Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
52868 views
1
/*
2
* AAC encoder
3
* Copyright (C) 2008 Konstantin Shishkov
4
*
5
* This file is part of FFmpeg.
6
*
7
* FFmpeg is free software; you can redistribute it and/or
8
* modify it under the terms of the GNU Lesser General Public
9
* License as published by the Free Software Foundation; either
10
* version 2.1 of the License, or (at your option) any later version.
11
*
12
* FFmpeg is distributed in the hope that it will be useful,
13
* but WITHOUT ANY WARRANTY; without even the implied warranty of
14
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15
* Lesser General Public License for more details.
16
*
17
* You should have received a copy of the GNU Lesser General Public
18
* License along with FFmpeg; if not, write to the Free Software
19
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
*/
21
22
/**
23
* @file
24
* AAC encoder
25
*/
26
27
/***********************************
28
* TODOs:
29
* add sane pulse detection
30
***********************************/
31
32
#include "libavutil/libm.h"
33
#include "libavutil/thread.h"
34
#include "libavutil/float_dsp.h"
35
#include "libavutil/opt.h"
36
#include "avcodec.h"
37
#include "put_bits.h"
38
#include "internal.h"
39
#include "mpeg4audio.h"
40
#include "kbdwin.h"
41
#include "sinewin.h"
42
43
#include "aac.h"
44
#include "aactab.h"
45
#include "aacenc.h"
46
#include "aacenctab.h"
47
#include "aacenc_utils.h"
48
49
#include "psymodel.h"
50
51
static AVOnce aac_table_init = AV_ONCE_INIT;
52
53
/**
54
* Make AAC audio config object.
55
* @see 1.6.2.1 "Syntax - AudioSpecificConfig"
56
*/
57
static void put_audio_specific_config(AVCodecContext *avctx)
58
{
59
PutBitContext pb;
60
AACEncContext *s = avctx->priv_data;
61
int channels = s->channels - (s->channels == 8 ? 1 : 0);
62
63
init_put_bits(&pb, avctx->extradata, avctx->extradata_size);
64
put_bits(&pb, 5, s->profile+1); //profile
65
put_bits(&pb, 4, s->samplerate_index); //sample rate index
66
put_bits(&pb, 4, channels);
67
//GASpecificConfig
68
put_bits(&pb, 1, 0); //frame length - 1024 samples
69
put_bits(&pb, 1, 0); //does not depend on core coder
70
put_bits(&pb, 1, 0); //is not extension
71
72
//Explicitly Mark SBR absent
73
put_bits(&pb, 11, 0x2b7); //sync extension
74
put_bits(&pb, 5, AOT_SBR);
75
put_bits(&pb, 1, 0);
76
flush_put_bits(&pb);
77
}
78
79
void ff_quantize_band_cost_cache_init(struct AACEncContext *s)
80
{
81
int sf, g;
82
for (sf = 0; sf < 256; sf++) {
83
for (g = 0; g < 128; g++) {
84
s->quantize_band_cost_cache[sf][g].bits = -1;
85
}
86
}
87
}
88
89
#define WINDOW_FUNC(type) \
90
static void apply_ ##type ##_window(AVFloatDSPContext *fdsp, \
91
SingleChannelElement *sce, \
92
const float *audio)
93
94
WINDOW_FUNC(only_long)
95
{
96
const float *lwindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
97
const float *pwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
98
float *out = sce->ret_buf;
99
100
fdsp->vector_fmul (out, audio, lwindow, 1024);
101
fdsp->vector_fmul_reverse(out + 1024, audio + 1024, pwindow, 1024);
102
}
103
104
WINDOW_FUNC(long_start)
105
{
106
const float *lwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
107
const float *swindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
108
float *out = sce->ret_buf;
109
110
fdsp->vector_fmul(out, audio, lwindow, 1024);
111
memcpy(out + 1024, audio + 1024, sizeof(out[0]) * 448);
112
fdsp->vector_fmul_reverse(out + 1024 + 448, audio + 1024 + 448, swindow, 128);
113
memset(out + 1024 + 576, 0, sizeof(out[0]) * 448);
114
}
115
116
WINDOW_FUNC(long_stop)
117
{
118
const float *lwindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
119
const float *swindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
120
float *out = sce->ret_buf;
121
122
memset(out, 0, sizeof(out[0]) * 448);
123
fdsp->vector_fmul(out + 448, audio + 448, swindow, 128);
124
memcpy(out + 576, audio + 576, sizeof(out[0]) * 448);
125
fdsp->vector_fmul_reverse(out + 1024, audio + 1024, lwindow, 1024);
126
}
127
128
WINDOW_FUNC(eight_short)
129
{
130
const float *swindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
131
const float *pwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
132
const float *in = audio + 448;
133
float *out = sce->ret_buf;
134
int w;
135
136
for (w = 0; w < 8; w++) {
137
fdsp->vector_fmul (out, in, w ? pwindow : swindow, 128);
138
out += 128;
139
in += 128;
140
fdsp->vector_fmul_reverse(out, in, swindow, 128);
141
out += 128;
142
}
143
}
144
145
static void (*const apply_window[4])(AVFloatDSPContext *fdsp,
146
SingleChannelElement *sce,
147
const float *audio) = {
148
[ONLY_LONG_SEQUENCE] = apply_only_long_window,
149
[LONG_START_SEQUENCE] = apply_long_start_window,
150
[EIGHT_SHORT_SEQUENCE] = apply_eight_short_window,
151
[LONG_STOP_SEQUENCE] = apply_long_stop_window
152
};
153
154
static void apply_window_and_mdct(AACEncContext *s, SingleChannelElement *sce,
155
float *audio)
156
{
157
int i;
158
const float *output = sce->ret_buf;
159
160
apply_window[sce->ics.window_sequence[0]](s->fdsp, sce, audio);
161
162
if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE)
163
s->mdct1024.mdct_calc(&s->mdct1024, sce->coeffs, output);
164
else
165
for (i = 0; i < 1024; i += 128)
166
s->mdct128.mdct_calc(&s->mdct128, &sce->coeffs[i], output + i*2);
167
memcpy(audio, audio + 1024, sizeof(audio[0]) * 1024);
168
memcpy(sce->pcoeffs, sce->coeffs, sizeof(sce->pcoeffs));
169
}
170
171
/**
172
* Encode ics_info element.
