Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
52868 views
1
/*
2
* Copyright (c) 2013-2015 Paul B Mahol
3
*
4
* This file is part of FFmpeg.
5
*
6
* FFmpeg is free software; you can redistribute it and/or
7
* modify it under the terms of the GNU Lesser General Public
8
* License as published by the Free Software Foundation; either
9
* version 2.1 of the License, or (at your option) any later version.
10
*
11
* FFmpeg is distributed in the hope that it will be useful,
12
* but WITHOUT ANY WARRANTY; without even the implied warranty of
13
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14
* Lesser General Public License for more details.
15
*
16
* You should have received a copy of the GNU Lesser General Public
17
* License along with FFmpeg; if not, write to the Free Software
18
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
*/
20
21
/**
22
* @file
23
* fade audio filter
24
*/
25
26
#include "libavutil/audio_fifo.h"
27
#include "libavutil/opt.h"
28
#include "audio.h"
29
#include "avfilter.h"
30
#include "internal.h"
31
32
typedef struct {
33
const AVClass *class;
34
int type;
35
int curve, curve2;
36
int nb_samples;
37
int64_t start_sample;
38
int64_t duration;
39
int64_t start_time;
40
int overlap;
41
int cf0_eof;
42
int crossfade_is_over;
43
AVAudioFifo *fifo[2];
44
int64_t pts;
45
46
void (*fade_samples)(uint8_t **dst, uint8_t * const *src,
47
int nb_samples, int channels, int direction,
48
int64_t start, int range, int curve);
49
void (*crossfade_samples)(uint8_t **dst, uint8_t * const *cf0,
50
uint8_t * const *cf1,
51
int nb_samples, int channels,
52
int curve0, int curve1);
53
} AudioFadeContext;
54
55
enum CurveType { TRI, QSIN, ESIN, HSIN, LOG, IPAR, QUA, CUB, SQU, CBR, PAR, EXP, IQSIN, IHSIN, DESE, DESI, NB_CURVES };
56
57
#define OFFSET(x) offsetof(AudioFadeContext, x)
58
#define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
59
60
static int query_formats(AVFilterContext *ctx)
61
{
62
AVFilterFormats *formats;
63
AVFilterChannelLayouts *layouts;
64
static const enum AVSampleFormat sample_fmts[] = {
65
AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16P,
66
AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32P,
67
AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLTP,
68
AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBLP,
69
AV_SAMPLE_FMT_NONE
70
};
71
int ret;
72
73
layouts = ff_all_channel_counts();
74
if (!layouts)
75
return AVERROR(ENOMEM);
76
ret = ff_set_common_channel_layouts(ctx, layouts);
77
if (ret < 0)
78
return ret;
79
80
formats = ff_make_format_list(sample_fmts);
81
if (!formats)
82
return AVERROR(ENOMEM);
83
ret = ff_set_common_formats(ctx, formats);
84
if (ret < 0)
85
return ret;
86
87
formats = ff_all_samplerates();
88
if (!formats)
89
return AVERROR(ENOMEM);
90
return ff_set_common_samplerates(ctx, formats);
91
}
92
93
static double fade_gain(int curve, int64_t index, int range)
94
{
95
#define CUBE(a) ((a)*(a)*(a))
96
double gain;
97
98
gain = av_clipd(1.0 * index / range, 0, 1.0);
99
100
switch (curve) {
101
case QSIN:
102
gain = sin(gain * M_PI / 2.0);
