Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
52868 views
1
/*
2
* Copyright (c) 2013 Paul B Mahol
3
* Copyright (c) 2006-2008 Rob Sykes <[email protected]>
4
*
5
* This file is part of FFmpeg.
6
*
7
* FFmpeg is free software; you can redistribute it and/or
8
* modify it under the terms of the GNU Lesser General Public
9
* License as published by the Free Software Foundation; either
10
* version 2.1 of the License, or (at your option) any later version.
11
*
12
* FFmpeg is distributed in the hope that it will be useful,
13
* but WITHOUT ANY WARRANTY; without even the implied warranty of
14
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15
* Lesser General Public License for more details.
16
*
17
* You should have received a copy of the GNU Lesser General Public
18
* License along with FFmpeg; if not, write to the Free Software
19
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
*/
21
22
/*
23
* 2-pole filters designed by Robert Bristow-Johnson <[email protected]>
24
* see http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt
25
*
26
* 1-pole filters based on code (c) 2000 Chris Bagwell <[email protected]>
27
* Algorithms: Recursive single pole low/high pass filter
28
* Reference: The Scientist and Engineer's Guide to Digital Signal Processing
29
*
30
* low-pass: output[N] = input[N] * A + output[N-1] * B
31
* X = exp(-2.0 * pi * Fc)
32
* A = 1 - X
33
* B = X
34
* Fc = cutoff freq / sample rate
35
*
36
* Mimics an RC low-pass filter:
37
*
38
* ---/\/\/\/\----------->
39
* |
40
* --- C
41
* ---
42
* |
43
* |
44
* V
45
*
46
* high-pass: output[N] = A0 * input[N] + A1 * input[N-1] + B1 * output[N-1]
47
* X = exp(-2.0 * pi * Fc)
48
* A0 = (1 + X) / 2
49
* A1 = -(1 + X) / 2
50
* B1 = X
51
* Fc = cutoff freq / sample rate
52
*
53
* Mimics an RC high-pass filter:
54
*
55
* || C
56
* ----||--------->
57
* || |
58
* <
59
* > R
60
* <
61
* |
62
* V
63
*/
64
65
#include "libavutil/avassert.h"
66
#include "libavutil/opt.h"
67
#include "audio.h"
68
#include "avfilter.h"
69
#include "internal.h"
70
71
enum FilterType {
72
biquad,
73
equalizer,
74
bass,
75
treble,
76
band,
77
bandpass,
78
bandreject,
79
allpass,
80
highpass,
81
lowpass,
82
};
83
84
enum WidthType {
85
NONE,
86
HERTZ,
87
OCTAVE,
88
QFACTOR,
89
SLOPE,
90
};
91
92
typedef struct ChanCache {
93
double i1, i2;
94
double o1, o2;
95
} ChanCache;
96
97
typedef struct BiquadsContext {
98
const AVClass *class;
99
100
enum FilterType filter_type;
101
int width_type;
102
int poles;
103
int csg;
104
105
double gain;
106
double frequency;
107
double width;
108
109
double a0, a1, a2;
110
double b0, b1, b2;
111
112
ChanCache *cache;
113
int clippings;
114
115
void (*filter)(struct BiquadsContext *s, const void *ibuf, void *obuf, int len,
116
double *i1, double *i2, double *o1, double *o2,
117
double b0, double b1, double b2, double a1, double a2);
118
} BiquadsContext;
119
120
static av_cold int init(AVFilterContext *ctx)
121
{
122
BiquadsContext *s = ctx->priv;
123
124
if (s->filter_type != biquad) {
125
if (s->frequency <= 0 || s->width <= 0) {
126
av_log(ctx, AV_LOG_ERROR, "Invalid frequency %f and/or width %f <= 0\n",
127
s->frequency, s->width);
128
return AVERROR(EINVAL);
129
}
130
}
131
132
return 0;
133
}
134
135
static int query_formats(AVFilterContext *ctx)
136
{
137
AVFilterFormats *formats;
138
AVFilterChannelLayouts *layouts;
139
static const enum AVSampleFormat sample_fmts[] = {
140
AV_SAMPLE_FMT_S16P,
141
AV_SAMPLE_FMT_S32P,
142
AV_SAMPLE_FMT_FLTP,
143
AV_SAMPLE_FMT_DBLP,
144
AV_SAMPLE_FMT_NONE
145
};
146
int ret;
147
148
layouts = ff_all_channel_counts();
149
if (!layouts)
150
return AVERROR(ENOMEM);
151
ret = ff_set_common_channel_layouts(ctx, layouts);
152
if (ret < 0)
153
return ret;
154
155
formats = ff_make_format_list(sample_fmts);
156
if (!formats)
157
return AVERROR(ENOMEM);
158
ret = ff_set_common_formats(ctx, formats);
159
if (ret < 0)
160
return ret;
161
162
formats = ff_all_samplerates();
163
if (!formats)
164
return AVERROR(ENOMEM);
165
return ff_set_common_samplerates(ctx, formats);
166
}
167
168