173
* @see Table 4.6 (syntax of ics_info)
174
*/
175
static void put_ics_info(AACEncContext *s, IndividualChannelStream *info)
176
{
177
int w;
178
179
put_bits(&s->pb, 1, 0); // ics_reserved bit
180
put_bits(&s->pb, 2, info->window_sequence[0]);
181
put_bits(&s->pb, 1, info->use_kb_window[0]);
182
if (info->window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
183
put_bits(&s->pb, 6, info->max_sfb);
184
put_bits(&s->pb, 1, !!info->predictor_present);
185
} else {
186
put_bits(&s->pb, 4, info->max_sfb);
187
for (w = 1; w < 8; w++)
188
put_bits(&s->pb, 1, !info->group_len[w]);
189
}
190
}
191
192
/**
193
* Encode MS data.
194
* @see 4.6.8.1 "Joint Coding - M/S Stereo"
195
*/
196
static void encode_ms_info(PutBitContext *pb, ChannelElement *cpe)
197
{
198
int i, w;
199
200
put_bits(pb, 2, cpe->ms_mode);
201
if (cpe->ms_mode == 1)
202
for (w = 0; w < cpe->ch[0].ics.num_windows; w += cpe->ch[0].ics.group_len[w])
203
for (i = 0; i < cpe->ch[0].ics.max_sfb; i++)
204
put_bits(pb, 1, cpe->ms_mask[w*16 + i]);
205
}
206
207
/**
208
* Produce integer coefficients from scalefactors provided by the model.
209
*/
210
static void adjust_frame_information(ChannelElement *cpe, int chans)
211
{
212
int i, w, w2, g, ch;
213
int maxsfb, cmaxsfb;
214
215
for (ch = 0; ch < chans; ch++) {
216
IndividualChannelStream *ics = &cpe->ch[ch].ics;
217
maxsfb = 0;
218
cpe->ch[ch].pulse.num_pulse = 0;
219
for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
220
for (w2 = 0; w2 < ics->group_len[w]; w2++) {
221
for (cmaxsfb = ics->num_swb; cmaxsfb > 0 && cpe->ch[ch].zeroes[w*16+cmaxsfb-1]; cmaxsfb--)
222
;
223
maxsfb = FFMAX(maxsfb, cmaxsfb);
224
}
225
}
226
ics->max_sfb = maxsfb;
227
228
//adjust zero bands for window groups
229
for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
230
for (g = 0; g < ics->max_sfb; g++) {
231
i = 1;
232
for (w2 = w; w2 < w + ics->group_len[w]; w2++) {
233
if (!cpe->ch[ch].zeroes[w2*16 + g]) {
234
i = 0;
235
break;
236
}
237
}
238
cpe->ch[ch].zeroes[w*16 + g] = i;
239
}
240
}
241
}
242
243
if (chans > 1 && cpe->common_window) {
244
IndividualChannelStream *ics0 = &cpe->ch[0].ics;
245
IndividualChannelStream *ics1 = &cpe->ch[1].ics;
246
int msc = 0;
247
ics0->max_sfb = FFMAX(ics0->max_sfb, ics1->max_sfb);
248
ics1->max_sfb = ics0->max_sfb;
249
for (w = 0; w < ics0->num_windows*16; w += 16)
250
for (i = 0; i < ics0->max_sfb; i++)
251
if (cpe->ms_mask[w+i])
252
msc++;
253
if (msc == 0 || ics0->max_sfb == 0)
254
cpe->ms_mode = 0;
255
else
256
cpe->ms_mode = msc < ics0->max_sfb * ics0->num_windows ? 1 : 2;
257
}
258
}
259
260
static void apply_intensity_stereo(ChannelElement *cpe)
261
{
262
int w, w2, g, i;
263
IndividualChannelStream *ics = &cpe->ch[0].ics;
264
if (!cpe->common_window)
265
return;
266
for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
267
for (w2 = 0; w2 < ics->group_len[w]; w2++) {
268
int start = (w+w2) * 128;
269
for (g = 0; g < ics->num_swb; g++) {
270
int p = -1 + 2 * (cpe->ch[1].band_type[w*16+g] - 14);
271
float scale = cpe->ch[0].is_ener[w*16+g];
272
if (!cpe->is_mask[w*16 + g]) {
273
start += ics->swb_sizes[g];
274
continue;
275
}
276
if (cpe->ms_mask[w*16 + g])
277
p *= -1;
278
for (i = 0; i < ics->swb_sizes[g]; i++) {
279
float sum = (cpe->ch[0].coeffs[start+i] + p*cpe->ch[1].coeffs[start+i])*scale;
280
cpe->ch[0].coeffs[start+i] = sum;
281
cpe->ch[1].coeffs[start+i] = 0.0f;
282
}
283
start += ics->swb_sizes[g];
284
}
285
}
286
}
287
}
288
289
static void apply_mid_side_stereo(ChannelElement *cpe)
290
{
291
int w, w2, g, i;
292
IndividualChannelStream *ics = &cpe->ch[0].ics;
293
if (!cpe->common_window)
294
return;
295
for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
296
for (w2 = 0; w2 < ics->group_len[w]; w2++) {
297
int start = (w+w2) * 128;
298
for (g = 0; g < ics->num_swb; g++) {
299
/* ms_mask can be used for other purposes in PNS and I/S,
300
* so must not apply M/S if any band uses either, even if
301
* ms_mask is set.