103
break;
104
case IQSIN:
105
/* 0.6... = 2 / M_PI */
106
gain = 0.6366197723675814 * asin(gain);
107
break;
108
case ESIN:
109
gain = 1.0 - cos(M_PI / 4.0 * (CUBE(2.0*gain - 1) + 1));
110
break;
111
case HSIN:
112
gain = (1.0 - cos(gain * M_PI)) / 2.0;
113
break;
114
case IHSIN:
115
/* 0.3... = 1 / M_PI */
116
gain = 0.3183098861837907 * acos(1 - 2 * gain);
117
break;
118
case EXP:
119
/* -11.5... = 5*ln(0.1) */
120
gain = exp(-11.512925464970227 * (1 - gain));
121
break;
122
case LOG:
123
gain = av_clipd(1 + 0.2 * log10(gain), 0, 1.0);
124
break;
125
case PAR:
126
gain = 1 - sqrt(1 - gain);
127
break;
128
case IPAR:
129
gain = (1 - (1 - gain) * (1 - gain));
130
break;
131
case QUA:
132
gain *= gain;
133
break;
134
case CUB:
135
gain = CUBE(gain);
136
break;
137
case SQU:
138
gain = sqrt(gain);
139
break;
140
case CBR:
141
gain = cbrt(gain);
142
break;
143
case DESE:
144
gain = gain <= 0.5 ? cbrt(2 * gain) / 2: 1 - cbrt(2 * (1 - gain)) / 2;
145
break;
146
case DESI:
147
gain = gain <= 0.5 ? CUBE(2 * gain) / 2: 1 - CUBE(2 * (1 - gain)) / 2;
148
break;
149
}
150
151
return gain;
152
}
153
154
#define FADE_PLANAR(name, type) \
155
static void fade_samples_## name ##p(uint8_t **dst, uint8_t * const *src, \
156
int nb_samples, int channels, int dir, \
157
int64_t start, int range, int curve) \
158
{ \
159
int i, c; \
160
\
161
for (i = 0; i < nb_samples; i++) { \
162
double gain = fade_gain(curve, start + i * dir, range); \
163
for (c = 0; c < channels; c++) { \
164
type *d = (type *)dst[c]; \
165
const type *s = (type *)src[c]; \
166
\
167
d[i] = s[i] * gain; \
168
} \
169
} \
170
}
171
172
#define FADE(name, type) \
173
static void fade_samples_## name (uint8_t **dst, uint8_t * const *src, \
174
int nb_samples, int channels, int dir, \
175
int64_t start, int range, int curve) \
176
{ \
177
type *d = (type *)dst[0]; \
178
const type *s = (type *)src[0]; \
179
int i, c, k = 0; \
180
\
181
for (i = 0; i < nb_samples; i++) { \
182
double gain = fade_gain(curve, start + i * dir, range); \
183
for (c = 0; c < channels; c++, k++) \
184
d[k] = s[k] * gain; \
185
} \
186
}
187
188
FADE_PLANAR(dbl, double)
189
FADE_PLANAR(flt, float)
190
FADE_PLANAR(s16, int16_t)
191
FADE_PLANAR(s32, int32_t)
192
193
FADE(dbl, double)
194
FADE(flt, float)
195
FADE(s16, int16_t)
196
FADE(s32, int32_t)
197
198
static int config_output(AVFilterLink *outlink)
199
{
200
AVFilterContext *ctx = outlink->src;
201
AudioFadeContext *s = ctx->priv;
202
203
switch (outlink->format) {
204
case AV_SAMPLE_FMT_DBL: s->fade_samples = fade_samples_dbl; break;
205
case AV_SAMPLE_FMT_DBLP: s->fade_samples = fade_samples_dblp; break;
206
case AV_SAMPLE_FMT_FLT: s->fade_samples = fade_samples_flt; break;
207
case AV_SAMPLE_FMT_FLTP: s->fade_samples = fade_samples_fltp; break;
208
case AV_SAMPLE_FMT_S16: s->fade_samples = fade_samples_s16; break;
209
case AV_SAMPLE_FMT_S16P: s->fade_samples = fade_samples_s16p; break;
210
case AV_SAMPLE_FMT_S32: s->fade_samples = fade_samples_s32; break;
211
case AV_SAMPLE_FMT_S32P: s->fade_samples = fade_samples_s32p; break;
