Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
52868 views
1
/*
2
* MPEG-4 Parametric Stereo decoding functions
3
* Copyright (c) 2010 Alex Converse <[email protected]>
4
*
5
* This file is part of FFmpeg.
6
*
7
* FFmpeg is free software; you can redistribute it and/or
8
* modify it under the terms of the GNU Lesser General Public
9
* License as published by the Free Software Foundation; either
10
* version 2.1 of the License, or (at your option) any later version.
11
*
12
* FFmpeg is distributed in the hope that it will be useful,
13
* but WITHOUT ANY WARRANTY; without even the implied warranty of
14
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15
* Lesser General Public License for more details.
16
*
17
* You should have received a copy of the GNU Lesser General Public
18
* License along with FFmpeg; if not, write to the Free Software
19
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
*
21
* Note: Rounding-to-nearest used unless otherwise stated
22
*
23
*/
24
25
#include <stdint.h>
26
#include "libavutil/common.h"
27
#include "libavutil/mathematics.h"
28
#include "avcodec.h"
29
#include "get_bits.h"
30
#include "aacps.h"
31
#if USE_FIXED
32
#include "aacps_fixed_tablegen.h"
33
#else
34
#include "libavutil/internal.h"
35
#include "aacps_tablegen.h"
36
#endif /* USE_FIXED */
37
#include "aacpsdata.c"
38
39
#define PS_BASELINE 0 ///< Operate in Baseline PS mode
40
///< Baseline implies 10 or 20 stereo bands,
41
///< mixing mode A, and no ipd/opd
42
43
#define numQMFSlots 32 //numTimeSlots * RATE
44
45
static const int8_t num_env_tab[2][4] = {
46
{ 0, 1, 2, 4, },
47
{ 1, 2, 3, 4, },
48
};
49
50
static const int8_t nr_iidicc_par_tab[] = {
51
10, 20, 34, 10, 20, 34,
52
};
53
54
static const int8_t nr_iidopd_par_tab[] = {
55
5, 11, 17, 5, 11, 17,
56
};
57
58
enum {
59
huff_iid_df1,
60
huff_iid_dt1,
61
huff_iid_df0,
62
huff_iid_dt0,
63
huff_icc_df,
64
huff_icc_dt,
65
huff_ipd_df,
66
huff_ipd_dt,
67
huff_opd_df,
68
huff_opd_dt,
69
};
70
71
static const int huff_iid[] = {
72
huff_iid_df0,
73
huff_iid_df1,
74
huff_iid_dt0,
75
huff_iid_dt1,
76
};
77
78
static VLC vlc_ps[10];
79
80
#define READ_PAR_DATA(PAR, OFFSET, MASK, ERR_CONDITION) \
81
/** \
82
* Read Inter-channel Intensity Difference/Inter-Channel Coherence/ \
83
* Inter-channel Phase Difference/Overall Phase Difference parameters from the \
84
* bitstream. \
85
* \
86
* @param avctx contains the current codec context \
87
* @param gb pointer to the input bitstream \
88
* @param ps pointer to the Parametric Stereo context \
89
* @param PAR pointer to the parameter to be read \
90
* @param e envelope to decode \
91
* @param dt 1: time delta-coded, 0: frequency delta-coded \
92
*/ \
93
static int read_ ## PAR ## _data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, \
94
int8_t (*PAR)[PS_MAX_NR_IIDICC], int table_idx, int e, int dt) \
95
{ \
96
int b, num = ps->nr_ ## PAR ## _par; \
97
VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table; \
98
if (dt) { \
99
int e_prev = e ? e - 1 : ps->num_env_old - 1; \
100
e_prev = FFMAX(e_prev, 0); \
101
for (b = 0; b < num; b++) { \
102
int val = PAR[e_prev][b] + get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
103
if (MASK) val &= MASK; \
104
PAR[e][b] = val; \
105
if (ERR_CONDITION) \
106
goto err; \
107
} \
108
} else { \
109
int val = 0; \
110
for (b = 0; b < num; b++) { \
111
val += get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
112
if (MASK) val &= MASK; \
113
PAR[e][b] = val; \
114
if (ERR_CONDITION) \
115
goto err; \
116
} \
117
} \
118
return 0; \
119
err: \
120
av_log(avctx, AV_LOG_ERROR, "illegal "#PAR"\n"); \
121
return -1; \
122
}
123
124
READ_PAR_DATA(iid, huff_offset[table_idx], 0, FFABS(ps->iid_par[e][b]) > 7 + 8 * ps->iid_quant)
125
READ_PAR_DATA(icc, huff_offset[table_idx], 0, ps->icc_par[e][b] > 7U)
126
READ_PAR_DATA(ipdopd, 0, 0x07, 0)
127
128
static int ps_read_extension_data(GetBitContext *gb, PSContext *ps, int ps_extension_id)
129
{
130
int e;
131
int count = get_bits_count(gb);
132
133
if (ps_extension_id)
134
return 0;
135
136
ps->enable_ipdopd = get_bits1(gb);
137
if (ps->enable_ipdopd) {
138
for (e = 0; e < ps->num_env; e++) {
139
int dt = get_bits1(gb);
140
read_ipdopd_data(NULL, gb, ps, ps->ipd_par, dt ? huff_ipd_dt : huff_ipd_df, e, dt);
141
dt = get_bits1(gb);
142
read_ipdopd_data(NULL, gb, ps, ps->opd_par, dt ? huff_opd_dt : huff_opd_df, e, dt);
143
}
144
}
145
skip_bits1(gb); //reserved_ps
146
return get_bits_count(gb) - count;
147
}
148
149
static void ipdopd_reset(int8_t *ipd_hist, int8_t *opd_hist)
150
{
151
int i;
152
for (i = 0; i < PS_MAX_NR_IPDOPD; i++) {
153
opd_hist[i] = 0;
154
ipd_hist[i] = 0;
155
}
156
}
157
158