302
*/
303
if (!cpe->ms_mask[w*16 + g] || cpe->is_mask[w*16 + g]
304
|| cpe->ch[0].band_type[w*16 + g] >= NOISE_BT
305
|| cpe->ch[1].band_type[w*16 + g] >= NOISE_BT) {
306
start += ics->swb_sizes[g];
307
continue;
308
}
309
for (i = 0; i < ics->swb_sizes[g]; i++) {
310
float L = (cpe->ch[0].coeffs[start+i] + cpe->ch[1].coeffs[start+i]) * 0.5f;
311
float R = L - cpe->ch[1].coeffs[start+i];
312
cpe->ch[0].coeffs[start+i] = L;
313
cpe->ch[1].coeffs[start+i] = R;
314
}
315
start += ics->swb_sizes[g];
316
}
317
}
318
}
319
}
320
321
/**
322
* Encode scalefactor band coding type.
323
*/
324
static void encode_band_info(AACEncContext *s, SingleChannelElement *sce)
325
{
326
int w;
327
328
if (s->coder->set_special_band_scalefactors)
329
s->coder->set_special_band_scalefactors(s, sce);
330
331
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
332
s->coder->encode_window_bands_info(s, sce, w, sce->ics.group_len[w], s->lambda);
333
}
334
335
/**
336
* Encode scalefactors.
337
*/
338
static void encode_scale_factors(AVCodecContext *avctx, AACEncContext *s,
339
SingleChannelElement *sce)
340
{
341
int diff, off_sf = sce->sf_idx[0], off_pns = sce->sf_idx[0] - NOISE_OFFSET;
342
int off_is = 0, noise_flag = 1;
343
int i, w;
344
345
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
346
for (i = 0; i < sce->ics.max_sfb; i++) {
347
if (!sce->zeroes[w*16 + i]) {
348
if (sce->band_type[w*16 + i] == NOISE_BT) {
349
diff = sce->sf_idx[w*16 + i] - off_pns;
350
off_pns = sce->sf_idx[w*16 + i];
351
if (noise_flag-- > 0) {
352
put_bits(&s->pb, NOISE_PRE_BITS, diff + NOISE_PRE);
353
continue;
354
}
355
} else if (sce->band_type[w*16 + i] == INTENSITY_BT ||
356
sce->band_type[w*16 + i] == INTENSITY_BT2) {
357
diff = sce->sf_idx[w*16 + i] - off_is;
358
off_is = sce->sf_idx[w*16 + i];
359
} else {
360
diff = sce->sf_idx[w*16 + i] - off_sf;
361
off_sf = sce->sf_idx[w*16 + i];
362
}
363
diff += SCALE_DIFF_ZERO;
364
av_assert0(diff >= 0 && diff <= 120);
365
put_bits(&s->pb, ff_aac_scalefactor_bits[diff], ff_aac_scalefactor_code[diff]);
366
}
367
}
368
}
369
}
370
371
/**
372
* Encode pulse data.
373
*/
374
static void encode_pulses(AACEncContext *s, Pulse *pulse)
375
{
376
int i;
377
378
put_bits(&s->pb, 1, !!pulse->num_pulse);
379
if (!pulse->num_pulse)
380
return;
381
382
put_bits(&s->pb, 2, pulse->num_pulse - 1);
383
put_bits(&s->pb, 6, pulse->start);
384
for (i = 0; i < pulse->num_pulse; i++) {
385
put_bits(&s->pb, 5, pulse->pos[i]);
386
put_bits(&s->pb, 4, pulse->amp[i]);
387
}
388
}
389
390
/**
391
* Encode spectral coefficients processed by psychoacoustic model.
392
*/
393
static void encode_spectral_coeffs(AACEncContext *s, SingleChannelElement *sce)
394
{
395
int start, i, w, w2;
396
397
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
398
start = 0;
399
for (i = 0; i < sce->ics.max_sfb; i++) {
400
if (sce->zeroes[w*16 + i]) {
401
start += sce->ics.swb_sizes[i];
402
continue;
403
}
404
for (w2 = w; w2 < w + sce->ics.group_len[w]; w2++) {
405
s->coder->quantize_and_encode_band(s, &s->pb,
406
&sce->coeffs[start + w2*128],
407
NULL, sce->ics.swb_sizes[i],
408
sce->sf_idx[w*16 + i],
409
sce->band_type[w*16 + i],
410
s->lambda,
411
sce->ics.window_clipping[w]);
412
}
413
start += sce->ics.swb_sizes[i];
414
}
415
}
416
}
417
418
/**
419
* Downscale spectral coefficients for near-clipping windows to avoid artifacts
420
*/
421
static void avoid_clipping(AACEncContext *s, SingleChannelElement *sce)
422
{
423
int start, i, j, w;
424
425
if (sce->ics.clip_avoidance_factor < 1.0f) {
426
for (w = 0; w < sce->ics.num_windows; w++) {
427
start = 0;
428
for (i = 0; i < sce->ics.max_sfb; i++) {
429
float *swb_coeffs = &sce->coeffs[start + w*128];
430
for (j = 0; j < sce->ics.swb_sizes[i]; j++)
431
swb_coeffs[j] *= sce->ics.clip_avoidance_factor;
432
start += sce->ics.swb_sizes[i];
433
}
434
}
435
}
436
}
437
438
/**
439
* Encode one channel of audio data.
440
*/
441
static int encode_individual_channel(AVCodecContext *avctx, AACEncContext *s,
442
SingleChannelElement *sce,
443
int common_window)
444
{
445
put_bits(&s->pb, 8, sce->sf_idx[0]);
446
if (!common_window) {
447
put_ics_info(s, &sce->ics);
448
if (s->coder->encode_main_pred)
449
s->coder->encode_main_pred(s, sce);
450
if (s->coder->encode_ltp_info)
451
s->coder->encode_ltp_info(s, sce, 0);
452
}
453
encode_band_info(s, sce);
454
encode_scale_factors(avctx, s, sce);
455
encode_pulses(s, &sce->pulse);
456
put_bits(&s->pb, 1, !!sce->tns.present);
457
if (s->coder->encode_tns_info)
458
s->coder->encode_tns_info(s, sce);
459
put_bits(&s->pb, 1, 0); //ssr
460
encode_spectral_coeffs(s, sce);
461
return 0;
462
}
463
464
/**
465
* Write some auxiliary information about the created AAC file.