212
}
213
214
if (s->duration)
215
s->nb_samples = av_rescale(s->duration, outlink->sample_rate, AV_TIME_BASE);
216
if (s->start_time)
217
s->start_sample = av_rescale(s->start_time, outlink->sample_rate, AV_TIME_BASE);
218
219
return 0;
220
}
221
222
#if CONFIG_AFADE_FILTER
223
224
static const AVOption afade_options[] = {
225
{ "type", "set the fade direction", OFFSET(type), AV_OPT_TYPE_INT, {.i64 = 0 }, 0, 1, FLAGS, "type" },
226
{ "t", "set the fade direction", OFFSET(type), AV_OPT_TYPE_INT, {.i64 = 0 }, 0, 1, FLAGS, "type" },
227
{ "in", "fade-in", 0, AV_OPT_TYPE_CONST, {.i64 = 0 }, 0, 0, FLAGS, "type" },
228
{ "out", "fade-out", 0, AV_OPT_TYPE_CONST, {.i64 = 1 }, 0, 0, FLAGS, "type" },
229
{ "start_sample", "set number of first sample to start fading", OFFSET(start_sample), AV_OPT_TYPE_INT64, {.i64 = 0 }, 0, INT64_MAX, FLAGS },
230
{ "ss", "set number of first sample to start fading", OFFSET(start_sample), AV_OPT_TYPE_INT64, {.i64 = 0 }, 0, INT64_MAX, FLAGS },
231
{ "nb_samples", "set number of samples for fade duration", OFFSET(nb_samples), AV_OPT_TYPE_INT, {.i64 = 44100}, 1, INT32_MAX, FLAGS },
232
{ "ns", "set number of samples for fade duration", OFFSET(nb_samples), AV_OPT_TYPE_INT, {.i64 = 44100}, 1, INT32_MAX, FLAGS },
233
{ "start_time", "set time to start fading", OFFSET(start_time), AV_OPT_TYPE_DURATION, {.i64 = 0. }, 0, INT32_MAX, FLAGS },
234
{ "st", "set time to start fading", OFFSET(start_time), AV_OPT_TYPE_DURATION, {.i64 = 0. }, 0, INT32_MAX, FLAGS },
235
{ "duration", "set fade duration", OFFSET(duration), AV_OPT_TYPE_DURATION, {.i64 = 0. }, 0, INT32_MAX, FLAGS },
236
{ "d", "set fade duration", OFFSET(duration), AV_OPT_TYPE_DURATION, {.i64 = 0. }, 0, INT32_MAX, FLAGS },
237
{ "curve", "set fade curve type", OFFSET(curve), AV_OPT_TYPE_INT, {.i64 = TRI }, 0, NB_CURVES - 1, FLAGS, "curve" },
238
{ "c", "set fade curve type", OFFSET(curve), AV_OPT_TYPE_INT, {.i64 = TRI }, 0, NB_CURVES - 1, FLAGS, "curve" },
239
{ "tri", "linear slope", 0, AV_OPT_TYPE_CONST, {.i64 = TRI }, 0, 0, FLAGS, "curve" },
240
{ "qsin", "quarter of sine wave", 0, AV_OPT_TYPE_CONST, {.i64 = QSIN }, 0, 0, FLAGS, "curve" },
241
{ "esin", "exponential sine wave", 0, AV_OPT_TYPE_CONST, {.i64 = ESIN }, 0, 0, FLAGS, "curve" },
242
{ "hsin", "half of sine wave", 0, AV_OPT_TYPE_CONST, {.i64 = HSIN }, 0, 0, FLAGS, "curve" },
243
{ "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64 = LOG }, 0, 0, FLAGS, "curve" },
244
{ "ipar", "inverted parabola", 0, AV_OPT_TYPE_CONST, {.i64 = IPAR }, 0, 0, FLAGS, "curve" },
245
{ "qua", "quadratic", 0, AV_OPT_TYPE_CONST, {.i64 = QUA }, 0, 0, FLAGS, "curve" },
246
{ "cub", "cubic", 0, AV_OPT_TYPE_CONST, {.i64 = CUB }, 0, 0, FLAGS, "curve" },
247
{ "squ", "square root", 0, AV_OPT_TYPE_CONST, {.i64 = SQU }, 0, 0, FLAGS, "curve" },
248
{ "cbr", "cubic root", 0, AV_OPT_TYPE_CONST, {.i64 = CBR }, 0, 0, FLAGS, "curve" },
249
{ "par", "parabola", 0, AV_OPT_TYPE_CONST, {.i64 = PAR }, 0, 0, FLAGS, "curve" },
250
{ "exp", "exponential", 0, AV_OPT_TYPE_CONST, {.i64 = EXP }, 0, 0, FLAGS, "curve" },
