -= q1 - q1high;
281
q1 = q1high;
282
}
283
}
284
// q0 == q1 isn't really a legal situation
285
if (q0 == q1) {
286
// the following is indirect but guarantees q1 != q0 && q1 near q0
287
q1 = av_clip(q0+1, 1, SCALE_MAX_POS);
288
q0 = av_clip(q1-1, 0, SCALE_MAX_POS - 1);
289
}
290
291
for (i = 0; i < TRELLIS_STATES; i++) {
292
paths[0][i].cost = 0.0f;
293
paths[0][i].prev = -1;
294
}
295
for (j = 1; j < TRELLIS_STAGES; j++) {
296
for (i = 0; i < TRELLIS_STATES; i++) {
297
paths[j][i].cost = INFINITY;
298
paths[j][i].prev = -2;
299
}
300
}
301
idx = 1;
302
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
303
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
304
start = w*128;
305
for (g = 0; g < sce->ics.num_swb; g++) {
306
const float *coefs = &sce->coeffs[start];
307
float qmin, qmax;
308
int nz = 0;
309
310
bandaddr[idx] = w * 16 + g;
311
qmin = INT_MAX;
312
qmax = 0.0f;
313
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
314
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
315
if (band->energy <= band->threshold || band->threshold == 0.0f) {
316
sce->zeroes[(w+w2)*16+g] = 1;
317
continue;
318
}
319
sce->zeroes[(w+w2)*16+g] = 0;
320
nz = 1;
321
for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
322
float t = fabsf(coefs[w2*128+i]);
323
if (t > 0.0f)
324
qmin = FFMIN(qmin, t);
325
qmax = FFMAX(qmax, t);
326
}
327
}
328
if (nz) {
329
int minscale, maxscale;
330
float minrd = INFINITY;
331
float maxval;
332
//minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
333
minscale = coef2minsf(qmin);
334
//maximum scalefactor index is when maximum coefficient after quantizing is still not zero
335
maxscale = coef2maxsf(qmax);
336
minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
337
maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
338
if (minscale == maxscale) {
339
maxscale = av_clip(minscale+1, 1, TRELLIS_STATES);
340
minscale = av_clip(maxscale-1, 0, TRELLIS_STATES - 1);
341
}
342
maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
343
for (q = minscale; q < maxscale; q++) {
344
float dist = 0;
345
int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
346
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
347
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
348
dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
349
q + q0, cb, lambda / band->threshold, INFINITY, NULL, NULL, 0);
350
}
351
minrd = FFMIN(minrd, dist);
352
353
for (i = 0; i < q1 - q0; i++) {
354
float cost;
355
cost = paths[idx - 1][i].cost + dist
356
+ ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
357
if (cost < paths[idx][q].cost) {
358
paths[idx][q].cost = cost;
359
paths[idx][q].prev = i;
360
}
361
}
362
}
363
} else {
364
for (q = 0; q < q1 - q0; q++) {
365
paths[idx][q].cost = paths[idx - 1][q].cost + 1;
366
paths[idx][q].prev = q;
367
}
368
}
369
sce->zeroes[w*16+g] = !nz;
370
start += sce->ics.swb_sizes[g];
371
idx++;
372
}
373
}
374
idx--;
375
mincost = paths[idx][0].cost;
376
minq = 0;
377
for (i = 1; i < TRELLIS_STATES; i++) {
378
if (paths[idx][i].cost < mincost) {
379
mincost = paths[idx][i].cost;
380
minq = i;
381
}
382
}
383
while (idx) {
384
sce->sf_idx[bandaddr[idx]] = minq + q0;
385
minq = FFMAX(paths[idx][minq].prev, 0);
386
idx--;
387
}
388
//set the same quantizers inside window groups
389
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
390
for (g = 0; g < sce->ics.num_swb; g++)
391
for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
392
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
393
}
394
395
static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
396
SingleChannelElement *sce,
397
const float lambda)
398
{
399
int i, w, w2, g;
400
int minq = 255;
401
402
memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
403
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
404
for (g = 0; g < sce->ics.num_swb; g++) {
405
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
406
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
407
if (band->energy <= band->threshold) {