466
*/
467
static void put_bitstream_info(AACEncContext *s, const char *name)
468
{
469
int i, namelen, padbits;
470
471
namelen = strlen(name) + 2;
472
put_bits(&s->pb, 3, TYPE_FIL);
473
put_bits(&s->pb, 4, FFMIN(namelen, 15));
474
if (namelen >= 15)
475
put_bits(&s->pb, 8, namelen - 14);
476
put_bits(&s->pb, 4, 0); //extension type - filler
477
padbits = -put_bits_count(&s->pb) & 7;
478
avpriv_align_put_bits(&s->pb);
479
for (i = 0; i < namelen - 2; i++)
480
put_bits(&s->pb, 8, name[i]);
481
put_bits(&s->pb, 12 - padbits, 0);
482
}
483
484
/*
485
* Copy input samples.
486
* Channels are reordered from libavcodec's default order to AAC order.
487
*/
488
static void copy_input_samples(AACEncContext *s, const AVFrame *frame)
489
{
490
int ch;
491
int end = 2048 + (frame ? frame->nb_samples : 0);
492
const uint8_t *channel_map = aac_chan_maps[s->channels - 1];
493
494
/* copy and remap input samples */
495
for (ch = 0; ch < s->channels; ch++) {
496
/* copy last 1024 samples of previous frame to the start of the current frame */
497
memcpy(&s->planar_samples[ch][1024], &s->planar_samples[ch][2048], 1024 * sizeof(s->planar_samples[0][0]));
498
499
/* copy new samples and zero any remaining samples */
500
if (frame) {
501
memcpy(&s->planar_samples[ch][2048],
502
frame->extended_data[channel_map[ch]],
503
frame->nb_samples * sizeof(s->planar_samples[0][0]));
504
}
505
memset(&s->planar_samples[ch][end], 0,
506
(3072 - end) * sizeof(s->planar_samples[0][0]));
507
}
508
}
509
510
static int aac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
511
const AVFrame *frame, int *got_packet_ptr)
512
{
513
AACEncContext *s = avctx->priv_data;
514
float **samples = s->planar_samples, *samples2, *la, *overlap;
515
ChannelElement *cpe;
516
SingleChannelElement *sce;
517
IndividualChannelStream *ics;
518
int i, its, ch, w, chans, tag, start_ch, ret, frame_bits;
519
int target_bits, rate_bits, too_many_bits, too_few_bits;
520
int ms_mode = 0, is_mode = 0, tns_mode = 0, pred_mode = 0;
521
int chan_el_counter[4];
522
FFPsyWindowInfo windows[AAC_MAX_CHANNELS];
523
524
if (s->last_frame == 2)
525
return 0;
526
527
/* add current frame to queue */
528
if (frame) {
529
if ((ret = ff_af_queue_add(&s->afq, frame)) < 0)
530
return ret;
531
}
532
533
copy_input_samples(s, frame);
534
if (s->psypp)
535
ff_psy_preprocess(s->psypp, s->planar_samples, s->channels);
536
537
if (!avctx->frame_number)
538
return 0;
539
540
start_ch = 0;
541
for (i = 0; i < s->chan_map[0]; i++) {
542
FFPsyWindowInfo* wi = windows + start_ch;
543
tag = s->chan_map[i+1];
544
chans = tag == TYPE_CPE ? 2 : 1;
545
cpe = &s->cpe[i];
546
for (ch = 0; ch < chans; ch++) {
547
int k;
548
float clip_avoidance_factor;
549
sce = &cpe->ch[ch];
550
ics = &sce->ics;
551
s->cur_channel = start_ch + ch;
552
overlap = &samples[s->cur_channel][0];
553
samples2 = overlap + 1024;
554
la = samples2 + (448+64);
555
if (!frame)
556
la = NULL;
557
if (tag == TYPE_LFE) {
558
wi[ch].window_type[0] = ONLY_LONG_SEQUENCE;
559
wi[ch].window_shape = 0;
560
wi[ch].num_windows = 1;
561
wi[ch].grouping[0] = 1;
562
563
/* Only the lowest 12 coefficients are used in a LFE channel.
564
* The expression below results in only the bottom 8 coefficients
565
* being used for 11.025kHz to 16kHz sample rates.
566
*/
567
ics->num_swb = s->samplerate_index >= 8 ? 1 : 3;
568
} else {
569
wi[ch] = s->psy.model->window(&s->psy, samples2, la, s->cur_channel,
570
ics->window_sequence[0]);
571
}
572
ics->window_sequence[1] = ics->window_sequence[0];
573
ics->window_sequence[0] = wi[ch].window_type[0];
574
ics->use_kb_window[1] = ics->use_kb_window[0];
575
ics->use_kb_window[0] = wi[ch].window_shape;
576
ics->num_windows = wi[ch].num_windows;
577
ics->swb_sizes = s->psy.bands [ics->num_windows == 8];
578
ics->num_swb = tag == TYPE_LFE ? ics->num_swb : s->psy.num_bands[ics->num_windows == 8];
579
ics->max_sfb = FFMIN(ics->max_sfb, ics->num_swb);
580
ics->swb_offset = wi[ch].window_type[0] == EIGHT_SHORT_SEQUENCE ?
581
ff_swb_offset_128 [s->samplerate_index]:
582
ff_swb_offset_1024[s->samplerate_index];
583
ics->tns_max_bands = wi[ch].window_type[0] == EIGHT_SHORT_SEQUENCE ?
