Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
52868 views
1
/*
2
* AAC encoder utilities
3
* Copyright (C) 2015 Rostislav Pehlivanov
4
*
5
* This file is part of FFmpeg.
6
*
7
* FFmpeg is free software; you can redistribute it and/or
8
* modify it under the terms of the GNU Lesser General Public
9
* License as published by the Free Software Foundation; either
10
* version 2.1 of the License, or (at your option) any later version.
11
*
12
* FFmpeg is distributed in the hope that it will be useful,
13
* but WITHOUT ANY WARRANTY; without even the implied warranty of
14
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15
* Lesser General Public License for more details.
16
*
17
* You should have received a copy of the GNU Lesser General Public
18
* License along with FFmpeg; if not, write to the Free Software
19
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
*/
21
22
/**
23
* @file
24
* AAC encoder utilities
25
* @author Rostislav Pehlivanov ( atomnuker gmail com )
26
*/
27
28
#ifndef AVCODEC_AACENC_UTILS_H
29
#define AVCODEC_AACENC_UTILS_H
30
31
#include "aac.h"
32
#include "aacenctab.h"
33
#include "aactab.h"
34
35
#define ROUND_STANDARD 0.4054f
36
#define ROUND_TO_ZERO 0.1054f
37
#define C_QUANT 0.4054f
38
39
static inline void abs_pow34_v(float *out, const float *in, const int size)
40
{
41
int i;
42
for (i = 0; i < size; i++) {
43
float a = fabsf(in[i]);
44
out[i] = sqrtf(a * sqrtf(a));
45
}
46
}
47
48
static inline float pos_pow34(float a)
49
{
50
return sqrtf(a * sqrtf(a));
51
}
52
53
/**
54
* Quantize one coefficient.
55
* @return absolute value of the quantized coefficient
56
* @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
57
*/
58
static inline int quant(float coef, const float Q, const float rounding)
59
{
60
float a = coef * Q;
61
return sqrtf(a * sqrtf(a)) + rounding;
62
}
63
64
static inline void quantize_bands(int *out, const float *in, const float *scaled,
65
int size, float Q34, int is_signed, int maxval,
66
const float rounding)
67
{
68
int i;
69
double qc;
70
for (i = 0; i < size; i++) {
71
qc = scaled[i] * Q34;
72
out[i] = (int)FFMIN(qc + rounding, (double)maxval);
73
if (is_signed && in[i] < 0.0f) {
74
out[i] = -out[i];
75
}
76
}
77
}
78
79
static inline float find_max_val(int group_len, int swb_size, const float *scaled)
80
{
81
float maxval = 0.0f;
82
int w2, i;
83
for (w2 = 0; w2 < group_len; w2++) {
84
for (i = 0; i < swb_size; i++) {
85
maxval = FFMAX(maxval, scaled[w2*128+i]);
86
}
87
}
88
return maxval;
89
}
90
91
static inline int find_min_book(float maxval, int sf)
92
{
93
float Q = ff_aac_pow2sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512];
94
float Q34 = sqrtf(Q * sqrtf(Q));
95
int qmaxval, cb;
96
qmaxval = maxval * Q34 + C_QUANT;
97
if (qmaxval >= (FF_ARRAY_ELEMS(aac_maxval_cb)))
98
cb = 11;
99
else
100
cb = aac_maxval_cb[qmaxval];
101
return cb;
102
}
103
104
static inline float find_form_factor(int group_len, int swb_size, float thresh,
105
const float *scaled, float nzslope) {
106
const float iswb_size = 1.0f / swb_size;
107
const float iswb_sizem1 = 1.0f / (swb_size - 1);
108
const float ethresh = thresh;
109
float form = 0.0f, weight = 0.0f;
110
int w2, i;
111
for (w2 = 0; w2 < group_len; w2++) {
112
float e = 0.0f, e2 = 0.0f, var = 0.0f, maxval = 0.0f;
113
float nzl = 0;
114
for (i = 0; i < swb_size; i++) {
115
float s = fabsf(scaled[w2*128+i]);
116
maxval = FFMAX(maxval, s);
117
e += s;
118
e2 += s *= s;
119
/* We really don't want a hard non-zero-line count, since
120
* even below-threshold lines do add up towards band spectral power.