408
sce->sf_idx[(w+w2)*16+g] = 218;
409
sce->zeroes[(w+w2)*16+g] = 1;
410
} else {
411
sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218);
412
sce->zeroes[(w+w2)*16+g] = 0;
413
}
414
minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
415
}
416
}
417
}
418
for (i = 0; i < 128; i++) {
419
sce->sf_idx[i] = 140;
420
//av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
421
}
422
//set the same quantizers inside window groups
423
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
424
for (g = 0; g < sce->ics.num_swb; g++)
425
for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
426
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
427
}
428
429
static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
430
{
431
FFPsyBand *band;
432
int w, g, w2, i;
433
int wlen = 1024 / sce->ics.num_windows;
434
int bandwidth, cutoff;
435
float *PNS = &s->scoefs[0*128], *PNS34 = &s->scoefs[1*128];
436
float *NOR34 = &s->scoefs[3*128];
437
uint8_t nextband[128];
438
const float lambda = s->lambda;
439
const float freq_mult = avctx->sample_rate*0.5f/wlen;
440
const float thr_mult = NOISE_LAMBDA_REPLACE*(100.0f/lambda);
441
const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f));
442
const float dist_bias = av_clipf(4.f * 120 / lambda, 0.25f, 4.0f);
443
const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f);
444
445
int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
446
/ ((avctx->flags & CODEC_FLAG_QSCALE) ? 2.0f : avctx->channels)
447
* (lambda / 120.f);
448
449
/** Keep this in sync with twoloop's cutoff selection */
450
float rate_bandwidth_multiplier = 1.5f;
451
int prev = -1000, prev_sf = -1;
452
int frame_bit_rate = (avctx->flags & CODEC_FLAG_QSCALE)
453
? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
454
: (avctx->bit_rate / avctx->channels);
455
456
frame_bit_rate *= 1.15f;
457
458
if (avctx->cutoff > 0) {
459
bandwidth = avctx->cutoff;
460
} else {
461
bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
462
}
463
464
cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
465
466
memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
467
ff_init_nextband_map(sce, nextband);
468
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
469
int wstart = w*128;
470
for (g = 0; g < sce->ics.num_swb; g++) {
471
int noise_sfi;
472
float dist1 = 0.0f, dist2 = 0.0f, noise_amp;
473
float pns_energy = 0.0f, pns_tgt_energy, energy_ratio, dist_thresh;
474
float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
475
float min_energy = -1.0f, max_energy = 0.0f;
476
const int start = wstart+sce->ics.swb_offset[g];
477
const float freq = (start-wstart)*freq_mult;
478
const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f);
479
if (freq < NOISE_LOW_LIMIT || (start-wstart) >= cutoff) {
480
if (!sce->zeroes[w*16+g])
481
prev_sf = sce->sf_idx[w*16+g];
482
continue;
483
}
484
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
485
band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
486
sfb_energy += band->energy;
487
spread = FFMIN(spread, band->spread);
488
threshold += band->threshold;
489
if (!w2) {
490
min_energy = max_energy = band->energy;
491
} else {
492
min_energy = FFMIN(min_energy, band->energy);
493
max_energy = FFMAX(max_energy, band->energy);
494
}
495
}
496
497
/* Ramps down at ~8000Hz and loosens the dist threshold */
498
dist_thresh = av_clipf(2.5f*NOISE_LOW_LIMIT/freq, 0.5f, 2.5f) * dist_bias;
499
500
/* PNS is acceptable when all of these are true:
501
* 1. high spread energy (noise-like band)
502
* 2. near-threshold energy (high PE means the random nature of PNS content will be noticed)
503
* 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS)
504
*
505
* At this stage, point 2 is relaxed for zeroed bands near the noise threshold (hole avoidance is more important)
506
*/
507
if ((!sce->zeroes[w*16+g] && !ff_sfdelta_can_remove_band(sce, nextband, prev_sf, w*16+g)) ||
508
((sce->zeroes[w*16+g] || !sce->band_alt[w*16+g]) && sfb_energy < threshold*sqrtf(1.0f/freq_boost)) || spread < spread_threshold ||