584
ff_tns_max_bands_128 [s->samplerate_index]:
585
ff_tns_max_bands_1024[s->samplerate_index];
586
clip_avoidance_factor = 0.0f;
587
for (w = 0; w < ics->num_windows; w++)
588
ics->group_len[w] = wi[ch].grouping[w];
589
for (w = 0; w < ics->num_windows; w++) {
590
if (wi[ch].clipping[w] > CLIP_AVOIDANCE_FACTOR) {
591
ics->window_clipping[w] = 1;
592
clip_avoidance_factor = FFMAX(clip_avoidance_factor, wi[ch].clipping[w]);
593
} else {
594
ics->window_clipping[w] = 0;
595
}
596
}
597
if (clip_avoidance_factor > CLIP_AVOIDANCE_FACTOR) {
598
ics->clip_avoidance_factor = CLIP_AVOIDANCE_FACTOR / clip_avoidance_factor;
599
} else {
600
ics->clip_avoidance_factor = 1.0f;
601
}
602
603
apply_window_and_mdct(s, sce, overlap);
604
605
if (s->options.ltp && s->coder->update_ltp) {
606
s->coder->update_ltp(s, sce);
607
apply_window[sce->ics.window_sequence[0]](s->fdsp, sce, &sce->ltp_state[0]);
608
s->mdct1024.mdct_calc(&s->mdct1024, sce->lcoeffs, sce->ret_buf);
609
}
610
611
for (k = 0; k < 1024; k++) {
612
if (!isfinite(cpe->ch[ch].coeffs[k])) {
613
av_log(avctx, AV_LOG_ERROR, "Input contains NaN/+-Inf\n");
614
return AVERROR(EINVAL);
615
}
616
}
617
avoid_clipping(s, sce);
618
}
619
start_ch += chans;
620
}
621
if ((ret = ff_alloc_packet2(avctx, avpkt, 8192 * s->channels, 0)) < 0)
622
return ret;
623
frame_bits = its = 0;
624
do {
625
init_put_bits(&s->pb, avpkt->data, avpkt->size);
626
627
if ((avctx->frame_number & 0xFF)==1 && !(avctx->flags & AV_CODEC_FLAG_BITEXACT))
628
put_bitstream_info(s, LIBAVCODEC_IDENT);
629
start_ch = 0;
630
target_bits = 0;
631
memset(chan_el_counter, 0, sizeof(chan_el_counter));
632
for (i = 0; i < s->chan_map[0]; i++) {
633
FFPsyWindowInfo* wi = windows + start_ch;
634
const float *coeffs[2];
635
tag = s->chan_map[i+1];
636
chans = tag == TYPE_CPE ? 2 : 1;
637
cpe = &s->cpe[i];
638
cpe->common_window = 0;
639
memset(cpe->is_mask, 0, sizeof(cpe->is_mask));
640
memset(cpe->ms_mask, 0, sizeof(cpe->ms_mask));
641
put_bits(&s->pb, 3, tag);
642
put_bits(&s->pb, 4, chan_el_counter[tag]++);
643
for (ch = 0; ch < chans; ch++) {
644
sce = &cpe->ch[ch];
645
coeffs[ch] = sce->coeffs;
646
sce->ics.predictor_present = 0;
647
sce->ics.ltp.present = 0;
648
memset(sce->ics.ltp.used, 0, sizeof(sce->ics.ltp.used));
649
memset(sce->ics.prediction_used, 0, sizeof(sce->ics.prediction_used));
650
memset(&sce->tns, 0, sizeof(TemporalNoiseShaping));
651
for (w = 0; w < 128; w++)
652
if (sce->band_type[w] > RESERVED_BT)
653
sce->band_type[w] = 0;
654
}
655
s->psy.bitres.alloc = -1;
656
s->psy.bitres.bits = s->last_frame_pb_count / s->channels;
657
s->psy.model->analyze(&s->psy, start_ch, coeffs, wi);
658
if (s->psy.bitres.alloc > 0) {
659
/* Lambda unused here on purpose, we need to take psy's unscaled allocation */
660
target_bits += s->psy.bitres.alloc
661
* (s->lambda / (avctx->global_quality ? avctx->global_quality : 120));
662
s->psy.bitres.alloc /= chans;
663
}
664
s->cur_type = tag;
665
for (ch = 0; ch < chans; ch++) {
666
s->cur_channel = start_ch + ch;
667
if (s->options.pns && s->coder->mark_pns)
668
s->coder->mark_pns(s, avctx, &cpe->ch[ch]);
669
s->coder->search_for_quantizers(avctx, s, &cpe->ch[ch], s->lambda);
670
}
671
if (chans > 1
672
&& wi[0].window_type[0] == wi[1].window_type[0]
673
&& wi[0].window_shape == wi[1].window_shape) {
674
675
cpe->common_window = 1;
676
for (w = 0; w < wi[0].num_windows; w++) {
677
if (wi[0].grouping[w] != wi[1].grouping[w]) {
678
cpe->common_window = 0;
679
break;
680
}
681
}
682
}
683
for (ch = 0; ch < chans; ch++) { /* TNS and PNS */
684
sce = &cpe->ch[ch];
685
s->cur_channel = start_ch + ch;
686
if (s->options.tns && s->coder->search_for_tns)
687
s->coder->search_for_tns(s, sce);
688
if (s->options.tns && s->coder->apply_tns_filt)
689
s->coder->apply_tns_filt(s, sce);
690
if (sce->tns.present)
691
tns_mode = 1;
692
if (s->options.pns && s->coder->search_for_pns)
693
s->coder->search_for_pns(s, avctx, sce);
694
}
695
s->cur_channel = start_ch;
696
if (s->options.intensity_stereo) { /* Intensity Stereo */
697
if (s->coder->search_for_is)
698
s->coder->search_for_is(s, avctx, cpe);
699
if (cpe->is_mode) is_mode = 1;
700
apply_intensity_stereo(cpe);
701
}
702
if (s->options.pred) { /* Prediction */
703
for (ch = 0; ch < chans; ch++) {
704
sce = &cpe->ch[ch];
705
s->cur_channel = start_ch + ch;
706
if (s->options.pred && s->coder->search_for_pred)
707
s->coder->search_for_pred(s, sce);
708
if (cpe->ch[ch].ics.predictor_present) pred_mode = 1;
709
}
710