int AAC_RENAME(ff_ps_read_data)(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
159
{
160
int e;
161
int bit_count_start = get_bits_count(gb_host);
162
int header;
163
int bits_consumed;
164
GetBitContext gbc = *gb_host, *gb = &gbc;
165
166
header = get_bits1(gb);
167
if (header) { //enable_ps_header
168
ps->enable_iid = get_bits1(gb);
169
if (ps->enable_iid) {
170
int iid_mode = get_bits(gb, 3);
171
if (iid_mode > 5) {
172
av_log(avctx, AV_LOG_ERROR, "iid_mode %d is reserved.\n",
173
iid_mode);
174
goto err;
175
}
176
ps->nr_iid_par = nr_iidicc_par_tab[iid_mode];
177
ps->iid_quant = iid_mode > 2;
178
ps->nr_ipdopd_par = nr_iidopd_par_tab[iid_mode];
179
}
180
ps->enable_icc = get_bits1(gb);
181
if (ps->enable_icc) {
182
ps->icc_mode = get_bits(gb, 3);
183
if (ps->icc_mode > 5) {
184
av_log(avctx, AV_LOG_ERROR, "icc_mode %d is reserved.\n",
185
ps->icc_mode);
186
goto err;
187
}
188
ps->nr_icc_par = nr_iidicc_par_tab[ps->icc_mode];
189
}
190
ps->enable_ext = get_bits1(gb);
191
}
192
193
ps->frame_class = get_bits1(gb);
194
ps->num_env_old = ps->num_env;
195
ps->num_env = num_env_tab[ps->frame_class][get_bits(gb, 2)];
196
197
ps->border_position[0] = -1;
198
if (ps->frame_class) {
199
for (e = 1; e <= ps->num_env; e++)
200
ps->border_position[e] = get_bits(gb, 5);
201
} else
202
for (e = 1; e <= ps->num_env; e++)
203
ps->border_position[e] = (e * numQMFSlots >> ff_log2_tab[ps->num_env]) - 1;
204
205
if (ps->enable_iid) {
206
for (e = 0; e < ps->num_env; e++) {
207
int dt = get_bits1(gb);
208
if (read_iid_data(avctx, gb, ps, ps->iid_par, huff_iid[2*dt+ps->iid_quant], e, dt))
209
goto err;
210
}
211
} else
212
memset(ps->iid_par, 0, sizeof(ps->iid_par));
213
214
if (ps->enable_icc)
215
for (e = 0; e < ps->num_env; e++) {
216
int dt = get_bits1(gb);
217
if (read_icc_data(avctx, gb, ps, ps->icc_par, dt ? huff_icc_dt : huff_icc_df, e, dt))
218
goto err;
219
}
220
else
221
memset(ps->icc_par, 0, sizeof(ps->icc_par));
222
223
if (ps->enable_ext) {
224
int cnt = get_bits(gb, 4);
225
if (cnt == 15) {
226
cnt += get_bits(gb, 8);
227
}
228
cnt *= 8;
229
while (cnt > 7) {
230
int ps_extension_id = get_bits(gb, 2);
231
cnt -= 2 + ps_read_extension_data(gb, ps, ps_extension_id);
232
}
233
if (cnt < 0) {
234
av_log(avctx, AV_LOG_ERROR, "ps extension overflow %d\n", cnt);
235
goto err;
236
}
237
skip_bits(gb, cnt);
238
}
239
240
ps->enable_ipdopd &= !PS_BASELINE;
241
242
//Fix up envelopes
243
if (!ps->num_env || ps->border_position[ps->num_env] < numQMFSlots - 1) {
244
//Create a fake envelope
245
int source = ps->num_env ? ps->num_env - 1 : ps->num_env_old - 1;
246
int b;
247
if (source >= 0 && source != ps->num_env) {
248
if (ps->enable_iid) {
249
memcpy(ps->iid_par+ps->num_env, ps->iid_par+source, sizeof(ps->iid_par[0]));
250
}
251
if (ps->enable_icc) {
252
memcpy(ps->icc_par+ps->num_env, ps->icc_par+source, sizeof(ps->icc_par[0]));
253
}
254
if (ps->enable_ipdopd) {
255
memcpy(ps->ipd_par+ps->num_env, ps->ipd_par+source, sizeof(ps->ipd_par[0]));
256
memcpy(ps->opd_par+ps->num_env, ps->opd_par+source, sizeof(ps->opd_par[0]));
257
}
258
}
259
if (ps->enable_iid){
260
for (b = 0; b < ps->nr_iid_par; b++) {
261
if (FFABS(ps->iid_par[ps->num_env][b]) > 7 + 8 * ps->iid_quant) {
262
av_log(avctx, AV_LOG_ERROR, "iid_par invalid\n");
263
goto err;
264
}
265
}
266
}
267
if (ps->enable_icc){
268
for (b = 0; b < ps->nr_iid_par; b++) {
269
if (ps->icc_par[ps->num_env][b] > 7U) {
270
av_log(avctx, AV_LOG_ERROR, "icc_par invalid\n");
271
goto err;
272
}
273
}
274
}
275
ps->num_env++;
276
ps->border_position[ps->num_env] = numQMFSlots - 1;
277
}
278
279
280
ps->is34bands_old = ps->is34bands;
281
if (!PS_BASELINE && (ps->enable_iid || ps->enable_icc))
282
ps->is34bands = (ps->enable_iid && ps->nr_iid_par == 34) ||
283
(ps->enable_icc && ps->nr_icc_par == 34);
284
285
//Baseline
286
if (!ps->enable_ipdopd) {
287
memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
288
memset(ps->opd_par, 0, sizeof(ps->opd_par));
289
}
290
291
if (header)
292
ps->start = 1;
293
294
bits_consumed = get_bits_count(gb) - bit_count_start;
295
if (bits_consumed <= bits_left) {
296
skip_bits_long(gb_host, bits_consumed);
297
return bits_consumed;
298
}
299
av_log(avctx, AV_LOG_ERROR, "Expected to read %d PS bits actually read %d.\n", bits_left, bits_consumed);
300
err:
301
ps->start = 0;
302
skip_bits_long(gb_host, bits_left);
303
memset(ps->iid_par, 0, sizeof(ps->iid_par));
304
memset(ps->icc_par, 0, sizeof(ps->icc_par));
305
memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
306
memset(ps->opd_par, 0, sizeof(ps->opd_par));
307
return bits_left;
308
}
309
310
/** Split one subband into 2 subsubbands with a symmetric real filter.