509
(!sce->zeroes[w*16+g] && sce->band_alt[w*16+g] && sfb_energy > threshold*thr_mult*freq_boost) ||
510
min_energy < pns_transient_energy_r * max_energy ) {
511
sce->pns_ener[w*16+g] = sfb_energy;
512
if (!sce->zeroes[w*16+g])
513
prev_sf = sce->sf_idx[w*16+g];
514
continue;
515
}
516
517
pns_tgt_energy = sfb_energy*FFMIN(1.0f, spread*spread);
518
noise_sfi = av_clip(roundf(log2f(pns_tgt_energy)*2), -100, 155); /* Quantize */
519
noise_amp = -ff_aac_pow2sf_tab[noise_sfi + POW_SF2_ZERO]; /* Dequantize */
520
if (prev != -1000) {
521
int noise_sfdiff = noise_sfi - prev + SCALE_DIFF_ZERO;
522
if (noise_sfdiff < 0 || noise_sfdiff > 2*SCALE_MAX_DIFF) {
523
if (!sce->zeroes[w*16+g])
524
prev_sf = sce->sf_idx[w*16+g];
525
continue;
526
}
527
}
528
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
529
float band_energy, scale, pns_senergy;
530
const int start_c = (w+w2)*128+sce->ics.swb_offset[g];
531
band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
532
for (i = 0; i < sce->ics.swb_sizes[g]; i+=2) {
533
double rnd[2];
534
av_bmg_get(&s->lfg, rnd);
535
PNS[i+0] = (float)rnd[0];
536
PNS[i+1] = (float)rnd[1];
537
}
538
band_energy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
539
scale = noise_amp/sqrtf(band_energy);
540
s->fdsp->vector_fmul_scalar(PNS, PNS, scale, sce->ics.swb_sizes[g]);
541
pns_senergy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
542
pns_energy += pns_senergy;
543
abs_pow34_v(NOR34, &sce->coeffs[start_c], sce->ics.swb_sizes[g]);
544
abs_pow34_v(PNS34, PNS, sce->ics.swb_sizes[g]);
545
dist1 += quantize_band_cost(s, &sce->coeffs[start_c],
546
NOR34,
547
sce->ics.swb_sizes[g],
548
sce->sf_idx[(w+w2)*16+g],
549
sce->band_alt[(w+w2)*16+g],
550
lambda/band->threshold, INFINITY, NULL, NULL, 0);
551
/* Estimate rd on average as 5 bits for SF, 4 for the CB, plus spread energy * lambda/thr */
552
dist2 += band->energy/(band->spread*band->spread)*lambda*dist_thresh/band->threshold;
553
}
554
if (g && sce->band_type[w*16+g-1] == NOISE_BT) {
555
dist2 += 5;
556
} else {
557
dist2 += 9;
558
}
559
energy_ratio = pns_tgt_energy/pns_energy; /* Compensates for quantization error */
560
sce->pns_ener[w*16+g] = energy_ratio*pns_tgt_energy;
561
if (sce->zeroes[w*16+g] || !sce->band_alt[w*16+g] || (energy_ratio > 0.85f && energy_ratio < 1.25f && dist2 < dist1)) {
562
sce->band_type[w*16+g] = NOISE_BT;
563
sce->zeroes[w*16+g] = 0;
564
prev = noise_sfi;
565
} else {
566
if (!sce->zeroes[w*16+g])
567
prev_sf = sce->sf_idx[w*16+g];
568
}
569
}
570
}
571
}
572
573
static void mark_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
574
{
575
FFPsyBand *band;
576
int w, g, w2;
577
int wlen = 1024 / sce->ics.num_windows;
578
int bandwidth, cutoff;
579
const float lambda = s->lambda;
580
const float freq_mult = avctx->sample_rate*0.5f/wlen;
581
const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f));
582
const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f);
583
584
int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
585
/ ((avctx->flags & CODEC_FLAG_QSCALE) ? 2.0f : avctx->channels)
586
* (lambda / 120.f);
587
588
/** Keep this in sync with twoloop's cutoff selection */
589
float rate_bandwidth_multiplier = 1.5f;
590
int frame_bit_rate = (avctx->flags & CODEC_FLAG_QSCALE)
591
? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
592
: (avctx->bit_rate / avctx->channels);
593
594
frame_bit_rate *= 1.15f;
595
596
if (avctx->cutoff > 0) {
597
bandwidth = avctx->cutoff;
598
} else {
599
bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
600
}
601
602
cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
603
604
memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
605
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
606
for (g = 0; g < sce->ics.num_swb; g++) {
607
float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
608
float min_energy = -1.0f, max_energy = 0.0f;
609
const int start = sce->ics.swb_offset[g];
610
const float freq = start*freq_mult;
611