251
{ "iqsin", "inverted quarter of sine wave", 0, AV_OPT_TYPE_CONST, {.i64 = IQSIN}, 0, 0, FLAGS, "curve" },
252
{ "ihsin", "inverted half of sine wave", 0, AV_OPT_TYPE_CONST, {.i64 = IHSIN}, 0, 0, FLAGS, "curve" },
253
{ "dese", "double-exponential seat", 0, AV_OPT_TYPE_CONST, {.i64 = DESE }, 0, 0, FLAGS, "curve" },
254
{ "desi", "double-exponential sigmoid", 0, AV_OPT_TYPE_CONST, {.i64 = DESI }, 0, 0, FLAGS, "curve" },
255
{ NULL }
256
};
257
258
AVFILTER_DEFINE_CLASS(afade);
259
260
static av_cold int init(AVFilterContext *ctx)
261
{
262
AudioFadeContext *s = ctx->priv;
263
264
if (INT64_MAX - s->nb_samples < s->start_sample)
265
return AVERROR(EINVAL);
266
267
return 0;
268
}
269
270
static int filter_frame(AVFilterLink *inlink, AVFrame *buf)
271
{
272
AudioFadeContext *s = inlink->dst->priv;
273
AVFilterLink *outlink = inlink->dst->outputs[0];
274
int nb_samples = buf->nb_samples;
275
AVFrame *out_buf;
276
int64_t cur_sample = av_rescale_q(buf->pts, inlink->time_base, (AVRational){1, inlink->sample_rate});
277
278
if ((!s->type && (s->start_sample + s->nb_samples < cur_sample)) ||
279
( s->type && (cur_sample + nb_samples < s->start_sample)))
280
return ff_filter_frame(outlink, buf);
281
282
if (av_frame_is_writable(buf)) {
283
out_buf = buf;
284
} else {
285
out_buf = ff_get_audio_buffer(inlink, nb_samples);
286
if (!out_buf)
287
return AVERROR(ENOMEM);
288
av_frame_copy_props(out_buf, buf);
289
}
290
291
if ((!s->type && (cur_sample + nb_samples < s->start_sample)) ||
292
( s->type && (s->start_sample + s->nb_samples < cur_sample))) {
293
av_samples_set_silence(out_buf->extended_data, 0, nb_samples,
294
av_frame_get_channels(out_buf), out_buf->format);
295
} else {
296
int64_t start;
297
298
if (!s->type)
299
start = cur_sample - s->start_sample;
300
else
301
start = s->start_sample + s->nb_samples - cur_sample;
302
303
s->fade_samples(out_buf->extended_data, buf->extended_data,
304
nb_samples, av_frame_get_channels(buf),
305
s->type ? -1 : 1, start,
306
s->nb_samples, s->curve);
307
}
308
309
if (buf != out_buf)
310
av_frame_free(&buf);
311
312
return ff_filter_frame(outlink, out_buf);
313
}
314
315
static const AVFilterPad avfilter_af_afade_inputs[] = {
316
{
317
.name = "default",
318
.type = AVMEDIA_TYPE_AUDIO,
319
.filter_frame = filter_frame,
320
},
321
{ NULL }
322
};
323
324
static const AVFilterPad avfilter_af_afade_outputs[] = {
325
{
326
.name = "default",
327
.type = AVMEDIA_TYPE_AUDIO,
328
.config_props = config_output,
329
},
330
{ NULL }
331
};
332
333
AVFilter ff_af_afade = {
334
.name = "afade",
335
.description = NULL_IF_CONFIG_SMALL("Fade in/out input audio."),
336
.query_formats = query_formats,
337
.priv_size = sizeof(AudioFadeContext),
338
.init = init,
339
.inputs = avfilter_af_afade_inputs,
340
.outputs = avfilter_af_afade_outputs,
341
.priv_class = &afade_class,
342
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC,
343
};
344
345
#endif /* CONFIG_AFADE_FILTER */
346
347
#if CONFIG_ACROSSFADE_FILTER
348
349
static const AVOption acrossfade_options[] = {
350
