Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
52868 views
1
/*****************************************************************************
2
* sofalizer.c : SOFAlizer filter for virtual binaural acoustics
3
*****************************************************************************
4
* Copyright (C) 2013-2015 Andreas Fuchs, Wolfgang Hrauda,
5
* Acoustics Research Institute (ARI), Vienna, Austria
6
*
7
* Authors: Andreas Fuchs <[email protected]>
8
* Wolfgang Hrauda <[email protected]>
9
*
10
* SOFAlizer project coordinator at ARI, main developer of SOFA:
11
* Piotr Majdak <[email protected]>
12
*
13
* This program is free software; you can redistribute it and/or modify it
14
* under the terms of the GNU Lesser General Public License as published by
15
* the Free Software Foundation; either version 2.1 of the License, or
16
* (at your option) any later version.
17
*
18
* This program is distributed in the hope that it will be useful,
19
* but WITHOUT ANY WARRANTY; without even the implied warranty of
20
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21
* GNU Lesser General Public License for more details.
22
*
23
* You should have received a copy of the GNU Lesser General Public License
24
* along with this program; if not, write to the Free Software Foundation,
25
* Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301, USA.
26
*****************************************************************************/
27
28
#include <math.h>
29
#include <netcdf.h>
30
31
#include "libavcodec/avfft.h"
32
#include "libavutil/float_dsp.h"
33
#include "libavutil/intmath.h"
34
#include "libavutil/opt.h"
35
#include "avfilter.h"
36
#include "internal.h"
37
#include "audio.h"
38
39
#define TIME_DOMAIN 0
40
#define FREQUENCY_DOMAIN 1
41
42
typedef struct NCSofa { /* contains data of one SOFA file */
43
int ncid; /* netCDF ID of the opened SOFA file */
44
int n_samples; /* length of one impulse response (IR) */
45
int m_dim; /* number of measurement positions */
46
int *data_delay; /* broadband delay of each IR */
47
/* all measurement positions for each receiver (i.e. ear): */
48
float *sp_a; /* azimuth angles */
49
float *sp_e; /* elevation angles */
50
float *sp_r; /* radii */
51
/* data at each measurement position for each receiver: */
52
float *data_ir; /* IRs (time-domain) */
53
} NCSofa;
54
55
typedef struct SOFAlizerContext {
56
const AVClass *class;
57
58
char *filename; /* name of SOFA file */
59
NCSofa sofa; /* contains data of the SOFA file */
60
61
int sample_rate; /* sample rate from SOFA file */
62
float *speaker_azim; /* azimuth of the virtual loudspeakers */
63
float *speaker_elev; /* elevation of the virtual loudspeakers */
64
float gain_lfe; /* gain applied to LFE channel */
65
int lfe_channel; /* LFE channel position in channel layout */
66
67
int n_conv; /* number of channels to convolute */
68
69
/* buffer variables (for convolution) */
70
float *ringbuffer[2]; /* buffers input samples, length of one buffer: */
71
/* no. input ch. (incl. LFE) x buffer_length */
72
int write[2]; /* current write position to ringbuffer */
73
int buffer_length; /* is: longest IR plus max. delay in all SOFA files */
74
/* then choose next power of 2 */
75
int n_fft; /* number of samples in one FFT block */
76
77
/* netCDF variables */
78
int *delay[2]; /* broadband delay for each channel/IR to be convolved */
79
80
float *data_ir[2]; /* IRs for all channels to be convolved */
81
/* (this excludes the LFE) */
82
float *temp_src[2];
83
FFTComplex *temp_fft[2];