if (s->coder->adjust_common_pred)
711
s->coder->adjust_common_pred(s, cpe);
712
for (ch = 0; ch < chans; ch++) {
713
sce = &cpe->ch[ch];
714
s->cur_channel = start_ch + ch;
715
if (s->options.pred && s->coder->apply_main_pred)
716
s->coder->apply_main_pred(s, sce);
717
}
718
s->cur_channel = start_ch;
719
}
720
if (s->options.mid_side) { /* Mid/Side stereo */
721
if (s->options.mid_side == -1 && s->coder->search_for_ms)
722
s->coder->search_for_ms(s, cpe);
723
else if (cpe->common_window)
724
memset(cpe->ms_mask, 1, sizeof(cpe->ms_mask));
725
apply_mid_side_stereo(cpe);
726
}
727
adjust_frame_information(cpe, chans);
728
if (s->options.ltp) { /* LTP */
729
for (ch = 0; ch < chans; ch++) {
730
sce = &cpe->ch[ch];
731
s->cur_channel = start_ch + ch;
732
if (s->coder->search_for_ltp)
733
s->coder->search_for_ltp(s, sce, cpe->common_window);
734
if (sce->ics.ltp.present) pred_mode = 1;
735
}
736
s->cur_channel = start_ch;
737
if (s->coder->adjust_common_ltp)
738
s->coder->adjust_common_ltp(s, cpe);
739
}
740
if (chans == 2) {
741
put_bits(&s->pb, 1, cpe->common_window);
742
if (cpe->common_window) {
743
put_ics_info(s, &cpe->ch[0].ics);
744
if (s->coder->encode_main_pred)
745
s->coder->encode_main_pred(s, &cpe->ch[0]);
746
if (s->coder->encode_ltp_info)
747
s->coder->encode_ltp_info(s, &cpe->ch[0], 1);
748
encode_ms_info(&s->pb, cpe);
749
if (cpe->ms_mode) ms_mode = 1;
750
}
751
}
752
for (ch = 0; ch < chans; ch++) {
753
s->cur_channel = start_ch + ch;
754
encode_individual_channel(avctx, s, &cpe->ch[ch], cpe->common_window);
755
}
756
start_ch += chans;
757
}
758
759
if (avctx->flags & CODEC_FLAG_QSCALE) {
760
/* When using a constant Q-scale, don't mess with lambda */
761
break;
762
}
763
764
/* rate control stuff
765
* allow between the nominal bitrate, and what psy's bit reservoir says to target
766
* but drift towards the nominal bitrate always
767
*/
768
frame_bits = put_bits_count(&s->pb);
769
rate_bits = avctx->bit_rate * 1024 / avctx->sample_rate;
770
rate_bits = FFMIN(rate_bits, 6144 * s->channels - 3);
771
too_many_bits = FFMAX(target_bits, rate_bits);
772
too_many_bits = FFMIN(too_many_bits, 6144 * s->channels - 3);
773
too_few_bits = FFMIN(FFMAX(rate_bits - rate_bits/4, target_bits), too_many_bits);
774
775
/* When using ABR, be strict (but only for increasing) */
776
too_few_bits = too_few_bits - too_few_bits/8;
777
too_many_bits = too_many_bits + too_many_bits/2;
778
779
if ( its == 0 /* for steady-state Q-scale tracking */
780
|| (its < 5 && (frame_bits < too_few_bits || frame_bits > too_many_bits))
781
|| frame_bits >= 6144 * s->channels - 3 )
782
{
783
float ratio = ((float)rate_bits) / frame_bits;
784
785
if (frame_bits >= too_few_bits && frame_bits <= too_many_bits) {
786
/*
787
* This path is for steady-state Q-scale tracking
788
* When frame bits fall within the stable range, we still need to adjust
789
* lambda to maintain it like so in a stable fashion (large jumps in lambda
790
* create artifacts and should be avoided), but slowly
791
*/
792
ratio = sqrtf(sqrtf(ratio));
793
ratio = av_clipf(ratio, 0.9f, 1.1f);
794
} else {
795
/* Not so fast though */
796
ratio = sqrtf(ratio);
797
}
798
s->lambda = FFMIN(s->lambda * ratio, 65536.f);
799
800
/* Keep iterating if we must reduce and lambda is in the sky */
801
if (ratio > 0.9f && ratio < 1.1f) {
802
break;
803
} else {
804
if (is_mode || ms_mode || tns_mode || pred_mode) {
805
for (i = 0; i < s->chan_map[0]; i++) {
806
// Must restore coeffs
807
chans = tag == TYPE_CPE ? 2 : 1;
808
cpe = &s->cpe[i];
809
for (ch = 0; ch < chans; ch++)
810
memcpy(cpe->ch[ch].coeffs, cpe->ch[ch].pcoeffs, sizeof(cpe->ch[ch].coeffs));
811
}
812
}
813
its++;
814
}
815
} else {
816
break;
817
}
818
} while (1);
819
820
if (s->options.ltp && s->coder->ltp_insert_new_frame)
821
s->coder->ltp_insert_new_frame(s);
822
823
put_bits(&s->pb, 3, TYPE_END);
824
flush_put_bits(&s->pb);
825
826
s->last_frame_pb_count = put_bits_count(&s->pb);
827
828
s->lambda_sum += s->lambda;
829
s->lambda_count++;
830
831
if (!frame)
832
s->last_frame++;
833
834
ff_af_queue_remove(&s->afq, avctx->frame_size, &avpkt->pts,
835
&avpkt->duration);
836
837
avpkt->size = put_bits_count(&s->pb) >> 3;
838
*got_packet_ptr = 1;
839
return 0;
840
}
841
842
static av_cold int aac_encode_end(AVCodecContext *avctx)
843
{
844
AACEncContext *s = avctx->priv_data;
845
846
av_log(avctx, AV_LOG_INFO, "Qavg: %.3f\n", s->lambda_sum / s->lambda_count);
847
848
ff_mdct_end(&s->mdct1024);
849
ff_mdct_end(&s->mdct128);
850