{ "nb_samples", "set number of samples for cross fade duration", OFFSET(nb_samples), AV_OPT_TYPE_INT, {.i64 = 44100}, 1, INT32_MAX/10, FLAGS },
351
{ "ns", "set number of samples for cross fade duration", OFFSET(nb_samples), AV_OPT_TYPE_INT, {.i64 = 44100}, 1, INT32_MAX/10, FLAGS },
352
{ "duration", "set cross fade duration", OFFSET(duration), AV_OPT_TYPE_DURATION, {.i64 = 0. }, 0, 60, FLAGS },
353
{ "d", "set cross fade duration", OFFSET(duration), AV_OPT_TYPE_DURATION, {.i64 = 0. }, 0, 60, FLAGS },
354
{ "overlap", "overlap 1st stream end with 2nd stream start", OFFSET(overlap), AV_OPT_TYPE_BOOL, {.i64 = 1 }, 0, 1, FLAGS },
355
{ "o", "overlap 1st stream end with 2nd stream start", OFFSET(overlap), AV_OPT_TYPE_BOOL, {.i64 = 1 }, 0, 1, FLAGS },
356
{ "curve1", "set fade curve type for 1st stream", OFFSET(curve), AV_OPT_TYPE_INT, {.i64 = TRI }, 0, NB_CURVES - 1, FLAGS, "curve" },
357
{ "c1", "set fade curve type for 1st stream", OFFSET(curve), AV_OPT_TYPE_INT, {.i64 = TRI }, 0, NB_CURVES - 1, FLAGS, "curve" },
358
{ "tri", "linear slope", 0, AV_OPT_TYPE_CONST, {.i64 = TRI }, 0, 0, FLAGS, "curve" },
359
{ "qsin", "quarter of sine wave", 0, AV_OPT_TYPE_CONST, {.i64 = QSIN }, 0, 0, FLAGS, "curve" },
360
{ "esin", "exponential sine wave", 0, AV_OPT_TYPE_CONST, {.i64 = ESIN }, 0, 0, FLAGS, "curve" },
361
{ "hsin", "half of sine wave", 0, AV_OPT_TYPE_CONST, {.i64 = HSIN }, 0, 0, FLAGS, "curve" },
362
{ "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64 = LOG }, 0, 0, FLAGS, "curve" },
363
{ "ipar", "inverted parabola", 0, AV_OPT_TYPE_CONST, {.i64 = IPAR }, 0, 0, FLAGS, "curve" },
364
{ "qua", "quadratic", 0, AV_OPT_TYPE_CONST, {.i64 = QUA }, 0, 0, FLAGS, "curve" },
365
{ "cub", "cubic", 0, AV_OPT_TYPE_CONST, {.i64 = CUB }, 0, 0, FLAGS, "curve" },
366
{ "squ", "square root", 0, AV_OPT_TYPE_CONST, {.i64 = SQU }, 0, 0, FLAGS, "curve" },
367
{ "cbr", "cubic root", 0, AV_OPT_TYPE_CONST, {.i64 = CBR }, 0, 0, FLAGS, "curve" },
368
{ "par", "parabola", 0, AV_OPT_TYPE_CONST, {.i64 = PAR }, 0, 0, FLAGS, "curve" },
369
{ "exp", "exponential", 0, AV_OPT_TYPE_CONST, {.i64 = EXP }, 0, 0, FLAGS, "curve" },
370
{ "iqsin", "inverted quarter of sine wave", 0, AV_OPT_TYPE_CONST, {.i64 = IQSIN}, 0, 0, FLAGS, "curve" },
371
{ "ihsin", "inverted half of sine wave", 0, AV_OPT_TYPE_CONST, {.i64 = IHSIN}, 0, 0, FLAGS, "curve" },
372
{ "dese", "double-exponential seat", 0, AV_OPT_TYPE_CONST, {.i64 = DESE }, 0, 0, FLAGS, "curve" },
373
{ "desi", "double-exponential sigmoid", 0, AV_OPT_TYPE_CONST, {.i64 = DESI }, 0, 0, FLAGS, "curve" },
374
{ "curve2", "set fade curve type for 2nd stream", OFFSET(curve2), AV_OPT_TYPE_INT, {.i64 = TRI }, 0, NB_CURVES - 1, FLAGS, "curve" },
375
{ "c2", "set fade curve type for 2nd stream", OFFSET(curve2), AV_OPT_TYPE_INT, {.i64 = TRI }, 0, NB_CURVES - 1, FLAGS, "curve" },
376
{ NULL }
377
};
378
379
AVFILTER_DEFINE_CLASS(acrossfade);
380
381
#define CROSSFADE_PLANAR(name, type) \
382
static void crossfade_samples_## name ##p(uint8_t **dst, uint8_t * const *cf0, \
383
uint8_t * const *cf1, \
384
int nb_samples, int channels, \
385