311
* The filter must have its non-center even coefficients equal to zero. */
312
static void hybrid2_re(INTFLOAT (*in)[2], INTFLOAT (*out)[32][2], const INTFLOAT filter[8], int len, int reverse)
313
{
314
int i, j;
315
for (i = 0; i < len; i++, in++) {
316
INT64FLOAT re_in = AAC_MUL31(filter[6], in[6][0]); //real inphase
317
INT64FLOAT re_op = 0.0f; //real out of phase
318
INT64FLOAT im_in = AAC_MUL31(filter[6], in[6][1]); //imag inphase
319
INT64FLOAT im_op = 0.0f; //imag out of phase
320
for (j = 0; j < 6; j += 2) {
321
re_op += (INT64FLOAT)filter[j+1] * (in[j+1][0] + in[12-j-1][0]);
322
im_op += (INT64FLOAT)filter[j+1] * (in[j+1][1] + in[12-j-1][1]);
323
}
324
325
#if USE_FIXED
326
re_op = (re_op + 0x40000000) >> 31;
327
im_op = (im_op + 0x40000000) >> 31;
328
#endif /* USE_FIXED */
329
330
out[ reverse][i][0] = (INTFLOAT)(re_in + re_op);
331
out[ reverse][i][1] = (INTFLOAT)(im_in + im_op);
332
out[!reverse][i][0] = (INTFLOAT)(re_in - re_op);
333
out[!reverse][i][1] = (INTFLOAT)(im_in - im_op);
334
}
335
}
336
337
/** Split one subband into 6 subsubbands with a complex filter */
338
static void hybrid6_cx(PSDSPContext *dsp, INTFLOAT (*in)[2], INTFLOAT (*out)[32][2],
339
TABLE_CONST INTFLOAT (*filter)[8][2], int len)
340
{
341
int i;
342
int N = 8;
343
LOCAL_ALIGNED_16(INTFLOAT, temp, [8], [2]);
344
345
for (i = 0; i < len; i++, in++) {
346
dsp->hybrid_analysis(temp, in, (const INTFLOAT (*)[8][2]) filter, 1, N);
347
out[0][i][0] = temp[6][0];
348
out[0][i][1] = temp[6][1];
349
out[1][i][0] = temp[7][0];
350
out[1][i][1] = temp[7][1];
351
out[2][i][0] = temp[0][0];
352
out[2][i][1] = temp[0][1];
353
out[3][i][0] = temp[1][0];
354
out[3][i][1] = temp[1][1];
355
out[4][i][0] = temp[2][0] + temp[5][0];
356
out[4][i][1] = temp[2][1] + temp[5][1];
357
out[5][i][0] = temp[3][0] + temp[4][0];
358
out[5][i][1] = temp[3][1] + temp[4][1];
359
}
360
}
361
362
static void hybrid4_8_12_cx(PSDSPContext *dsp,
363
INTFLOAT (*in)[2], INTFLOAT (*out)[32][2],
364
TABLE_CONST INTFLOAT (*filter)[8][2], int N, int len)
365
{
366
int i;
367
368
for (i = 0; i < len; i++, in++) {
369
dsp->hybrid_analysis(out[0] + i, in, (const INTFLOAT (*)[8][2]) filter, 32, N);
370
}
371
}
372
373
static void hybrid_analysis(PSDSPContext *dsp, INTFLOAT out[91][32][2],
374
INTFLOAT in[5][44][2], INTFLOAT L[2][38][64],
375
int is34, int len)
376
{
377
int i, j;
378
for (i = 0; i < 5; i++) {
379
for (j = 0; j < 38; j++) {
380
in[i][j+6][0] = L[0][j][i];
381
in[i][j+6][1] = L[1][j][i];
382
}
383
}
384
if (is34) {
385
hybrid4_8_12_cx(dsp, in[0], out, f34_0_12, 12, len);
386
hybrid4_8_12_cx(dsp, in[1], out+12, f34_1_8, 8, len);
387
hybrid4_8_12_cx(dsp, in[2], out+20, f34_2_4, 4, len);
388
hybrid4_8_12_cx(dsp, in[3], out+24, f34_2_4, 4, len);
389
hybrid4_8_12_cx(dsp, in[4], out+28, f34_2_4, 4, len);
390
dsp->hybrid_analysis_ileave(out + 27, L, 5, len);
391
} else {
392
hybrid6_cx(dsp, in[0], out, f20_0_8, len);
393
hybrid2_re(in[1], out+6, g1_Q2, len, 1);
394
hybrid2_re(in[2], out+8, g1_Q2, len, 0);
395
dsp->hybrid_analysis_ileave(out + 7, L, 3, len);
396
}
397
//update in_buf
398
for (i = 0; i < 5; i++) {
399
memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0]));
400
}
401
}
402
403
static void hybrid_synthesis(PSDSPContext *dsp, INTFLOAT out[2][38][64],
404
INTFLOAT in[91][32][2], int is34, int len)
405
{
406
int i, n;
407
if (is34) {
408
for (n = 0; n < len; n++) {
409
memset(out[0][n], 0, 5*sizeof(out[0][n][0]));
410
memset(out[1][n], 0, 5*sizeof(out[1][n][0]));
411
for (i = 0; i < 12; i++) {
412
out[0][n][0] += in[ i][n][0];
413
out[1][n][0] += in[ i][n][1];
414
}
415
for (i = 0; i < 8; i++) {
416
out[0][n][1] += in[12+i][n][0];
417
out[1][n][1] += in[12+i][n][1];
418
}
419
for (i = 0; i < 4; i++) {
420
out[0][n][2] += in[20+i][n][0];
421
out[1][n][2] += in[20+i][n][1];
422
out[0][n][3] += in[24+i][n][0];
423
out[1][n][3] += in[24+i][n][1];
424
out[0][n][4] += in[28+i][n][0];
425
out[1][n][4] += in[28+i][n][1];
426
}
427
}
428
dsp->hybrid_synthesis_deint(out, in + 27, 5, len);
429
} else {
430
for (n = 0; n < len; n++) {
431
out[0][n][0] = in[0][n][0] + in[1][n][0] + in[2][n][0] +
432
in[3][n][0] + in[4][n][0] + in[5][n][0];
433
out[1][n][0] = in[0][n][1] + in[1][n][1] + in[2][n][1] +
434
in[3][n][1] + in[4][n][1] + in[5][n][1];
435