ff_psy_end(&s->psy);
851
ff_lpc_end(&s->lpc);
852
if (s->psypp)
853
ff_psy_preprocess_end(s->psypp);
854
av_freep(&s->buffer.samples);
855
av_freep(&s->cpe);
856
av_freep(&s->fdsp);
857
ff_af_queue_close(&s->afq);
858
return 0;
859
}
860
861
static av_cold int dsp_init(AVCodecContext *avctx, AACEncContext *s)
862
{
863
int ret = 0;
864
865
s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
866
if (!s->fdsp)
867
return AVERROR(ENOMEM);
868
869
// window init
870
ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
871
ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
872
ff_init_ff_sine_windows(10);
873
ff_init_ff_sine_windows(7);
874
875
if ((ret = ff_mdct_init(&s->mdct1024, 11, 0, 32768.0)) < 0)
876
return ret;
877
if ((ret = ff_mdct_init(&s->mdct128, 8, 0, 32768.0)) < 0)
878
return ret;
879
880
return 0;
881
}
882
883
static av_cold int alloc_buffers(AVCodecContext *avctx, AACEncContext *s)
884
{
885
int ch;
886
FF_ALLOCZ_ARRAY_OR_GOTO(avctx, s->buffer.samples, s->channels, 3 * 1024 * sizeof(s->buffer.samples[0]), alloc_fail);
887
FF_ALLOCZ_ARRAY_OR_GOTO(avctx, s->cpe, s->chan_map[0], sizeof(ChannelElement), alloc_fail);
888
FF_ALLOCZ_OR_GOTO(avctx, avctx->extradata, 5 + AV_INPUT_BUFFER_PADDING_SIZE, alloc_fail);
889
890
for(ch = 0; ch < s->channels; ch++)
891
s->planar_samples[ch] = s->buffer.samples + 3 * 1024 * ch;
892
893
return 0;
894
alloc_fail:
895
return AVERROR(ENOMEM);
896
}
897
898
static av_cold void aac_encode_init_tables(void)
899
{
900
ff_aac_tableinit();
901
}
902
903
static av_cold int aac_encode_init(AVCodecContext *avctx)
904
{
905
AACEncContext *s = avctx->priv_data;
906
int i, ret = 0;
907
const uint8_t *sizes[2];
908
uint8_t grouping[AAC_MAX_CHANNELS];
909
int lengths[2];
910
911
/* Constants */
912
s->last_frame_pb_count = 0;
913
avctx->extradata_size = 5;
914
avctx->frame_size = 1024;
915
avctx->initial_padding = 1024;
916
s->lambda = avctx->global_quality > 0 ? avctx->global_quality : 120;
917
918
/* Channel map and unspecified bitrate guessing */
919
s->channels = avctx->channels;
920
ERROR_IF(s->channels > AAC_MAX_CHANNELS || s->channels == 7,
921
"Unsupported number of channels: %d\n", s->channels);
922
s->chan_map = aac_chan_configs[s->channels-1];
923
if (!avctx->bit_rate) {
924
for (i = 1; i <= s->chan_map[0]; i++) {
925
avctx->bit_rate += s->chan_map[i] == TYPE_CPE ? 128000 : /* Pair */
926
s->chan_map[i] == TYPE_LFE ? 16000 : /* LFE */
927
69000 ; /* SCE */
928
}
929
}
930
931
/* Samplerate */
932
for (i = 0; i < 16; i++)
933
if (avctx->sample_rate == avpriv_mpeg4audio_sample_rates[i])
934
break;
935
s->samplerate_index = i;
936
ERROR_IF(s->samplerate_index == 16 ||
937
s->samplerate_index >= ff_aac_swb_size_1024_len ||
938
s->samplerate_index >= ff_aac_swb_size_128_len,
939
"Unsupported sample rate %d\n", avctx->sample_rate);
940
941
/* Bitrate limiting */
942
WARN_IF(1024.0 * avctx->bit_rate / avctx->sample_rate > 6144 * s->channels,
943
"Too many bits %f > %d per frame requested, clamping to max\n",
944
1024.0 * avctx->bit_rate / avctx->sample_rate,
945
6144 * s->channels);
946
avctx->bit_rate = (int64_t)FFMIN(6144 * s->channels / 1024.0 * avctx->sample_rate,
947
avctx->bit_rate);
948
949
/* Profile and option setting */
950
avctx->profile = avctx->profile == FF_PROFILE_UNKNOWN ? FF_PROFILE_AAC_LOW :
951
avctx->profile;
952
for (i = 0; i < FF_ARRAY_ELEMS(aacenc_profiles); i++)
953
if (avctx->profile == aacenc_profiles[i])
954
break;
955
if (avctx->profile == FF_PROFILE_MPEG2_AAC_LOW) {
956
avctx->profile = FF_PROFILE_AAC_LOW;
957
ERROR_IF(s->options.pred,
958
"Main prediction unavailable in the \"mpeg2_aac_low\" profile\n");
959
ERROR_IF(s->options.ltp,
960
"LTP prediction unavailable in the \"mpeg2_aac_low\" profile\n");
961
WARN_IF(s->options.pns,
962
"PNS unavailable in the \"mpeg2_aac_low\" profile, turning off\n");
963
s->options.pns = 0;
964
} else if (avctx->profile == FF_PROFILE_AAC_LTP) {
965
s->options.ltp = 1;
966
ERROR_IF(s->options.pred,
967
"Main prediction unavailable in the \"aac_ltp\" profile\n");
968
} else if (avctx->profile == FF_PROFILE_AAC_MAIN) {
969
s->options.pred = 1;
970
ERROR_IF(s->options.ltp,
971
"LTP prediction unavailable in the \"aac_main\" profile\n");
972
} else if (s->options.ltp) {
973
avctx->profile = FF_PROFILE_AAC_LTP;
974
WARN_IF(1,
975
"Chainging profile to \"aac_ltp\"\n");
976
ERROR_IF(s->options.pred,
977
"Main prediction unavailable in the \"aac_ltp\" profile\n");
978
} else if (s->options.pred) {
979
avctx->profile = FF_PROFILE_AAC_MAIN;