int curve0, int curve1) \
386
{ \
387
int i, c; \
388
\
389
for (i = 0; i < nb_samples; i++) { \
390
double gain0 = fade_gain(curve0, nb_samples - 1 - i, nb_samples); \
391
double gain1 = fade_gain(curve1, i, nb_samples); \
392
for (c = 0; c < channels; c++) { \
393
type *d = (type *)dst[c]; \
394
const type *s0 = (type *)cf0[c]; \
395
const type *s1 = (type *)cf1[c]; \
396
\
397
d[i] = s0[i] * gain0 + s1[i] * gain1; \
398
} \
399
} \
400
}
401
402
#define CROSSFADE(name, type) \
403
static void crossfade_samples_## name (uint8_t **dst, uint8_t * const *cf0, \
404
uint8_t * const *cf1, \
405
int nb_samples, int channels, \
406
int curve0, int curve1) \
407
{ \
408
type *d = (type *)dst[0]; \
409
const type *s0 = (type *)cf0[0]; \
410
const type *s1 = (type *)cf1[0]; \
411
int i, c, k = 0; \
412
\
413
for (i = 0; i < nb_samples; i++) { \
414
double gain0 = fade_gain(curve0, nb_samples - 1 - i, nb_samples); \
415
double gain1 = fade_gain(curve1, i, nb_samples); \
416
for (c = 0; c < channels; c++, k++) \
417
d[k] = s0[k] * gain0 + s1[k] * gain1; \
418
} \
419
}
420
421
CROSSFADE_PLANAR(dbl, double)
422
CROSSFADE_PLANAR(flt, float)
423
CROSSFADE_PLANAR(s16, int16_t)
424
CROSSFADE_PLANAR(s32, int32_t)
425
426
CROSSFADE(dbl, double)
427
CROSSFADE(flt, float)
428
CROSSFADE(s16, int16_t)
429
CROSSFADE(s32, int32_t)
430
431
static int acrossfade_filter_frame(AVFilterLink *inlink, AVFrame *in)
432
{
433
AVFilterContext *ctx = inlink->dst;
434
AudioFadeContext *s = ctx->priv;
435
AVFilterLink *outlink = ctx->outputs[0];
436
AVFrame *out, *cf[2] = { NULL };
437
int ret = 0, nb_samples;
438
439
if (s->crossfade_is_over) {
440
in->pts = s->pts;
441
s->pts += av_rescale_q(in->nb_samples,
442
(AVRational){ 1, outlink->sample_rate }, outlink->time_base);
443
return ff_filter_frame(outlink, in);
444
} else if (inlink == ctx->inputs[0]) {
445
av_audio_fifo_write(s->fifo[0], (void **)in->extended_data, in->nb_samples);
446
447
nb_samples = av_audio_fifo_size(s->fifo[0]) - s->nb_samples;
448
if (nb_samples > 0) {
449
out = ff_get_audio_buffer(outlink, nb_samples);
450
if (!out) {
451
ret = AVERROR(ENOMEM);
452
goto fail;
453
}
454
av_audio_fifo_read(s->fifo[0], (void **)out->extended_data, nb_samples);
455
out->pts = s->pts;
456
s->pts += av_rescale_q(nb_samples,
457
(AVRational){ 1, outlink->sample_rate }, outlink->time_base);
458
ret = ff_filter_frame(outlink, out);
459
}
460
} else if (av_audio_fifo_size(s->fifo[1]) < s->nb_samples) {
461
if (!s->overlap && av_audio_fifo_size(s->fifo[0]) > 0) {
462
nb_samples = av_audio_fifo_size(s->fifo[0]);
463
464
cf[0] = ff_get_audio_buffer(outlink, nb_samples);
465
out = ff_get_audio_buffer(outlink, nb_samples);
466
if (!out || !cf[0]) {
467
ret = AVERROR(ENOMEM);
468
goto fail;
469
}
470
av_audio_fifo_read(s->fifo[0], (void **)cf[0]->extended_data, nb_samples);
471
472
s->fade_samples(out->extended_data, cf[0]->extended_data, nb_samples,
473
outlink->channels, -1, nb_samples - 1, nb_samples, s->curve);
474
out->pts = s->pts;
475
s->pts += av_rescale_q(nb_samples,
476