out[0][n][1] = in[6][n][0] + in[7][n][0];
436
out[1][n][1] = in[6][n][1] + in[7][n][1];
437
out[0][n][2] = in[8][n][0] + in[9][n][0];
438
out[1][n][2] = in[8][n][1] + in[9][n][1];
439
}
440
dsp->hybrid_synthesis_deint(out, in + 7, 3, len);
441
}
442
}
443
444
/// All-pass filter decay slope
445
#define DECAY_SLOPE Q30(0.05f)
446
/// Number of frequency bands that can be addressed by the parameter index, b(k)
447
static const int NR_PAR_BANDS[] = { 20, 34 };
448
static const int NR_IPDOPD_BANDS[] = { 11, 17 };
449
/// Number of frequency bands that can be addressed by the sub subband index, k
450
static const int NR_BANDS[] = { 71, 91 };
451
/// Start frequency band for the all-pass filter decay slope
452
static const int DECAY_CUTOFF[] = { 10, 32 };
453
/// Number of all-pass filer bands
454
static const int NR_ALLPASS_BANDS[] = { 30, 50 };
455
/// First stereo band using the short one sample delay
456
static const int SHORT_DELAY_BAND[] = { 42, 62 };
457
458
/** Table 8.46 */
459
static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
460
{
461
int b;
462
if (full)
463
b = 9;
464
else {
465
b = 4;
466
par_mapped[10] = 0;
467
}
468
for (; b >= 0; b--) {
469
par_mapped[2*b+1] = par_mapped[2*b] = par[b];
470
}
471
}
472
473
static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
474
{
475
par_mapped[ 0] = (2*par[ 0] + par[ 1]) / 3;
476
par_mapped[ 1] = ( par[ 1] + 2*par[ 2]) / 3;
477
par_mapped[ 2] = (2*par[ 3] + par[ 4]) / 3;
478
par_mapped[ 3] = ( par[ 4] + 2*par[ 5]) / 3;
479
par_mapped[ 4] = ( par[ 6] + par[ 7]) / 2;
480
par_mapped[ 5] = ( par[ 8] + par[ 9]) / 2;
481
par_mapped[ 6] = par[10];
482
par_mapped[ 7] = par[11];
483
par_mapped[ 8] = ( par[12] + par[13]) / 2;
484
par_mapped[ 9] = ( par[14] + par[15]) / 2;
485
par_mapped[10] = par[16];
486
if (full) {
487
par_mapped[11] = par[17];
488
par_mapped[12] = par[18];
489
par_mapped[13] = par[19];
490
par_mapped[14] = ( par[20] + par[21]) / 2;
491
par_mapped[15] = ( par[22] + par[23]) / 2;
492
par_mapped[16] = ( par[24] + par[25]) / 2;
493
par_mapped[17] = ( par[26] + par[27]) / 2;
494
par_mapped[18] = ( par[28] + par[29] + par[30] + par[31]) / 4;
495
par_mapped[19] = ( par[32] + par[33]) / 2;
496
}
497
}
498
499
static void map_val_34_to_20(INTFLOAT par[PS_MAX_NR_IIDICC])
500
{
501
#if USE_FIXED
502
par[ 0] = (int)(((int64_t)(par[ 0] + (par[ 1]>>1)) * 1431655765 + \
503
0x40000000) >> 31);
504
par[ 1] = (int)(((int64_t)((par[ 1]>>1) + par[ 2]) * 1431655765 + \
505
0x40000000) >> 31);
506
par[ 2] = (int)(((int64_t)(par[ 3] + (par[ 4]>>1)) * 1431655765 + \
507
0x40000000) >> 31);
508
par[ 3] = (int)(((int64_t)((par[ 4]>>1) + par[ 5]) * 1431655765 + \
509
0x40000000) >> 31);
510
#else
511
par[ 0] = (2*par[ 0] + par[ 1]) * 0.33333333f;
512
par[ 1] = ( par[ 1] + 2*par[ 2]) * 0.33333333f;
513
par[ 2] = (2*par[ 3] + par[ 4]) * 0.33333333f;
514
par[ 3] = ( par[ 4] + 2*par[ 5]) * 0.33333333f;
515
#endif /* USE_FIXED */
516
par[ 4] = AAC_HALF_SUM(par[ 6], par[ 7]);
517
par[ 5] = AAC_HALF_SUM(par[ 8], par[ 9]);
518
par[ 6] = par[10];
519
par[ 7] = par[11];
520
par[ 8] = AAC_HALF_SUM(par[12], par[13]);
521
par[ 9] = AAC_HALF_SUM(par[14], par[15]);
522
par[10] = par[16];
523
par[11] = par[17];
524
par[12] = par[18];
525
par[13] = par[19];
526
par[14] = AAC_HALF_SUM(par[20], par[21]);
527
par[15] = AAC_HALF_SUM(par[22], par[23]);
528
par[16] = AAC_HALF_SUM(par[24], par[25]);
529
par[17] = AAC_HALF_SUM(par[26], par[27]);
530
#if USE_FIXED
531
par[18] = (((par[28]+2)>>2) + ((par[29]+2)>>2) + ((par[30]+2)>>2) + ((par[31]+2)>>2));
532
#else
533
par[18] = ( par[28] + par[29] + par[30] + par[31]) * 0.25f;
534
#endif /* USE_FIXED */
535
par[19] = AAC_HALF_SUM(par[32], par[33]);
536
}
537
538
static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
539
{
540
if (full) {
541
par_mapped[33] = par[9];
542
par_mapped[32] = par[9];
543
par_mapped[31] = par[9];
544
par_mapped[30] = par[9];
545
par_mapped[29] = par[9];
546
par_mapped[28] = par[9];
547
par_mapped[27] = par[8];
548
par_mapped[26] = par[8];
549
par_mapped[25] = par[8];
550
par_mapped[24] = par[8];
551
par_mapped[23] = par[7];
552
par_mapped[22] = par[7];
553
par_mapped[21] = par[7];
554
par_mapped[20] = par[7];
555
par_mapped[19] = par[6];
556
par_mapped[18] = par[6];
557
par_mapped[17] = par[5];
558
par_mapped[16] = par[5];
559
} else {