84
85
/* control variables */
86
float gain; /* filter gain (in dB) */
87
float rotation; /* rotation of virtual loudspeakers (in degrees) */
88
float elevation; /* elevation of virtual loudspeakers (in deg.) */
89
float radius; /* distance virtual loudspeakers to listener (in metres) */
90
int type; /* processing type */
91
92
FFTContext *fft[2], *ifft[2];
93
FFTComplex *data_hrtf[2];
94
95
AVFloatDSPContext *fdsp;
96
} SOFAlizerContext;
97
98
static int close_sofa(struct NCSofa *sofa)
99
{
100
av_freep(&sofa->data_delay);
101
av_freep(&sofa->sp_a);
102
av_freep(&sofa->sp_e);
103
av_freep(&sofa->sp_r);
104
av_freep(&sofa->data_ir);
105
nc_close(sofa->ncid);
106
sofa->ncid = 0;
107
108
return 0;
109
}
110
111
static int load_sofa(AVFilterContext *ctx, char *filename, int *samplingrate)
112
{
113
struct SOFAlizerContext *s = ctx->priv;
114
/* variables associated with content of SOFA file: */
115
int ncid, n_dims, n_vars, n_gatts, n_unlim_dim_id, status;
116
char data_delay_dim_name[NC_MAX_NAME];
117
float *sp_a, *sp_e, *sp_r, *data_ir;
118
char *sofa_conventions;
119
char dim_name[NC_MAX_NAME]; /* names of netCDF dimensions */
120
size_t *dim_length; /* lengths of netCDF dimensions */
121
char *text;
122
unsigned int sample_rate;
123
int data_delay_dim_id[2];
124
int samplingrate_id;
125
int data_delay_id;
126
int n_samples;
127
int m_dim_id = -1;
128
int n_dim_id = -1;
129
int data_ir_id;
130
size_t att_len;
131
int m_dim;
132
int *data_delay;
133
int sp_id;
134
int i, ret;
135
136
s->sofa.ncid = 0;
137
status = nc_open(filename, NC_NOWRITE, &ncid); /* open SOFA file read-only */
138
if (status != NC_NOERR) {
139
av_log(ctx, AV_LOG_ERROR, "Can't find SOFA-file '%s'\n", filename);
140
return AVERROR(EINVAL);
141
}
142
143
/* get number of dimensions, vars, global attributes and Id of unlimited dimensions: */
144
nc_inq(ncid, &n_dims, &n_vars, &n_gatts, &n_unlim_dim_id);
145
146
/* -- get number of measurements ("M") and length of one IR ("N") -- */
147
dim_length = av_malloc_array(n_dims, sizeof(*dim_length));
148
if (!dim_length) {
149
nc_close(ncid);
150
return AVERROR(ENOMEM);
151
}
152
153
for (i = 0; i < n_dims; i++) { /* go through all dimensions of file */
154
nc_inq_dim(ncid, i, (char *)&dim_name, &dim_length[i]); /* get dimensions */
155
if (!strncmp("M", (const char *)&dim_name, 1)) /* get ID of dimension "M" */
156
m_dim_id = i;
157
if (!strncmp("N", (const char *)&dim_name, 1)) /* get ID of dimension "N" */
158
n_dim_id = i;
159
}
160
161
if ((m_dim_id == -1) || (n_dim_id == -1)) { /* dimension "M" or "N" couldn't be found */
162
av_log(ctx, AV_LOG_ERROR, "Can't find required dimensions in SOFA file.\n");
163
av_freep(&dim_length);
164
nc_close(ncid);
165
return AVERROR(EINVAL);
166
}
167
168
n_samples = dim_length[n_dim_id]; /* get length of one IR */
169
m_dim = dim_length[m_dim_id]; /* get number of measurements */
170
171
av_freep(&dim_length);
172
173
/* -- check file type -- */
174
/* get length of attritube "Conventions" */
175
status = nc_inq_attlen(ncid, NC_GLOBAL, "Conventions", &att_len);
176
if (status != NC_NOERR) {
177
av_log(ctx, AV_LOG_ERROR, "Can't get length of attribute \"Conventions\".\n");
178
nc_close(ncid);
179
return AVERROR_INVALIDDATA;
180
}
181
182
/* check whether file is SOFA file */
183
text = av_malloc(att_len + 1);
184
if (!text) {
185
nc_close(ncid);
186
return AVERROR(ENOMEM);
187
}
188
189
nc_get_att_text(ncid, NC_GLOBAL, "Conventions", text);
190
*(text + att_len) = 0;
191
if (strncmp("SOFA", text, 4)) {
192