(AVRational){ 1, outlink->sample_rate }, outlink->time_base);
477
ret = ff_filter_frame(outlink, out);
478
if (ret < 0)
479
goto fail;
480
}
481
482
av_audio_fifo_write(s->fifo[1], (void **)in->extended_data, in->nb_samples);
483
} else if (av_audio_fifo_size(s->fifo[1]) >= s->nb_samples) {
484
av_audio_fifo_write(s->fifo[1], (void **)in->extended_data, in->nb_samples);
485
486
if (s->overlap) {
487
cf[0] = ff_get_audio_buffer(outlink, s->nb_samples);
488
cf[1] = ff_get_audio_buffer(outlink, s->nb_samples);
489
out = ff_get_audio_buffer(outlink, s->nb_samples);
490
if (!out || !cf[0] || !cf[1]) {
491
av_frame_free(&out);
492
ret = AVERROR(ENOMEM);
493
goto fail;
494
}
495
496
av_audio_fifo_read(s->fifo[0], (void **)cf[0]->extended_data, s->nb_samples);
497
av_audio_fifo_read(s->fifo[1], (void **)cf[1]->extended_data, s->nb_samples);
498
499
s->crossfade_samples(out->extended_data, cf[0]->extended_data,
500
cf[1]->extended_data,
501
s->nb_samples, av_frame_get_channels(in),
502
s->curve, s->curve2);
503
out->pts = s->pts;
504
s->pts += av_rescale_q(s->nb_samples,
505
(AVRational){ 1, outlink->sample_rate }, outlink->time_base);
506
ret = ff_filter_frame(outlink, out);
507
if (ret < 0)
508
goto fail;
509
} else {
510
out = ff_get_audio_buffer(outlink, s->nb_samples);
511
cf[1] = ff_get_audio_buffer(outlink, s->nb_samples);
512
if (!out || !cf[1]) {
513
ret = AVERROR(ENOMEM);
514
av_frame_free(&out);
515
goto fail;
516
}
517
518
av_audio_fifo_read(s->fifo[1], (void **)cf[1]->extended_data, s->nb_samples);
519
520
s->fade_samples(out->extended_data, cf[1]->extended_data, s->nb_samples,
521
outlink->channels, 1, 0, s->nb_samples, s->curve2);
522
out->pts = s->pts;
523
s->pts += av_rescale_q(s->nb_samples,
524
(AVRational){ 1, outlink->sample_rate }, outlink->time_base);
525
ret = ff_filter_frame(outlink, out);
526
if (ret < 0)
527
goto fail;
528
}
529
530
nb_samples = av_audio_fifo_size(s->fifo[1]);
531
if (nb_samples > 0) {
532
out = ff_get_audio_buffer(outlink, nb_samples);
533
if (!out) {
534
ret = AVERROR(ENOMEM);
535
goto fail;
536
}
537
538
av_audio_fifo_read(s->fifo[1], (void **)out->extended_data, nb_samples);
539
out->pts = s->pts;
540
s->pts += av_rescale_q(nb_samples,
541
(AVRational){ 1, outlink->sample_rate }, outlink->time_base);
542
ret = ff_filter_frame(outlink, out);
543
}
544
s->crossfade_is_over = 1;
545
}
546
547
fail:
548
av_frame_free(&in);
549
av_frame_free(&cf[0]);
550
av_frame_free(&cf[1]);
551
return ret;
552
}
553
554
static int acrossfade_request_frame(AVFilterLink *outlink)
555
{
556
AVFilterContext *ctx = outlink->src;
557
AudioFadeContext *s = ctx->priv;
558
int ret = 0;
559
560
if (!s->cf0_eof) {
561
AVFilterLink *cf0 = ctx->inputs[0];
562
ret = ff_request_frame(cf0);
563
if (ret < 0 && ret != AVERROR_EOF)
564
return ret;
565
if (ret == AVERROR_EOF) {
566
s->cf0_eof = 1;
567
ret = 0;
568
}
569
} else {
570
AVFilterLink *cf1 = ctx->inputs[1];
571
int nb_samples = av_audio_fifo_size(s->fifo[1]);
572
573
ret = ff_request_frame(cf1);
574
if (ret == AVERROR_EOF && nb_samples > 0) {
575
AVFrame *out = ff_get_audio_buffer(outlink, nb_samples);