560
par_mapped[16] = 0;
561
}
562
par_mapped[15] = par[4];
563
par_mapped[14] = par[4];
564
par_mapped[13] = par[4];
565
par_mapped[12] = par[4];
566
par_mapped[11] = par[3];
567
par_mapped[10] = par[3];
568
par_mapped[ 9] = par[2];
569
par_mapped[ 8] = par[2];
570
par_mapped[ 7] = par[2];
571
par_mapped[ 6] = par[2];
572
par_mapped[ 5] = par[1];
573
par_mapped[ 4] = par[1];
574
par_mapped[ 3] = par[1];
575
par_mapped[ 2] = par[0];
576
par_mapped[ 1] = par[0];
577
par_mapped[ 0] = par[0];
578
}
579
580
static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
581
{
582
if (full) {
583
par_mapped[33] = par[19];
584
par_mapped[32] = par[19];
585
par_mapped[31] = par[18];
586
par_mapped[30] = par[18];
587
par_mapped[29] = par[18];
588
par_mapped[28] = par[18];
589
par_mapped[27] = par[17];
590
par_mapped[26] = par[17];
591
par_mapped[25] = par[16];
592
par_mapped[24] = par[16];
593
par_mapped[23] = par[15];
594
par_mapped[22] = par[15];
595
par_mapped[21] = par[14];
596
par_mapped[20] = par[14];
597
par_mapped[19] = par[13];
598
par_mapped[18] = par[12];
599
par_mapped[17] = par[11];
600
}
601
par_mapped[16] = par[10];
602
par_mapped[15] = par[ 9];
603
par_mapped[14] = par[ 9];
604
par_mapped[13] = par[ 8];
605
par_mapped[12] = par[ 8];
606
par_mapped[11] = par[ 7];
607
par_mapped[10] = par[ 6];
608
par_mapped[ 9] = par[ 5];
609
par_mapped[ 8] = par[ 5];
610
par_mapped[ 7] = par[ 4];
611
par_mapped[ 6] = par[ 4];
612
par_mapped[ 5] = par[ 3];
613
par_mapped[ 4] = (par[ 2] + par[ 3]) / 2;
614
par_mapped[ 3] = par[ 2];
615
par_mapped[ 2] = par[ 1];
616
par_mapped[ 1] = (par[ 0] + par[ 1]) / 2;
617
par_mapped[ 0] = par[ 0];
618
}
619
620
static void map_val_20_to_34(INTFLOAT par[PS_MAX_NR_IIDICC])
621
{
622
par[33] = par[19];
623
par[32] = par[19];
624
par[31] = par[18];
625
par[30] = par[18];
626
par[29] = par[18];
627
par[28] = par[18];
628
par[27] = par[17];
629
par[26] = par[17];
630
par[25] = par[16];
631
par[24] = par[16];
632
par[23] = par[15];
633
par[22] = par[15];
634
par[21] = par[14];
635
par[20] = par[14];
636
par[19] = par[13];
637
par[18] = par[12];
638
par[17] = par[11];
639
par[16] = par[10];
640
par[15] = par[ 9];
641
par[14] = par[ 9];
642
par[13] = par[ 8];
643
par[12] = par[ 8];
644
par[11] = par[ 7];
645
par[10] = par[ 6];
646
par[ 9] = par[ 5];
647
par[ 8] = par[ 5];
648
par[ 7] = par[ 4];
649
par[ 6] = par[ 4];
650
par[ 5] = par[ 3];
651
par[ 4] = AAC_HALF_SUM(par[ 2], par[ 3]);
652
par[ 3] = par[ 2];
653
par[ 2] = par[ 1];
654
par[ 1] = AAC_HALF_SUM(par[ 0], par[ 1]);
655
}
656
657
static void decorrelation(PSContext *ps, INTFLOAT (*out)[32][2], const INTFLOAT (*s)[32][2], int is34)
658
{
659
LOCAL_ALIGNED_16(INTFLOAT, power, [34], [PS_QMF_TIME_SLOTS]);
660
LOCAL_ALIGNED_16(INTFLOAT, transient_gain, [34], [PS_QMF_TIME_SLOTS]);
661
INTFLOAT *peak_decay_nrg = ps->peak_decay_nrg;
662
INTFLOAT *power_smooth = ps->power_smooth;
663
INTFLOAT *peak_decay_diff_smooth = ps->peak_decay_diff_smooth;
664
INTFLOAT (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay;
665
INTFLOAT (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay;
666
#if !USE_FIXED
667
const float transient_impact = 1.5f;
668
const float a_smooth = 0.25f; ///< Smoothing coefficient
669
#endif /* USE_FIXED */
670
const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
671
int i, k, m, n;
672
int n0 = 0, nL = 32;
673
const INTFLOAT peak_decay_factor = Q31(0.76592833836465f);
674
675
memset(power, 0, 34 * sizeof(*power));
676
677
if (is34 != ps->is34bands_old) {
678
memset(ps->peak_decay_nrg, 0, sizeof(ps->peak_decay_nrg));
679
memset(ps->power_smooth, 0, sizeof(ps->power_smooth));
680
memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth));
681
memset(ps->delay, 0, sizeof(ps->delay));
682
memset(ps->ap_delay, 0, sizeof(ps->ap_delay));
683
}
684
685
for (k = 0; k < NR_BANDS[is34]; k++) {
686
int i = k_to_i[k];
687
ps->dsp.add_squares(power[i], s[k], nL - n0);
688
}
689
690
//Transient detection
691
#if USE_FIXED
692
for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
693
for (n = n0; n < nL; n++) {
694
int decayed_peak;
695
int denom;
696
697
decayed_peak = (int)(((int64_t)peak_decay_factor * \
698
peak_decay_nrg[i] + 0x40000000) >> 31);
699
peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
700