const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f);
612
if (freq < NOISE_LOW_LIMIT || start >= cutoff) {
613
sce->can_pns[w*16+g] = 0;
614
continue;
615
}
616
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
617
band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
618
sfb_energy += band->energy;
619
spread = FFMIN(spread, band->spread);
620
threshold += band->threshold;
621
if (!w2) {
622
min_energy = max_energy = band->energy;
623
} else {
624
min_energy = FFMIN(min_energy, band->energy);
625
max_energy = FFMAX(max_energy, band->energy);
626
}
627
}
628
629
/* PNS is acceptable when all of these are true:
630
* 1. high spread energy (noise-like band)
631
* 2. near-threshold energy (high PE means the random nature of PNS content will be noticed)
632
* 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS)
633
*/
634
sce->pns_ener[w*16+g] = sfb_energy;
635
if (sfb_energy < threshold*sqrtf(1.5f/freq_boost) || spread < spread_threshold || min_energy < pns_transient_energy_r * max_energy) {
636
sce->can_pns[w*16+g] = 0;
637
} else {
638
sce->can_pns[w*16+g] = 1;
639
}
640
}
641
}
642
}
643
644
static void search_for_ms(AACEncContext *s, ChannelElement *cpe)
645
{
646
int start = 0, i, w, w2, g, sid_sf_boost, prev_mid, prev_side;
647
uint8_t nextband0[128], nextband1[128];
648
float M[128], S[128];
649
float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
650
const float lambda = s->lambda;
651
const float mslambda = FFMIN(1.0f, lambda / 120.f);
652
SingleChannelElement *sce0 = &cpe->ch[0];
653
SingleChannelElement *sce1 = &cpe->ch[1];
654
if (!cpe->common_window)
655
return;
656
657
/** Scout out next nonzero bands */
658
ff_init_nextband_map(sce0, nextband0);
659
ff_init_nextband_map(sce1, nextband1);
660
661
prev_mid = sce0->sf_idx[0];
662
prev_side = sce1->sf_idx[0];
663
for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
664
start = 0;
665
for (g = 0; g < sce0->ics.num_swb; g++) {
666
float bmax = bval2bmax(g * 17.0f / sce0->ics.num_swb) / 0.0045f;
667
if (!cpe->is_mask[w*16+g])
668
cpe->ms_mask[w*16+g] = 0;
669
if (!sce0->zeroes[w*16+g] && !sce1->zeroes[w*16+g] && !cpe->is_mask[w*16+g]) {
670
float Mmax = 0.0f, Smax = 0.0f;
671
672
/* Must compute mid/side SF and book for the whole window group */
673
for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
674
for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
675
M[i] = (sce0->coeffs[start+(w+w2)*128+i]
676
+ sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
677
S[i] = M[i]
678
- sce1->coeffs[start+(w+w2)*128+i];
679
}
680
abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]);
681
abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]);
682
for (i = 0; i < sce0->ics.swb_sizes[g]; i++ ) {
683
Mmax = FFMAX(Mmax, M34[i]);
684
Smax = FFMAX(Smax, S34[i]);
685
}
686
}
687
688
for (sid_sf_boost = 0; sid_sf_boost < 4; sid_sf_boost++) {
689
float dist1 = 0.0f, dist2 = 0.0f;
690
int B0 = 0, B1 = 0;
691
int minidx;
692
int mididx, sididx;
693
int midcb, sidcb;
694
695
minidx = FFMIN(sce0->sf_idx[w*16+g], sce1->sf_idx[w*16+g]);
696
mididx = av_clip(minidx, 0, SCALE_MAX_POS - SCALE_DIV_512);
697
sididx = av_clip(minidx - sid_sf_boost * 3, 0, SCALE_MAX_POS - SCALE_DIV_512);
698
if (sce0->band_type[w*16+g] != NOISE_BT && sce1->band_type[w*16+g] != NOISE_BT
699
&& ( !ff_sfdelta_can_replace(sce0, nextband0, prev_mid, mididx, w*16+g)
700
|| !ff_sfdelta_can_replace(sce1, nextband1, prev_side, sididx, w*16+g))) {
701
/* scalefactor range violation, bad stuff, will decrease quality unacceptably */
702
continue;
703
}
704
705
midcb = find_min_book(Mmax, mididx);
706
sidcb = find_min_book(Smax, sididx);
707
708
/* No CB can be zero */
709
midcb = FFMAX(1,midcb);
710
sidcb = FFMAX(1,sidcb);
711
712
for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
713
FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
714
FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
715
float minthr = FFMIN(band0->threshold, band1->threshold);
716
int b1,b2,b3,b4;
717