av_log(ctx, AV_LOG_ERROR, "Not a SOFA file!\n");
193
av_freep(&text);
194
nc_close(ncid);
195
return AVERROR(EINVAL);
196
}
197
av_freep(&text);
198
199
status = nc_inq_attlen(ncid, NC_GLOBAL, "License", &att_len);
200
if (status == NC_NOERR) {
201
text = av_malloc(att_len + 1);
202
if (text) {
203
nc_get_att_text(ncid, NC_GLOBAL, "License", text);
204
*(text + att_len) = 0;
205
av_log(ctx, AV_LOG_INFO, "SOFA file License: %s\n", text);
206
av_freep(&text);
207
}
208
}
209
210
status = nc_inq_attlen(ncid, NC_GLOBAL, "SourceDescription", &att_len);
211
if (status == NC_NOERR) {
212
text = av_malloc(att_len + 1);
213
if (text) {
214
nc_get_att_text(ncid, NC_GLOBAL, "SourceDescription", text);
215
*(text + att_len) = 0;
216
av_log(ctx, AV_LOG_INFO, "SOFA file SourceDescription: %s\n", text);
217
av_freep(&text);
218
}
219
}
220
221
status = nc_inq_attlen(ncid, NC_GLOBAL, "Comment", &att_len);
222
if (status == NC_NOERR) {
223
text = av_malloc(att_len + 1);
224
if (text) {
225
nc_get_att_text(ncid, NC_GLOBAL, "Comment", text);
226
*(text + att_len) = 0;
227
av_log(ctx, AV_LOG_INFO, "SOFA file Comment: %s\n", text);
228
av_freep(&text);
229
}
230
}
231
232
status = nc_inq_attlen(ncid, NC_GLOBAL, "SOFAConventions", &att_len);
233
if (status != NC_NOERR) {
234
av_log(ctx, AV_LOG_ERROR, "Can't get length of attribute \"SOFAConventions\".\n");
235
nc_close(ncid);
236
return AVERROR_INVALIDDATA;
237
}
238
239
sofa_conventions = av_malloc(att_len + 1);
240
if (!sofa_conventions) {
241
nc_close(ncid);
242
return AVERROR(ENOMEM);
243
}
244
245
nc_get_att_text(ncid, NC_GLOBAL, "SOFAConventions", sofa_conventions);
246
*(sofa_conventions + att_len) = 0;
247
if (strncmp("SimpleFreeFieldHRIR", sofa_conventions, att_len)) {
248
av_log(ctx, AV_LOG_ERROR, "Not a SimpleFreeFieldHRIR file!\n");
249
av_freep(&sofa_conventions);
250
nc_close(ncid);
251
return AVERROR(EINVAL);
252
}
253
av_freep(&sofa_conventions);
254
255
/* -- get sampling rate of HRTFs -- */
256
/* read ID, then value */
257
status = nc_inq_varid(ncid, "Data.SamplingRate", &samplingrate_id);
258
status += nc_get_var_uint(ncid, samplingrate_id, &sample_rate);
259
if (status != NC_NOERR) {
260
av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.SamplingRate.\n");
261
nc_close(ncid);
262
return AVERROR(EINVAL);
263
}
264
*samplingrate = sample_rate; /* remember sampling rate */
265
266
/* -- allocate memory for one value for each measurement position: -- */
267
sp_a = s->sofa.sp_a = av_malloc_array(m_dim, sizeof(float));
268
sp_e = s->sofa.sp_e = av_malloc_array(m_dim, sizeof(float));
269
sp_r = s->sofa.sp_r = av_malloc_array(m_dim, sizeof(float));
270
/* delay and IR values required for each ear and measurement position: */
271
data_delay = s->sofa.data_delay = av_calloc(m_dim, 2 * sizeof(int));
272
data_ir = s->sofa.data_ir = av_malloc_array(m_dim * n_samples, sizeof(float) * 2);
273
274
if (!data_delay || !sp_a || !sp_e || !sp_r || !data_ir) {
275
/* if memory could not be allocated */
276
close_sofa(&s->sofa);
277
return AVERROR(ENOMEM);
278
}
279
280
/* get impulse responses (HRTFs): */
281
/* get corresponding ID */
282
status = nc_inq_varid(ncid, "Data.IR", &data_ir_id);
283
status += nc_get_var_float(ncid, data_ir_id, data_ir); /* read and store IRs */
284
if (status != NC_NOERR) {
285
av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.IR!\n");
286
ret = AVERROR(EINVAL);
287
goto error;
288
}
289
290
/* get source positions of the HRTFs in the SOFA file: */
291