power_smooth[i] += (power[i][n] - power_smooth[i] + 2) >> 2;
701
peak_decay_diff_smooth[i] += (peak_decay_nrg[i] - power[i][n] - \
702
peak_decay_diff_smooth[i] + 2) >> 2;
703
denom = peak_decay_diff_smooth[i] + (peak_decay_diff_smooth[i] >> 1);
704
if (denom > power_smooth[i]) {
705
int p = power_smooth[i];
706
while (denom < 0x40000000) {
707
denom <<= 1;
708
p <<= 1;
709
}
710
transient_gain[i][n] = p / (denom >> 16);
711
}
712
else {
713
transient_gain[i][n] = 1 << 16;
714
}
715
}
716
}
717
#else
718
for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
719
for (n = n0; n < nL; n++) {
720
float decayed_peak = peak_decay_factor * peak_decay_nrg[i];
721
float denom;
722
peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
723
power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]);
724
peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]);
725
denom = transient_impact * peak_decay_diff_smooth[i];
726
transient_gain[i][n] = (denom > power_smooth[i]) ?
727
power_smooth[i] / denom : 1.0f;
728
}
729
}
730
731
#endif /* USE_FIXED */
732
//Decorrelation and transient reduction
733
// PS_AP_LINKS - 1
734
// -----
735
// | | Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k]
736
//H[k][z] = z^-2 * phi_fract[k] * | | ----------------------------------------------------------------
737
// | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m]
738
// m = 0
739
//d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z]
740
for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) {
741
int b = k_to_i[k];
742
#if USE_FIXED
743
int g_decay_slope;
744
745
if (k - DECAY_CUTOFF[is34] <= 0) {
746
g_decay_slope = 1 << 30;
747
}
748
else if (k - DECAY_CUTOFF[is34] >= 20) {
749
g_decay_slope = 0;
750
}
751
else {
752
g_decay_slope = (1 << 30) - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
753
}
754
#else
755
float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
756
g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f);
757
#endif /* USE_FIXED */
758
memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
759
memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
760
for (m = 0; m < PS_AP_LINKS; m++) {
761
memcpy(ap_delay[k][m], ap_delay[k][m]+numQMFSlots, 5*sizeof(ap_delay[k][m][0]));
762
}
763
ps->dsp.decorrelate(out[k], delay[k] + PS_MAX_DELAY - 2, ap_delay[k],
764
phi_fract[is34][k],
765
(const INTFLOAT (*)[2]) Q_fract_allpass[is34][k],
766
transient_gain[b], g_decay_slope, nL - n0);
767
}
768
for (; k < SHORT_DELAY_BAND[is34]; k++) {
769
int i = k_to_i[k];
770
memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
771
memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
772
//H = delay 14
773
ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 14,
774
transient_gain[i], nL - n0);
775
}
776
for (; k < NR_BANDS[is34]; k++) {
777
int i = k_to_i[k];
778
memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
779
memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
780
//H = delay 1
781
ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 1,
782
transient_gain[i], nL - n0);
783
}
784
}
785
786
static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
787
int8_t (*par)[PS_MAX_NR_IIDICC],
788
int num_par, int num_env, int full)
789
{
790
int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
791
int e;
792
if (num_par == 20 || num_par == 11) {
793
for (e = 0; e < num_env; e++) {
794
map_idx_20_to_34(par_mapped[e], par[e], full);
795
}
796
} else if (num_par == 10 || num_par == 5) {
797
for (e = 0; e < num_env; e++) {
798
map_idx_10_to_34(par_mapped[e], par[e], full);
799
}
800
} else {
801
*p_par_mapped = par;
802
}
803
}
804
805
static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
806
int8_t (*par)[PS_MAX_NR_IIDICC],
807
int num_par, int num_env, int full)
808
{
809
int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
810
int e;
811
if (num_par == 34 || num_par == 17) {
812
for (e = 0; e < num_env; e++) {
813
map_idx_34_to_20(par_mapped[e], par[e], full);
814
}
815
} else if (num_par == 10 || num_par == 5) {
816
for (e = 0; e < num_env; e++) {
817
map_idx_10_to_20(par_mapped[e], par[e], full);
818
}
819
} else {
820
*p_par_mapped = par;
821
}
822
}
823
824
static void stereo_processing(PSContext *ps, INTFLOAT (*l)[32][2], INTFLOAT (*r)[32][2], int is34)
825
{
826
int e, b, k;
827
828