980
WARN_IF(1,
981
"Chainging profile to \"aac_main\"\n");
982
ERROR_IF(s->options.ltp,
983
"LTP prediction unavailable in the \"aac_main\" profile\n");
984
}
985
s->profile = avctx->profile;
986
987
/* Coder limitations */
988
s->coder = &ff_aac_coders[s->options.coder];
989
if (s->options.coder != AAC_CODER_TWOLOOP) {
990
ERROR_IF(avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL,
991
"Coders other than twoloop require -strict -2 and some may be removed in the future\n");
992
s->options.intensity_stereo = 0;
993
s->options.pns = 0;
994
}
995
ERROR_IF(s->options.ltp && avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL,
996
"The LPT profile requires experimental compliance, add -strict -2 to enable!\n");
997
998
/* M/S introduces horrible artifacts with multichannel files, this is temporary */
999
if (s->channels > 3)
1000
s->options.mid_side = 0;
1001
1002
if ((ret = dsp_init(avctx, s)) < 0)
1003
goto fail;
1004
1005
if ((ret = alloc_buffers(avctx, s)) < 0)
1006
goto fail;
1007
1008
put_audio_specific_config(avctx);
1009
1010
sizes[0] = ff_aac_swb_size_1024[s->samplerate_index];
1011
sizes[1] = ff_aac_swb_size_128[s->samplerate_index];
1012
lengths[0] = ff_aac_num_swb_1024[s->samplerate_index];
1013
lengths[1] = ff_aac_num_swb_128[s->samplerate_index];
1014
for (i = 0; i < s->chan_map[0]; i++)
1015
grouping[i] = s->chan_map[i + 1] == TYPE_CPE;
1016
if ((ret = ff_psy_init(&s->psy, avctx, 2, sizes, lengths,
1017
s->chan_map[0], grouping)) < 0)
1018
goto fail;
1019
s->psypp = ff_psy_preprocess_init(avctx);
1020
ff_lpc_init(&s->lpc, 2*avctx->frame_size, TNS_MAX_ORDER, FF_LPC_TYPE_LEVINSON);
1021
av_lfg_init(&s->lfg, 0x72adca55);
1022
1023
if (HAVE_MIPSDSP)
1024
ff_aac_coder_init_mips(s);
1025
1026
if ((ret = ff_thread_once(&aac_table_init, &aac_encode_init_tables)) != 0)
1027
return AVERROR_UNKNOWN;
1028
1029
ff_af_queue_init(avctx, &s->afq);
1030
1031
return 0;
1032
fail:
1033
aac_encode_end(avctx);
1034
return ret;
1035
}
1036
1037
#define AACENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
1038
static const AVOption aacenc_options[] = {
1039
{"aac_coder", "Coding algorithm", offsetof(AACEncContext, options.coder), AV_OPT_TYPE_INT, {.i64 = AAC_CODER_TWOLOOP}, 0, AAC_CODER_NB-1, AACENC_FLAGS, "coder"},
1040
{"anmr", "ANMR method", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_ANMR}, INT_MIN, INT_MAX, AACENC_FLAGS, "coder"},
1041
{"twoloop", "Two loop searching method", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_TWOLOOP}, INT_MIN, INT_MAX, AACENC_FLAGS, "coder"},
1042
{"fast", "Constant quantizer", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_FAST}, INT_MIN, INT_MAX, AACENC_FLAGS, "coder"},
1043
{"aac_ms", "Force M/S stereo coding", offsetof(AACEncContext, options.mid_side), AV_OPT_TYPE_BOOL, {.i64 = -1}, -1, 1, AACENC_FLAGS},
1044
{"aac_is", "Intensity stereo coding", offsetof(AACEncContext, options.intensity_stereo), AV_OPT_TYPE_BOOL, {.i64 = 1}, -1, 1, AACENC_FLAGS},
1045
{"aac_pns", "Perceptual noise substitution", offsetof(AACEncContext, options.pns), AV_OPT_TYPE_BOOL, {.i64 = 1}, -1, 1, AACENC_FLAGS},
1046
{"aac_tns", "Temporal noise shaping", offsetof(AACEncContext, options.tns), AV_OPT_TYPE_BOOL, {.i64 = 1}, -1, 1, AACENC_FLAGS},
1047
{"aac_ltp", "Long term prediction", offsetof(AACEncContext, options.ltp), AV_OPT_TYPE_BOOL, {.i64 = 0}, -1, 1, AACENC_FLAGS},
1048
{"aac_pred", "AAC-Main prediction", offsetof(AACEncContext, options.pred), AV_OPT_TYPE_BOOL, {.i64 = 0}, -1, 1, AACENC_FLAGS},
1049
{NULL}
1050
};
1051
1052
static const AVClass aacenc_class = {
1053
"AAC encoder",
1054
av_default_item_name,
1055
aacenc_options,
1056
LIBAVUTIL_VERSION_INT,
1057
};
1058
1059
static const AVCodecDefault aac_encode_defaults[] = {
1060
{ "b", "0" },
1061
{ NULL }
1062
};
1063
1064
AVCodec ff_aac_encoder = {
1065
.name = "aac",
1066
.long_name = NULL_IF_CONFIG_SMALL("AAC (Advanced Audio Coding)"),
1067
.type = AVMEDIA_TYPE_AUDIO,
1068
.id = AV_CODEC_ID_AAC,
1069
.priv_data_size = sizeof(AACEncContext),
1070
.init = aac_encode_init,
1071
.encode2 = aac_encode_frame,
1072
.close = aac_encode_end,
1073
.defaults = aac_encode_defaults,
1074
.supported_samplerates = mpeg4audio_sample_rates,
1075
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
1076
.capabilities = AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_DELAY,
1077
.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLTP,
1078
AV_SAMPLE_FMT_NONE },
1079
.priv_class = &aacenc_class,
1080
};
1081
1082