121
* So, fall steeply towards zero, but smoothly
122
*/
123
if (s >= ethresh) {
124
nzl += 1.0f;
125
} else {
126
nzl += powf(s / ethresh, nzslope);
127
}
128
}
129
if (e2 > thresh) {
130
float frm;
131
e *= iswb_size;
132
133
/** compute variance */
134
for (i = 0; i < swb_size; i++) {
135
float d = fabsf(scaled[w2*128+i]) - e;
136
var += d*d;
137
}
138
var = sqrtf(var * iswb_sizem1);
139
140
e2 *= iswb_size;
141
frm = e / FFMIN(e+4*var,maxval);
142
form += e2 * sqrtf(frm) / FFMAX(0.5f,nzl);
143
weight += e2;
144
}
145
}
146
if (weight > 0) {
147
return form / weight;
148
} else {
149
return 1.0f;
150
}
151
}
152
153
/** Return the minimum scalefactor where the quantized coef does not clip. */
154
static inline uint8_t coef2minsf(float coef)
155
{
156
return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
157
}
158
159
/** Return the maximum scalefactor where the quantized coef is not zero. */
160
static inline uint8_t coef2maxsf(float coef)
161
{
162
return av_clip_uint8(log2f(coef)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512);
163
}
164
165
/*
166
* Returns the closest possible index to an array of float values, given a value.
167
*/
168
static inline int quant_array_idx(const float val, const float *arr, const int num)
169
{
170
int i, index = 0;
171
float quant_min_err = INFINITY;
172
for (i = 0; i < num; i++) {
173
float error = (val - arr[i])*(val - arr[i]);
174
if (error < quant_min_err) {
175
quant_min_err = error;
176
index = i;
177
}
178
}
179
return index;
180
}
181
182
/**
183
* approximates exp10f(-3.0f*(0.5f + 0.5f * cosf(FFMIN(b,15.5f) / 15.5f)))
184
*/
185
static av_always_inline float bval2bmax(float b)
186
{
187
return 0.001f + 0.0035f * (b*b*b) / (15.5f*15.5f*15.5f);
188
}
189
190
/*
191
* Compute a nextband map to be used with SF delta constraint utilities.
192
* The nextband array should contain 128 elements, and positions that don't
193
* map to valid, nonzero bands of the form w*16+g (with w being the initial
194
* window of the window group, only) are left indetermined.
195
*/
196
static inline void ff_init_nextband_map(const SingleChannelElement *sce, uint8_t *nextband)
197
{
198
unsigned char prevband = 0;
199
int w, g;
200
/** Just a safe default */
201
for (g = 0; g < 128; g++)
202
nextband[g] = g;
203
204
/** Now really navigate the nonzero band chain */
205
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
206
for (g = 0; g < sce->ics.num_swb; g++) {
207
if (!sce->zeroes[w*16+g] && sce->band_type[w*16+g] < RESERVED_BT)
208
prevband = nextband[prevband] = w*16+g;
209
}
210
}
211
nextband[prevband] = prevband; /* terminate */
212
}
213
214
/*
215
* Updates nextband to reflect a removed band (equivalent to
216
* calling ff_init_nextband_map after marking a band as zero)
217
*/
218
static inline void ff_nextband_remove(uint8_t *nextband, int prevband, int band)
219
{
220
nextband[prevband] = nextband[band];
221
}
222
223
/*
224
* Checks whether the specified band could be removed without inducing
225
* scalefactor delta that violates SF delta encoding constraints.
226
* prev_sf has to be the scalefactor of the previous nonzero, nonspecial
227
* band, in encoding order, or negative if there was no such band.
228
*/
229
static inline int ff_sfdelta_can_remove_band(const SingleChannelElement *sce,
230
const uint8_t *nextband, int prev_sf, int band)
231
{
232
return prev_sf >= 0
233
&& sce->sf_idx[nextband[band]] >= (prev_sf - SCALE_MAX_DIFF)
234
&& sce->sf_idx[nextband[band]] <= (prev_sf + SCALE_MAX_DIFF);
235
}
236
237
/*
238
* Checks whether the specified band's scalefactor could be replaced
239
* with another one without violating SF delta encoding constraints.
240
* prev_sf has to be the scalefactor of the previous nonzero, nonsepcial
241
* band, in encoding order, or negative if there was no such band.
242
*/
243
static inline int ff_sfdelta_can_replace(const SingleChannelElement *sce,
244
const uint8_t *nextband, int prev_sf, int new_sf, int band)
245
{
246
return new_sf >= (prev_sf - SCALE_MAX_DIFF)
247
&& new_sf <= (prev_sf + SCALE_MAX_DIFF)
248
&& sce->sf_idx[nextband[band]] >= (new_sf - SCALE_MAX_DIFF)
249
&& sce->sf_idx[nextband[band]] <= (new_sf + SCALE_MAX_DIFF);
250
}
251
252
#define ERROR_IF(cond, ...) \
253
if (cond) { \
254
av_log(avctx, AV_LOG_ERROR, __VA_ARGS__); \
255
return AVERROR(EINVAL); \
256
}
257
258
#define WARN_IF(cond, ...) \
259
if (cond) { \
260
av_log(avctx, AV_LOG_WARNING, __VA_ARGS__); \
261
}
262
263
#endif /* AVCODEC_AACENC_UTILS_H */
264
265