576
if (!out)
577
return AVERROR(ENOMEM);
578
579
av_audio_fifo_read(s->fifo[1], (void **)out->extended_data, nb_samples);
580
ret = ff_filter_frame(outlink, out);
581
}
582
}
583
584
return ret;
585
}
586
587
static int acrossfade_config_output(AVFilterLink *outlink)
588
{
589
AVFilterContext *ctx = outlink->src;
590
AudioFadeContext *s = ctx->priv;
591
592
if (ctx->inputs[0]->sample_rate != ctx->inputs[1]->sample_rate) {
593
av_log(ctx, AV_LOG_ERROR,
594
"Inputs must have the same sample rate "
595
"%d for in0 vs %d for in1\n",
596
ctx->inputs[0]->sample_rate, ctx->inputs[1]->sample_rate);
597
return AVERROR(EINVAL);
598
}
599
600
outlink->sample_rate = ctx->inputs[0]->sample_rate;
601
outlink->time_base = ctx->inputs[0]->time_base;
602
outlink->channel_layout = ctx->inputs[0]->channel_layout;
603
outlink->channels = ctx->inputs[0]->channels;
604
605
switch (outlink->format) {
606
case AV_SAMPLE_FMT_DBL: s->crossfade_samples = crossfade_samples_dbl; break;
607
case AV_SAMPLE_FMT_DBLP: s->crossfade_samples = crossfade_samples_dblp; break;
608
case AV_SAMPLE_FMT_FLT: s->crossfade_samples = crossfade_samples_flt; break;
609
case AV_SAMPLE_FMT_FLTP: s->crossfade_samples = crossfade_samples_fltp; break;
610
case AV_SAMPLE_FMT_S16: s->crossfade_samples = crossfade_samples_s16; break;
611
case AV_SAMPLE_FMT_S16P: s->crossfade_samples = crossfade_samples_s16p; break;
612
case AV_SAMPLE_FMT_S32: s->crossfade_samples = crossfade_samples_s32; break;
613
case AV_SAMPLE_FMT_S32P: s->crossfade_samples = crossfade_samples_s32p; break;
614
}
615
616
config_output(outlink);
617
618
s->fifo[0] = av_audio_fifo_alloc(outlink->format, outlink->channels, s->nb_samples);
619
s->fifo[1] = av_audio_fifo_alloc(outlink->format, outlink->channels, s->nb_samples);
620
if (!s->fifo[0] || !s->fifo[1])
621
return AVERROR(ENOMEM);
622
623
return 0;
624
}
625
626
static av_cold void uninit(AVFilterContext *ctx)
627
{
628
AudioFadeContext *s = ctx->priv;
629
630
av_audio_fifo_free(s->fifo[0]);
631
av_audio_fifo_free(s->fifo[1]);
632
}
633
634
static const AVFilterPad avfilter_af_acrossfade_inputs[] = {
635
{
636
.name = "crossfade0",
637
.type = AVMEDIA_TYPE_AUDIO,
638
.filter_frame = acrossfade_filter_frame,
639
},
640
{
641
.name = "crossfade1",
642
.type = AVMEDIA_TYPE_AUDIO,
643
.filter_frame = acrossfade_filter_frame,
644
},
645
{ NULL }
646
};
647
648
static const AVFilterPad avfilter_af_acrossfade_outputs[] = {
649
{
650
.name = "default",
651
.type = AVMEDIA_TYPE_AUDIO,
652
.request_frame = acrossfade_request_frame,
653
.config_props = acrossfade_config_output,
654
},
655
{ NULL }
656
};
657
658
AVFilter ff_af_acrossfade = {
659
.name = "acrossfade",
660
.description = NULL_IF_CONFIG_SMALL("Cross fade two input audio streams."),
661
.query_formats = query_formats,
662
.priv_size = sizeof(AudioFadeContext),
663
.uninit = uninit,
664
.priv_class = &acrossfade_class,
665
.inputs = avfilter_af_acrossfade_inputs,
666
.outputs = avfilter_af_acrossfade_outputs,
667
};
668
669
#endif /* CONFIG_ACROSSFADE_FILTER */
670
671