for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
718
M[i] = (sce0->coeffs[start+(w+w2)*128+i]
719
+ sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
720
S[i] = M[i]
721
- sce1->coeffs[start+(w+w2)*128+i];
722
}
723
724
abs_pow34_v(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
725
abs_pow34_v(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
726
abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]);
727
abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]);
728
dist1 += quantize_band_cost(s, &sce0->coeffs[start + (w+w2)*128],
729
L34,
730
sce0->ics.swb_sizes[g],
731
sce0->sf_idx[w*16+g],
732
sce0->band_type[w*16+g],
733
lambda / band0->threshold, INFINITY, &b1, NULL, 0);
734
dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128],
735
R34,
736
sce1->ics.swb_sizes[g],
737
sce1->sf_idx[w*16+g],
738
sce1->band_type[w*16+g],
739
lambda / band1->threshold, INFINITY, &b2, NULL, 0);
740
dist2 += quantize_band_cost(s, M,
741
M34,
742
sce0->ics.swb_sizes[g],
743
mididx,
744
midcb,
745
lambda / minthr, INFINITY, &b3, NULL, 0);
746
dist2 += quantize_band_cost(s, S,
747
S34,
748
sce1->ics.swb_sizes[g],
749
sididx,
750
sidcb,
751
mslambda / (minthr * bmax), INFINITY, &b4, NULL, 0);
752
B0 += b1+b2;
753
B1 += b3+b4;
754
dist1 -= b1+b2;
755
dist2 -= b3+b4;
756
}
757
cpe->ms_mask[w*16+g] = dist2 <= dist1 && B1 < B0;
758
if (cpe->ms_mask[w*16+g]) {
759
if (sce0->band_type[w*16+g] != NOISE_BT && sce1->band_type[w*16+g] != NOISE_BT) {
760
sce0->sf_idx[w*16+g] = mididx;
761
sce1->sf_idx[w*16+g] = sididx;
762
sce0->band_type[w*16+g] = midcb;
763
sce1->band_type[w*16+g] = sidcb;
764
} else if ((sce0->band_type[w*16+g] != NOISE_BT) ^ (sce1->band_type[w*16+g] != NOISE_BT)) {
765
/* ms_mask unneeded, and it confuses some decoders */
766
cpe->ms_mask[w*16+g] = 0;
767
}
768
break;
769
} else if (B1 > B0) {
770
/* More boost won't fix this */
771
break;
772
}
773
}
774
}
775
if (!sce0->zeroes[w*16+g] && sce0->band_type[w*16+g] < RESERVED_BT)
776
prev_mid = sce0->sf_idx[w*16+g];
777
if (!sce1->zeroes[w*16+g] && !cpe->is_mask[w*16+g] && sce1->band_type[w*16+g] < RESERVED_BT)
778
prev_side = sce1->sf_idx[w*16+g];
779
start += sce0->ics.swb_sizes[g];
780
}
781
}
782
}
783
784
AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = {
785
[AAC_CODER_ANMR] = {
786
search_for_quantizers_anmr,
787
encode_window_bands_info,
788
quantize_and_encode_band,
789
ff_aac_encode_tns_info,
790
ff_aac_encode_ltp_info,
791
ff_aac_encode_main_pred,
792
ff_aac_adjust_common_pred,
793
ff_aac_adjust_common_ltp,
794
ff_aac_apply_main_pred,
795
ff_aac_apply_tns,
796
ff_aac_update_ltp,
797
ff_aac_ltp_insert_new_frame,
798
set_special_band_scalefactors,
799
search_for_pns,
800
mark_pns,
801
ff_aac_search_for_tns,
802
ff_aac_search_for_ltp,
803
search_for_ms,
804
ff_aac_search_for_is,
805
ff_aac_search_for_pred,
806
},
807
[AAC_CODER_TWOLOOP] = {
808
search_for_quantizers_twoloop,
809
codebook_trellis_rate,
810
quantize_and_encode_band,
811
ff_aac_encode_tns_info,
812
ff_aac_encode_ltp_info,
813
ff_aac_encode_main_pred,
814
ff_aac_adjust_common_pred,
815
ff_aac_adjust_common_ltp,
816
ff_aac_apply_main_pred,
817
ff_aac_apply_tns,
818
ff_aac_update_ltp,
819
ff_aac_ltp_insert_new_frame,
820
set_special_band_scalefactors,
821
search_for_pns,
822
mark_pns,
823
ff_aac_search_for_tns,
824
ff_aac_search_for_ltp,
825
search_for_ms,
826
ff_aac_search_for_is,
827
ff_aac_search_for_pred,
828
},
829
[AAC_CODER_FAST] = {
830
search_for_quantizers_fast,
831
encode_window_bands_info,
832
quantize_and_encode_band,
833
ff_aac_encode_tns_info,
834
ff_aac_encode_ltp_info,
835
ff_aac_encode_main_pred,
836
ff_aac_adjust_common_pred,
837
ff_aac_adjust_common_ltp,
838
ff_aac_apply_main_pred,
839
ff_aac_apply_tns,
840
ff_aac_update_ltp,
841
ff_aac_ltp_insert_new_frame,
842
set_special_band_scalefactors,
843
search_for_pns,
844
mark_pns,
845
ff_aac_search_for_tns,
846
ff_aac_search_for_ltp,
847
search_for_ms,
848
ff_aac_search_for_is,
849
ff_aac_search_for_pred,
850
},
851
};
852
853