#define BIQUAD_FILTER(name, type, min, max, need_clipping) \
169
static void biquad_## name (BiquadsContext *s, \
170
const void *input, void *output, int len, \
171
double *in1, double *in2, \
172
double *out1, double *out2, \
173
double b0, double b1, double b2, \
174
double a1, double a2) \
175
{ \
176
const type *ibuf = input; \
177
type *obuf = output; \
178
double i1 = *in1; \
179
double i2 = *in2; \
180
double o1 = *out1; \
181
double o2 = *out2; \
182
int i; \
183
a1 = -a1; \
184
a2 = -a2; \
185
\
186
for (i = 0; i+1 < len; i++) { \
187
o2 = i2 * b2 + i1 * b1 + ibuf[i] * b0 + o2 * a2 + o1 * a1; \
188
i2 = ibuf[i]; \
189
if (need_clipping && o2 < min) { \
190
s->clippings++; \
191
obuf[i] = min; \
192
} else if (need_clipping && o2 > max) { \
193
s->clippings++; \
194
obuf[i] = max; \
195
} else { \
196
obuf[i] = o2; \
197
} \
198
i++; \
199
o1 = i1 * b2 + i2 * b1 + ibuf[i] * b0 + o1 * a2 + o2 * a1; \
200
i1 = ibuf[i]; \
201
if (need_clipping && o1 < min) { \
202
s->clippings++; \
203
obuf[i] = min; \
204
} else if (need_clipping && o1 > max) { \
205
s->clippings++; \
206
obuf[i] = max; \
207
} else { \
208
obuf[i] = o1; \
209
} \
210
} \
211
if (i < len) { \
212
double o0 = ibuf[i] * b0 + i1 * b1 + i2 * b2 + o1 * a1 + o2 * a2; \
213
i2 = i1; \
214
i1 = ibuf[i]; \
215
o2 = o1; \
216
o1 = o0; \
217
if (need_clipping && o0 < min) { \
218
s->clippings++; \
219
obuf[i] = min; \
220
} else if (need_clipping && o0 > max) { \
221
s->clippings++; \
222
obuf[i] = max; \
223
} else { \
224
obuf[i] = o0; \
225
} \
226
} \
227
*in1 = i1; \
228
*in2 = i2; \
229
*out1 = o1; \
230
*out2 = o2; \
231
}
232
233
BIQUAD_FILTER(s16, int16_t, INT16_MIN, INT16_MAX, 1)
234
BIQUAD_FILTER(s32, int32_t, INT32_MIN, INT32_MAX, 1)
235
BIQUAD_FILTER(flt, float, -1., 1., 0)
236
BIQUAD_FILTER(dbl, double, -1., 1., 0)
237
238
static int config_output(AVFilterLink *outlink)
239
{
240
AVFilterContext *ctx = outlink->src;
241
BiquadsContext *s = ctx->priv;
242
AVFilterLink *inlink = ctx->inputs[0];
243
double A = exp(s->gain / 40 * log(10.));
244
double w0 = 2 * M_PI * s->frequency / inlink->sample_rate;
245
double alpha;
246
247
if (w0 > M_PI) {
248
av_log(ctx, AV_LOG_ERROR,
249
"Invalid frequency %f. Frequency must be less than half the sample-rate %d.\n",
250
s->frequency, inlink->sample_rate);
251
return AVERROR(EINVAL);
252
}
253
254
switch (s->width_type) {
255
case NONE:
256
alpha = 0.0;
257
break;
258
case HERTZ:
259
alpha = sin(w0) / (2 * s->frequency / s->width);
260
break;
261
case OCTAVE:
262
alpha = sin(w0) * sinh(log(2.) / 2 * s->width * w0 / sin(w0));
263
break;
264
case QFACTOR:
265
alpha = sin(w0) / (2 * s->width);
266
break;
267
case SLOPE:
268
alpha = sin(w0) / 2 * sqrt((A + 1 / A) * (1 / s->width - 1) + 2);
269
break;
270
default:
271
av_assert0(0);
272
}
273
274
switch (s->filter_type) {
275
case biquad:
276
break;
277
case equalizer:
278
s->a0 = 1 + alpha / A;
279
s->a1 = -2 * cos(w0);
280
s->a2 = 1 - alpha / A;
281
s->b0 = 1 + alpha * A;
282
s->b1 = -2 * cos(w0);
283
s->b2 = 1 - alpha * A;
284
break;
285
case bass:
286
s->a0 = (A + 1) + (A - 1) * cos(w0) + 2 * sqrt(A) * alpha;
287
s->a1 = -2 * ((A - 1) + (A + 1) * cos(w0));
288
s->a2 = (A + 1) + (A - 1) * cos(w0) - 2 * sqrt(A) * alpha;
289
s->b0 = A * ((A + 1) - (A - 1) * cos(w0) + 2 * sqrt(A) * alpha);
290
s->b1 = 2 * A * ((A - 1) - (A + 1) * cos(w0));
291
s->b2 = A * ((A + 1) - (A - 1) * cos(w0) - 2 * sqrt(A) * alpha);
292
break;
293
case treble:
294
s->a0 = (A + 1) - (A - 1) * cos(w0) + 2 * sqrt(A) * alpha;
295
s->a1 = 2 * ((A - 1) - (A + 1) * cos(w0));
296
s->a2 = (A + 1) - (A - 1) * cos(w0) - 2 * sqrt(A) * alpha;
297
s->b0 = A * ((A + 1) + (A - 1) * cos(w0) + 2 * sqrt(A) * alpha);
298
s->b1 =-2 * A * ((A - 1) + (A + 1) * cos(w0));
299
s->b2 = A * ((A + 1) + (A - 1) * cos(w0) - 2 * sqrt(A) * alpha);
300
break;
301
case bandpass:
302
if (s->csg) {
303
s->a0 = 1 + alpha;
304
s->a1 = -2 * cos(w0);
305
s->a2 = 1 - alpha;
306
s->b0 = sin(w0) / 2;
307
s->b1 = 0;
308
s->b2 = -sin(w0) / 2;
309
} else {
310
s->a0 = 1 + alpha;
311
s->a1 = -2 * cos(w0);
312
s->a2 = 1 - alpha;
313