INTFLOAT (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11;
829
INTFLOAT (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12;
830
INTFLOAT (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21;
831
INTFLOAT (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22;
832
int8_t *opd_hist = ps->opd_hist;
833
int8_t *ipd_hist = ps->ipd_hist;
834
int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
835
int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
836
int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
837
int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
838
int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf;
839
int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf;
840
int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf;
841
int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf;
842
const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
843
TABLE_CONST INTFLOAT (*H_LUT)[8][4] = (PS_BASELINE || ps->icc_mode < 3) ? HA : HB;
844
845
//Remapping
846
if (ps->num_env_old) {
847
memcpy(H11[0][0], H11[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[0][0][0]));
848
memcpy(H11[1][0], H11[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[1][0][0]));
849
memcpy(H12[0][0], H12[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[0][0][0]));
850
memcpy(H12[1][0], H12[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[1][0][0]));
851
memcpy(H21[0][0], H21[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[0][0][0]));
852
memcpy(H21[1][0], H21[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[1][0][0]));
853
memcpy(H22[0][0], H22[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[0][0][0]));
854
memcpy(H22[1][0], H22[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[1][0][0]));
855
}
856
857
if (is34) {
858
remap34(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
859
remap34(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
860
if (ps->enable_ipdopd) {
861
remap34(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
862
remap34(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
863
}
864
if (!ps->is34bands_old) {
865
map_val_20_to_34(H11[0][0]);
866
map_val_20_to_34(H11[1][0]);
867
map_val_20_to_34(H12[0][0]);
868
map_val_20_to_34(H12[1][0]);
869
map_val_20_to_34(H21[0][0]);
870
map_val_20_to_34(H21[1][0]);
871
map_val_20_to_34(H22[0][0]);
872
map_val_20_to_34(H22[1][0]);
873
ipdopd_reset(ipd_hist, opd_hist);
874
}
875
} else {
876
remap20(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
877
remap20(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
878
if (ps->enable_ipdopd) {
879
remap20(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
880
remap20(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
881
}
882
if (ps->is34bands_old) {
883
map_val_34_to_20(H11[0][0]);
884
map_val_34_to_20(H11[1][0]);
885
map_val_34_to_20(H12[0][0]);
886
map_val_34_to_20(H12[1][0]);
887
map_val_34_to_20(H21[0][0]);
888
map_val_34_to_20(H21[1][0]);
889
map_val_34_to_20(H22[0][0]);
890
map_val_34_to_20(H22[1][0]);
891
ipdopd_reset(ipd_hist, opd_hist);
892
}
893
}
894
895
//Mixing
896
for (e = 0; e < ps->num_env; e++) {
897
for (b = 0; b < NR_PAR_BANDS[is34]; b++) {
898
INTFLOAT h11, h12, h21, h22;
899
h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][0];
900
h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][1];
901
h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][2];
902
h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][3];
903
904
if (!PS_BASELINE && ps->enable_ipdopd && b < NR_IPDOPD_BANDS[is34]) {
905
//The spec say says to only run this smoother when enable_ipdopd
906
//is set but the reference decoder appears to run it constantly
907
INTFLOAT h11i, h12i, h21i, h22i;
908
INTFLOAT ipd_adj_re, ipd_adj_im;
909
int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b];
910
int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b];
911
INTFLOAT opd_re = pd_re_smooth[opd_idx];
912
INTFLOAT opd_im = pd_im_smooth[opd_idx];
913
INTFLOAT ipd_re = pd_re_smooth[ipd_idx];
914
INTFLOAT ipd_im = pd_im_smooth[ipd_idx];
915
opd_hist[b] = opd_idx & 0x3F;
916
ipd_hist[b] = ipd_idx & 0x3F;
917
918
ipd_adj_re = AAC_MADD30(opd_re, ipd_re, opd_im, ipd_im);
919
ipd_adj_im = AAC_MSUB30(opd_im, ipd_re, opd_re, ipd_im);
920
h11i = AAC_MUL30(h11, opd_im);