status = nc_inq_varid(ncid, "SourcePosition", &sp_id); /* get corresponding ID */
292
status += nc_get_vara_float(ncid, sp_id, (size_t[2]){ 0, 0 } ,
293
(size_t[2]){ m_dim, 1}, sp_a); /* read & store azimuth angles */
294
status += nc_get_vara_float(ncid, sp_id, (size_t[2]){ 0, 1 } ,
295
(size_t[2]){ m_dim, 1}, sp_e); /* read & store elevation angles */
296
status += nc_get_vara_float(ncid, sp_id, (size_t[2]){ 0, 2 } ,
297
(size_t[2]){ m_dim, 1}, sp_r); /* read & store radii */
298
if (status != NC_NOERR) { /* if any source position variable coudn't be read */
299
av_log(ctx, AV_LOG_ERROR, "Couldn't read SourcePosition.\n");
300
ret = AVERROR(EINVAL);
301
goto error;
302
}
303
304
/* read Data.Delay, check for errors and fit it to data_delay */
305
status = nc_inq_varid(ncid, "Data.Delay", &data_delay_id);
306
status += nc_inq_vardimid(ncid, data_delay_id, &data_delay_dim_id[0]);
307
status += nc_inq_dimname(ncid, data_delay_dim_id[0], data_delay_dim_name);
308
if (status != NC_NOERR) {
309
av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.Delay.\n");
310
ret = AVERROR(EINVAL);
311
goto error;
312
}
313
314
/* Data.Delay dimension check */
315
/* dimension of Data.Delay is [I R]: */
316
if (!strncmp(data_delay_dim_name, "I", 2)) {
317
/* check 2 characters to assure string is 0-terminated after "I" */
318
int delay[2]; /* delays get from SOFA file: */
319
320
av_log(ctx, AV_LOG_DEBUG, "Data.Delay has dimension [I R]\n");
321
status = nc_get_var_int(ncid, data_delay_id, &delay[0]);
322
if (status != NC_NOERR) {
323
av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.Delay\n");
324
ret = AVERROR(EINVAL);
325
goto error;
326
}
327
int *data_delay_r = data_delay + m_dim;
328
for (i = 0; i < m_dim; i++) { /* extend given dimension [I R] to [M R] */
329
/* assign constant delay value for all measurements to data_delay fields */
330
data_delay[i] = delay[0];
331
data_delay_r[i] = delay[1];
332
}
333
/* dimension of Data.Delay is [M R] */
334
} else if (!strncmp(data_delay_dim_name, "M", 2)) {
335
av_log(ctx, AV_LOG_ERROR, "Data.Delay in dimension [M R]\n");
336
/* get delays from SOFA file: */
337
status = nc_get_var_int(ncid, data_delay_id, data_delay);
338
if (status != NC_NOERR) {
339
av_log(ctx, AV_LOG_ERROR, "Couldn't read Data.Delay\n");
340
ret = AVERROR(EINVAL);
341
goto error;
342
}
343
} else { /* dimension of Data.Delay is neither [I R] nor [M R] */
344
av_log(ctx, AV_LOG_ERROR, "Data.Delay does not have the required dimensions [I R] or [M R].\n");
345
ret = AVERROR(EINVAL);
346
goto error;
347
}
348
349
/* save information in SOFA struct: */
350
s->sofa.m_dim = m_dim; /* no. measurement positions */
351
s->sofa.n_samples = n_samples; /* length on one IR */
352
s->sofa.ncid = ncid; /* netCDF ID of SOFA file */
353
nc_close(ncid); /* close SOFA file */
354
355
return 0;
356
357
error:
358
close_sofa(&s->sofa);
359
return ret;
360
}
361
362
static int get_speaker_pos(AVFilterContext *ctx,
363
float *speaker_azim, float *speaker_elev)
364
{
365
struct SOFAlizerContext *s = ctx->priv;
366
uint64_t channels_layout = ctx->inputs[0]->channel_layout;
367
float azim[16] = { 0 };
368
float elev[16] = { 0 };
369
int m, ch, n_conv = ctx->inputs[0]->channels; /* get no. input channels */
370
371
if (n_conv > 16)
372
return AVERROR(EINVAL);
373
374
s->lfe_channel = -1;
375
376
/* set speaker positions according to input channel configuration: */
377
for (m = 0, ch = 0; ch < n_conv && m < 64; m++) {
378
uint64_t mask = channels_layout & (1 << m);
379
380
switch (mask) {
381