s->b0 = alpha;
314
s->b1 = 0;
315
s->b2 = -alpha;
316
}
317
break;
318
case bandreject:
319
s->a0 = 1 + alpha;
320
s->a1 = -2 * cos(w0);
321
s->a2 = 1 - alpha;
322
s->b0 = 1;
323
s->b1 = -2 * cos(w0);
324
s->b2 = 1;
325
break;
326
case lowpass:
327
if (s->poles == 1) {
328
s->a0 = 1;
329
s->a1 = -exp(-w0);
330
s->a2 = 0;
331
s->b0 = 1 + s->a1;
332
s->b1 = 0;
333
s->b2 = 0;
334
} else {
335
s->a0 = 1 + alpha;
336
s->a1 = -2 * cos(w0);
337
s->a2 = 1 - alpha;
338
s->b0 = (1 - cos(w0)) / 2;
339
s->b1 = 1 - cos(w0);
340
s->b2 = (1 - cos(w0)) / 2;
341
}
342
break;
343
case highpass:
344
if (s->poles == 1) {
345
s->a0 = 1;
346
s->a1 = -exp(-w0);
347
s->a2 = 0;
348
s->b0 = (1 - s->a1) / 2;
349
s->b1 = -s->b0;
350
s->b2 = 0;
351
} else {
352
s->a0 = 1 + alpha;
353
s->a1 = -2 * cos(w0);
354
s->a2 = 1 - alpha;
355
s->b0 = (1 + cos(w0)) / 2;
356
s->b1 = -(1 + cos(w0));
357
s->b2 = (1 + cos(w0)) / 2;
358
}
359
break;
360
case allpass:
361
s->a0 = 1 + alpha;
362
s->a1 = -2 * cos(w0);
363
s->a2 = 1 - alpha;
364
s->b0 = 1 - alpha;
365
s->b1 = -2 * cos(w0);
366
s->b2 = 1 + alpha;
367
break;
368
default:
369
av_assert0(0);
370
}
371
372
s->a1 /= s->a0;
373
s->a2 /= s->a0;
374
s->b0 /= s->a0;
375
s->b1 /= s->a0;
376
s->b2 /= s->a0;
377
378
s->cache = av_realloc_f(s->cache, sizeof(ChanCache), inlink->channels);
379
if (!s->cache)
380
return AVERROR(ENOMEM);
381
memset(s->cache, 0, sizeof(ChanCache) * inlink->channels);
382
383
switch (inlink->format) {
384
case AV_SAMPLE_FMT_S16P: s->filter = biquad_s16; break;
385
case AV_SAMPLE_FMT_S32P: s->filter = biquad_s32; break;
386
case AV_SAMPLE_FMT_FLTP: s->filter = biquad_flt; break;
387
case AV_SAMPLE_FMT_DBLP: s->filter = biquad_dbl; break;
388
default: av_assert0(0);
389
}
390
391
return 0;
392
}
393
394
static int filter_frame(AVFilterLink *inlink, AVFrame *buf)
395
{
396
AVFilterContext *ctx = inlink->dst;
397
BiquadsContext *s = ctx->priv;
398
AVFilterLink *outlink = ctx->outputs[0];
399
AVFrame *out_buf;
400
int nb_samples = buf->nb_samples;
401
int ch;
402
403
if (av_frame_is_writable(buf)) {
404
out_buf = buf;
405
} else {
406
out_buf = ff_get_audio_buffer(inlink, nb_samples);
407
if (!out_buf) {
408
av_frame_free(&buf);
409
return AVERROR(ENOMEM);
410
}
411
av_frame_copy_props(out_buf, buf);
412
}
413
414
for (ch = 0; ch < av_frame_get_channels(buf); ch++)
415
s->filter(s, buf->extended_data[ch],
416
out_buf->extended_data[ch], nb_samples,
417
&s->cache[ch].i1, &s->cache[ch].i2,
418
&s->cache[ch].o1, &s->cache[ch].o2,
419
s->b0, s->b1, s->b2, s->a1, s->a2);
420
421
if (s->clippings > 0)
422
av_log(ctx, AV_LOG_WARNING, "clipping %d times. Please reduce gain.\n", s->clippings);
423
424
if (buf != out_buf)
425
av_frame_free(&buf);
426
427
return ff_filter_frame(outlink, out_buf);
428
}
429
430
static av_cold void uninit(AVFilterContext *ctx)
431
{
432
BiquadsContext *s = ctx->priv;
433
434
av_freep(&s->cache);
435
}
436
437
static const AVFilterPad inputs[] = {
438
{
439
.name = "default",
440
.type = AVMEDIA_TYPE_AUDIO,
441
.filter_frame = filter_frame,
442
},
443
{ NULL }
444
};
445
446
static const AVFilterPad outputs[] = {
447
{
448
.name = "default",
449
.type = AVMEDIA_TYPE_AUDIO,
450
.config_props = config_output,
451
},
452
{ NULL }
453
};
454
455
#define OFFSET(x) offsetof(BiquadsContext, x)
456
#define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
457
458
#define DEFINE_BIQUAD_FILTER(name_, description_) \
459
AVFILTER_DEFINE_CLASS(name_); \
460
static av_cold int name_##_init(AVFilterContext *ctx) \
461
{ \
462
BiquadsContext *s = ctx->priv; \
463
s->class = &name_##_class; \
464
s->filter_type = name_; \
465
return init(ctx); \
466
} \
467
\
468
AVFilter ff_af_##name_ = { \
469
.name = #name_, \
470
.description = NULL_IF_CONFIG_SMALL(description_), \
471
.priv_size = sizeof(BiquadsContext), \
472
.init = name_##_init, \
473
.uninit = uninit, \
474
.query_formats = query_formats, \
475
.inputs = inputs, \
476
.outputs = outputs, \
477
.priv_class = &name_##_class, \
478
}
479
480
#if CONFIG_EQUALIZER_FILTER
481
static const AVOption equalizer_options[] = {
482