921
h11 = AAC_MUL30(h11, opd_re);
922
h12i = AAC_MUL30(h12, ipd_adj_im);
923
h12 = AAC_MUL30(h12, ipd_adj_re);
924
h21i = AAC_MUL30(h21, opd_im);
925
h21 = AAC_MUL30(h21, opd_re);
926
h22i = AAC_MUL30(h22, ipd_adj_im);
927
h22 = AAC_MUL30(h22, ipd_adj_re);
928
H11[1][e+1][b] = h11i;
929
H12[1][e+1][b] = h12i;
930
H21[1][e+1][b] = h21i;
931
H22[1][e+1][b] = h22i;
932
}
933
H11[0][e+1][b] = h11;
934
H12[0][e+1][b] = h12;
935
H21[0][e+1][b] = h21;
936
H22[0][e+1][b] = h22;
937
}
938
for (k = 0; k < NR_BANDS[is34]; k++) {
939
LOCAL_ALIGNED_16(INTFLOAT, h, [2], [4]);
940
LOCAL_ALIGNED_16(INTFLOAT, h_step, [2], [4]);
941
int start = ps->border_position[e];
942
int stop = ps->border_position[e+1];
943
INTFLOAT width = Q30(1.f) / ((stop - start) ? (stop - start) : 1);
944
#if USE_FIXED
945
width <<= 1;
946
#endif
947
b = k_to_i[k];
948
h[0][0] = H11[0][e][b];
949
h[0][1] = H12[0][e][b];
950
h[0][2] = H21[0][e][b];
951
h[0][3] = H22[0][e][b];
952
if (!PS_BASELINE && ps->enable_ipdopd) {
953
//Is this necessary? ps_04_new seems unchanged
954
if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) {
955
h[1][0] = -H11[1][e][b];
956
h[1][1] = -H12[1][e][b];
957
h[1][2] = -H21[1][e][b];
958
h[1][3] = -H22[1][e][b];
959
} else {
960
h[1][0] = H11[1][e][b];
961
h[1][1] = H12[1][e][b];
962
h[1][2] = H21[1][e][b];
963
h[1][3] = H22[1][e][b];
964
}
965
}
966
//Interpolation
967
h_step[0][0] = AAC_MSUB31_V3(H11[0][e+1][b], h[0][0], width);
968
h_step[0][1] = AAC_MSUB31_V3(H12[0][e+1][b], h[0][1], width);
969
h_step[0][2] = AAC_MSUB31_V3(H21[0][e+1][b], h[0][2], width);
970
h_step[0][3] = AAC_MSUB31_V3(H22[0][e+1][b], h[0][3], width);
971
if (!PS_BASELINE && ps->enable_ipdopd) {
972
h_step[1][0] = AAC_MSUB31_V3(H11[1][e+1][b], h[1][0], width);
973
h_step[1][1] = AAC_MSUB31_V3(H12[1][e+1][b], h[1][1], width);
974
h_step[1][2] = AAC_MSUB31_V3(H21[1][e+1][b], h[1][2], width);
975
h_step[1][3] = AAC_MSUB31_V3(H22[1][e+1][b], h[1][3], width);
976
}
977
ps->dsp.stereo_interpolate[!PS_BASELINE && ps->enable_ipdopd](
978
l[k] + start + 1, r[k] + start + 1,
979
h, h_step, stop - start);
980
}
981
}
982
}
983
984
int AAC_RENAME(ff_ps_apply)(AVCodecContext *avctx, PSContext *ps, INTFLOAT L[2][38][64], INTFLOAT R[2][38][64], int top)
985
{
986
INTFLOAT (*Lbuf)[32][2] = ps->Lbuf;
987
INTFLOAT (*Rbuf)[32][2] = ps->Rbuf;
988
const int len = 32;
989
int is34 = ps->is34bands;
990
991
top += NR_BANDS[is34] - 64;
992
memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0]));
993
if (top < NR_ALLPASS_BANDS[is34])
994
memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0]));
995
996
hybrid_analysis(&ps->dsp, Lbuf, ps->in_buf, L, is34, len);
997
decorrelation(ps, Rbuf, (const INTFLOAT (*)[32][2]) Lbuf, is34);
998
stereo_processing(ps, Lbuf, Rbuf, is34);
999
hybrid_synthesis(&ps->dsp, L, Lbuf, is34, len);
1000
hybrid_synthesis(&ps->dsp, R, Rbuf, is34, len);
1001
1002
return 0;
1003
}
1004
1005
#define PS_INIT_VLC_STATIC(num, size) \
1006
INIT_VLC_STATIC(&vlc_ps[num], 9, ps_tmp[num].table_size / ps_tmp[num].elem_size, \
1007
ps_tmp[num].ps_bits, 1, 1, \
1008
ps_tmp[num].ps_codes, ps_tmp[num].elem_size, ps_tmp[num].elem_size, \
1009
size);
1010
1011
#define PS_VLC_ROW(name) \
1012
{ name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
1013
1014
av_cold void AAC_RENAME(ff_ps_init)(void) {
1015
// Syntax initialization
1016
static const struct {
1017
const void *ps_codes, *ps_bits;
1018
const unsigned int table_size, elem_size;
1019
} ps_tmp[] = {
1020
PS_VLC_ROW(huff_iid_df1),
1021
PS_VLC_ROW(huff_iid_dt1),
1022
PS_VLC_ROW(huff_iid_df0),
1023
PS_VLC_ROW(huff_iid_dt0),
1024
PS_VLC_ROW(huff_icc_df),
1025
PS_VLC_ROW(huff_icc_dt),
1026
PS_VLC_ROW(huff_ipd_df),
1027
PS_VLC_ROW(huff_ipd_dt),
1028
PS_VLC_ROW(huff_opd_df),
1029
PS_VLC_ROW(huff_opd_dt),
1030
};
1031
1032
PS_INIT_VLC_STATIC(0, 1544);
1033
PS_INIT_VLC_STATIC(1, 832);
1034
PS_INIT_VLC_STATIC(2, 1024);
1035
PS_INIT_VLC_STATIC(3, 1036);
1036
PS_INIT_VLC_STATIC(4, 544);
1037
PS_INIT_VLC_STATIC(5, 544);
1038
PS_INIT_VLC_STATIC(6, 512);
1039
PS_INIT_VLC_STATIC(7, 512);
1040
PS_INIT_VLC_STATIC(8, 512);
1041
PS_INIT_VLC_STATIC(9, 512);
1042
1043
ps_tableinit();
1044
}
1045
1046
av_cold void AAC_RENAME(ff_ps_ctx_init)(PSContext *ps)
1047
{
1048
AAC_RENAME(ff_psdsp_init)(&ps->dsp);
1049
}
1050
1051