case AV_CH_FRONT_LEFT: azim[ch] = 30; break;
382
case AV_CH_FRONT_RIGHT: azim[ch] = 330; break;
383
case AV_CH_FRONT_CENTER: azim[ch] = 0; break;
384
case AV_CH_LOW_FREQUENCY:
385
case AV_CH_LOW_FREQUENCY_2: s->lfe_channel = ch; break;
386
case AV_CH_BACK_LEFT: azim[ch] = 150; break;
387
case AV_CH_BACK_RIGHT: azim[ch] = 210; break;
388
case AV_CH_BACK_CENTER: azim[ch] = 180; break;
389
case AV_CH_SIDE_LEFT: azim[ch] = 90; break;
390
case AV_CH_SIDE_RIGHT: azim[ch] = 270; break;
391
case AV_CH_FRONT_LEFT_OF_CENTER: azim[ch] = 15; break;
392
case AV_CH_FRONT_RIGHT_OF_CENTER: azim[ch] = 345; break;
393
case AV_CH_TOP_CENTER: azim[ch] = 0;
394
elev[ch] = 90; break;
395
case AV_CH_TOP_FRONT_LEFT: azim[ch] = 30;
396
elev[ch] = 45; break;
397
case AV_CH_TOP_FRONT_CENTER: azim[ch] = 0;
398
elev[ch] = 45; break;
399
case AV_CH_TOP_FRONT_RIGHT: azim[ch] = 330;
400
elev[ch] = 45; break;
401
case AV_CH_TOP_BACK_LEFT: azim[ch] = 150;
402
elev[ch] = 45; break;
403
case AV_CH_TOP_BACK_RIGHT: azim[ch] = 210;
404
elev[ch] = 45; break;
405
case AV_CH_TOP_BACK_CENTER: azim[ch] = 180;
406
elev[ch] = 45; break;
407
case AV_CH_WIDE_LEFT: azim[ch] = 90; break;
408
case AV_CH_WIDE_RIGHT: azim[ch] = 270; break;
409
case AV_CH_SURROUND_DIRECT_LEFT: azim[ch] = 90; break;
410
case AV_CH_SURROUND_DIRECT_RIGHT: azim[ch] = 270; break;
411
case AV_CH_STEREO_LEFT: azim[ch] = 90; break;
412
case AV_CH_STEREO_RIGHT: azim[ch] = 270; break;
413
case 0: break;
414
default:
415
return AVERROR(EINVAL);
416
}
417
if (mask)
418
ch++;
419
}
420
421
memcpy(speaker_azim, azim, n_conv * sizeof(float));
422
memcpy(speaker_elev, elev, n_conv * sizeof(float));
423
424
return 0;
425
426
}
427
428
static int max_delay(struct NCSofa *sofa)
429
{
430
int i, max = 0;
431
432
for (i = 0; i < sofa->m_dim * 2; i++) {
433
/* search maximum delay in given SOFA file */
434
max = FFMAX(max, sofa->data_delay[i]);
435
}
436
437
return max;
438
}
439
440
static int find_m(SOFAlizerContext *s, int azim, int elev, float radius)
441
{
442
/* get source positions and M of currently selected SOFA file */
443
float *sp_a = s->sofa.sp_a; /* azimuth angle */
444
float *sp_e = s->sofa.sp_e; /* elevation angle */
445
float *sp_r = s->sofa.sp_r; /* radius */
446
int m_dim = s->sofa.m_dim; /* no. measurements */
447
int best_id = 0; /* index m currently closest to desired source pos. */
448
float delta = 1000; /* offset between desired and currently best pos. */
449
float current;
450
int i;
451
452
for (i = 0; i < m_dim; i++) {
453
/* search through all measurements in currently selected SOFA file */
454
/* distance of current to desired source position: */
455
current = fabs(sp_a[i] - azim) +
456
fabs(sp_e[i] - elev) +
457
fabs(sp_r[i] - radius);
458
if (current <= delta) {
459
/* if current distance is smaller than smallest distance so far */
460
delta = current;
461
best_id = i; /* remember index */
462
}
463
}
464
465
return best_id;
466
}
467
468
static int compensate_volume(AVFilterContext *ctx)
469
{
470
struct SOFAlizerContext *s = ctx->priv;
471
float compensate;
472
float energy = 0;
473
float *ir;
474
int m;
475
476
if (s->sofa.ncid) {
477
/* find IR at front center position in the SOFA file (IR closest to 0°,0°,1m) */
478
struct NCSofa *sofa = &s->sofa;
479
m = find_m(s, 0, 0, 1);
480
/* get energy of that IR and compensate volume */
481
ir = sofa->data_ir + 2 * m * sofa->n_samples;
482
if (sofa->n_samples & 31) {
483
energy = avpriv_scalarproduct_float_c(ir, ir, sofa->n_samples);
484
} else {
485
energy = s->fdsp->scalarproduct_float(ir, ir, sofa->n_samples);