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 999999, FLAGS},
483
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 999999, FLAGS},
484
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
485
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
486
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
487
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
488
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
489
{"width", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 999, FLAGS},
490
{"w", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 999, FLAGS},
491
{"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
492
{"g", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
493
{NULL}
494
};
495
496
DEFINE_BIQUAD_FILTER(equalizer, "Apply two-pole peaking equalization (EQ) filter.");
497
#endif /* CONFIG_EQUALIZER_FILTER */
498
#if CONFIG_BASS_FILTER
499
static const AVOption bass_options[] = {
500
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=100}, 0, 999999, FLAGS},
501
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=100}, 0, 999999, FLAGS},
502
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
503
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
504
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
505
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
506
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
507
{"width", "set shelf transition steep", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
508
{"w", "set shelf transition steep", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
509
{"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
510
{"g", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
511
{NULL}
512
};
513
514
DEFINE_BIQUAD_FILTER(bass, "Boost or cut lower frequencies.");
515
#endif /* CONFIG_BASS_FILTER */
516
#if CONFIG_TREBLE_FILTER
517
static const AVOption treble_options[] = {
518
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
519
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
520
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
521
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
522
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
523
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
524
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
525
{"width", "set shelf transition steep", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
526
{"w", "set shelf transition steep", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
527
{"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
528
{"g", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
529
{NULL}
530
};
531
532
DEFINE_BIQUAD_FILTER(treble, "Boost or cut upper frequencies.");
533
#endif /* CONFIG_TREBLE_FILTER */
534
#if CONFIG_BANDPASS_FILTER
535
static const AVOption bandpass_options[] = {
536
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
537
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
538
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
539
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
540
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
541
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
542
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
543
{"width", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 999, FLAGS},
544
{"w", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 999, FLAGS},
545
{"csg", "use constant skirt gain", OFFSET(csg), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS},
546
{NULL}
547
};
548
549
DEFINE_BIQUAD_FILTER(bandpass, "Apply a two-pole Butterworth band-pass filter.");
550
#endif /* CONFIG_BANDPASS_FILTER */
551
#if CONFIG_BANDREJECT_FILTER
552
static const AVOption bandreject_options[] = {
553
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
554
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
555
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
556
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
557
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
558
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