486
}
487
compensate = 256 / (sofa->n_samples * sqrt(energy));
488
av_log(ctx, AV_LOG_DEBUG, "Compensate-factor: %f\n", compensate);
489
ir = sofa->data_ir;
490
/* apply volume compensation to IRs */
491
s->fdsp->vector_fmul_scalar(ir, ir, compensate, sofa->n_samples * sofa->m_dim * 2);
492
emms_c();
493
}
494
495
return 0;
496
}
497
498
typedef struct ThreadData {
499
AVFrame *in, *out;
500
int *write;
501
int **delay;
502
float **ir;
503
int *n_clippings;
504
float **ringbuffer;
505
float **temp_src;
506
FFTComplex **temp_fft;
507
} ThreadData;
508
509
static int sofalizer_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
510
{
511
SOFAlizerContext *s = ctx->priv;
512
ThreadData *td = arg;
513
AVFrame *in = td->in, *out = td->out;
514
int offset = jobnr;
515
int *write = &td->write[jobnr];
516
const int *const delay = td->delay[jobnr];
517
const float *const ir = td->ir[jobnr];
518
int *n_clippings = &td->n_clippings[jobnr];
519
float *ringbuffer = td->ringbuffer[jobnr];
520
float *temp_src = td->temp_src[jobnr];
521
const int n_samples = s->sofa.n_samples; /* length of one IR */
522
const float *src = (const float *)in->data[0]; /* get pointer to audio input buffer */
523
float *dst = (float *)out->data[0]; /* get pointer to audio output buffer */
524
const int in_channels = s->n_conv; /* number of input channels */
525
/* ring buffer length is: longest IR plus max. delay -> next power of 2 */
526
const int buffer_length = s->buffer_length;
527
/* -1 for AND instead of MODULO (applied to powers of 2): */
528
const uint32_t modulo = (uint32_t)buffer_length - 1;
529
float *buffer[16]; /* holds ringbuffer for each input channel */
530
int wr = *write;
531
int read;
532
int i, l;
533
534
dst += offset;
535
for (l = 0; l < in_channels; l++) {
536
/* get starting address of ringbuffer for each input channel */
537
buffer[l] = ringbuffer + l * buffer_length;
538
}
539
540
for (i = 0; i < in->nb_samples; i++) {
541
const float *temp_ir = ir; /* using same set of IRs for each sample */
542
543
*dst = 0;
544
for (l = 0; l < in_channels; l++) {
545
/* write current input sample to ringbuffer (for each channel) */
546
*(buffer[l] + wr) = src[l];
547
}
548
549
/* loop goes through all channels to be convolved */
550
for (l = 0; l < in_channels; l++) {
551
const float *const bptr = buffer[l];
552
553
if (l == s->lfe_channel) {
554
/* LFE is an input channel but requires no convolution */
555
/* apply gain to LFE signal and add to output buffer */
556
*dst += *(buffer[s->lfe_channel] + wr) * s->gain_lfe;
557
temp_ir += n_samples;
558
continue;
559
}
560
561
/* current read position in ringbuffer: input sample write position
562
* - delay for l-th ch. + diff. betw. IR length and buffer length
563
* (mod buffer length) */
564
read = (wr - *(delay + l) - (n_samples - 1) + buffer_length) & modulo;
565
566
if (read + n_samples < buffer_length) {
567
memcpy(temp_src, bptr + read, n_samples * sizeof(*temp_src));
568
} else {
569
int len = FFMIN(n_samples - (read % n_samples), buffer_length - read);
570
571
memcpy(temp_src, bptr + read, len * sizeof(*temp_src));
572
memcpy(temp_src + len, bptr, (n_samples - len) * sizeof(*temp_src));
573
}
574
575
/* multiply signal and IR, and add up the results */
576
dst[0] += s->fdsp->scalarproduct_float(temp_ir, temp_src, n_samples);
577
temp_ir += n_samples;
578
}
579
580
/* clippings counter */
581
if (fabs(*dst) > 1)
582
*n_clippings += 1;
583
584
/* move output buffer pointer by +2 to get to next sample of processed channel: */