559
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
560
{"width", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 999, FLAGS},
561
{"w", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 999, FLAGS},
562
{NULL}
563
};
564
565
DEFINE_BIQUAD_FILTER(bandreject, "Apply a two-pole Butterworth band-reject filter.");
566
#endif /* CONFIG_BANDREJECT_FILTER */
567
#if CONFIG_LOWPASS_FILTER
568
static const AVOption lowpass_options[] = {
569
{"frequency", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=500}, 0, 999999, FLAGS},
570
{"f", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=500}, 0, 999999, FLAGS},
571
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
572
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
573
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
574
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
575
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
576
{"width", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.707}, 0, 99999, FLAGS},
577
{"w", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.707}, 0, 99999, FLAGS},
578
{"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS},
579
{"p", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS},
580
{NULL}
581
};
582
583
DEFINE_BIQUAD_FILTER(lowpass, "Apply a low-pass filter with 3dB point frequency.");
584
#endif /* CONFIG_LOWPASS_FILTER */
585
#if CONFIG_HIGHPASS_FILTER
586
static const AVOption highpass_options[] = {
587
{"frequency", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
588
{"f", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
589
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
590
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
591
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
592
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
593
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
594
{"width", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.707}, 0, 99999, FLAGS},
595
{"w", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.707}, 0, 99999, FLAGS},
596
{"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS},
597
{"p", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS},
598
{NULL}
599
};
600
601
DEFINE_BIQUAD_FILTER(highpass, "Apply a high-pass filter with 3dB point frequency.");
602
#endif /* CONFIG_HIGHPASS_FILTER */
603
#if CONFIG_ALLPASS_FILTER
604
static const AVOption allpass_options[] = {
605
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
606
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
607
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=HERTZ}, HERTZ, SLOPE, FLAGS, "width_type"},
608
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
609
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
610
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
611
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
612
{"width", "set filter-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=707.1}, 0, 99999, FLAGS},
613
{"w", "set filter-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=707.1}, 0, 99999, FLAGS},
614
{NULL}
615
};
616
617
DEFINE_BIQUAD_FILTER(allpass, "Apply a two-pole all-pass filter.");
618
#endif /* CONFIG_ALLPASS_FILTER */
619
#if CONFIG_BIQUAD_FILTER
620
static const AVOption biquad_options[] = {
621
{"a0", NULL, OFFSET(a0), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MIN, INT16_MAX, FLAGS},
622
{"a1", NULL, OFFSET(a1), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MIN, INT16_MAX, FLAGS},
623
{"a2", NULL, OFFSET(a2), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MIN, INT16_MAX, FLAGS},
624
{"b0", NULL, OFFSET(b0), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MIN, INT16_MAX, FLAGS},
625
{"b1", NULL, OFFSET(b1), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MIN, INT16_MAX, FLAGS},
626
{"b2", NULL, OFFSET(b2), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MIN, INT16_MAX, FLAGS},
627
{NULL}
628
};
629
630
DEFINE_BIQUAD_FILTER(biquad, "Apply a biquad IIR filter with the given coefficients.");
631
#endif /* CONFIG_BIQUAD_FILTER */
632
633