585
dst += 2;
586
src += in_channels;
587
wr = (wr + 1) & modulo; /* update ringbuffer write position */
588
}
589
590
*write = wr; /* remember write position in ringbuffer for next call */
591
592
return 0;
593
}
594
595
static int sofalizer_fast_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
596
{
597
SOFAlizerContext *s = ctx->priv;
598
ThreadData *td = arg;
599
AVFrame *in = td->in, *out = td->out;
600
int offset = jobnr;
601
int *write = &td->write[jobnr];
602
FFTComplex *hrtf = s->data_hrtf[jobnr]; /* get pointers to current HRTF data */
603
int *n_clippings = &td->n_clippings[jobnr];
604
float *ringbuffer = td->ringbuffer[jobnr];
605
const int n_samples = s->sofa.n_samples; /* length of one IR */
606
const float *src = (const float *)in->data[0]; /* get pointer to audio input buffer */
607
float *dst = (float *)out->data[0]; /* get pointer to audio output buffer */
608
const int in_channels = s->n_conv; /* number of input channels */
609
/* ring buffer length is: longest IR plus max. delay -> next power of 2 */
610
const int buffer_length = s->buffer_length;
611
/* -1 for AND instead of MODULO (applied to powers of 2): */
612
const uint32_t modulo = (uint32_t)buffer_length - 1;
613
FFTComplex *fft_in = s->temp_fft[jobnr]; /* temporary array for FFT input/output data */
614
FFTContext *ifft = s->ifft[jobnr];
615
FFTContext *fft = s->fft[jobnr];
616
const int n_conv = s->n_conv;
617
const int n_fft = s->n_fft;
618
int wr = *write;
619
int n_read;
620
int i, j;
621
622
dst += offset;
623
624
/* find minimum between number of samples and output buffer length:
625
* (important, if one IR is longer than the output buffer) */
626
n_read = FFMIN(s->sofa.n_samples, in->nb_samples);
627
for (j = 0; j < n_read; j++) {
628
/* initialize output buf with saved signal from overflow buf */
629
dst[2 * j] = ringbuffer[wr];
630
ringbuffer[wr] = 0.0; /* re-set read samples to zero */
631
/* update ringbuffer read/write position */
632
wr = (wr + 1) & modulo;
633
}
634
635
/* initialize rest of output buffer with 0 */
636
for (j = n_read; j < in->nb_samples; j++) {
637
dst[2 * j] = 0;
638
}
639
640
for (i = 0; i < n_conv; i++) {
641
if (i == s->lfe_channel) { /* LFE */
642
for (j = 0; j < in->nb_samples; j++) {
643
/* apply gain to LFE signal and add to output buffer */
644
dst[2 * j] += src[i + j * in_channels] * s->gain_lfe;
645
}
646
continue;
647
}
648
649
/* outer loop: go through all input channels to be convolved */
650
offset = i * n_fft; /* no. samples already processed */
651
652
/* fill FFT input with 0 (we want to zero-pad) */
653
memset(fft_in, 0, sizeof(FFTComplex) * n_fft);
654
655
for (j = 0; j < in->nb_samples; j++) {
656
/* prepare input for FFT */
657
/* write all samples of current input channel to FFT input array */
658
fft_in[j].re = src[j * in_channels + i];
659
}
660
661
/* transform input signal of current channel to frequency domain */
662
av_fft_permute(fft, fft_in);
663
av_fft_calc(fft, fft_in);
664
for (j = 0; j < n_fft; j++) {
665
const float re = fft_in[j].re;
666
const float im = fft_in[j].im;
667
668
/* complex multiplication of input signal and HRTFs */
669
/* output channel (real): */
670
fft_in[j].re = re * (hrtf + offset + j)->re - im * (hrtf + offset + j)->im;
671
/* output channel (imag): */
672
fft_in[j].im = re * (hrtf + offset + j)->im + im * (hrtf + offset + j)->re;
673
}
674
675
/* transform output signal of current channel back to time domain */
676
av_fft_permute(ifft, fft_in);
677
av_fft_calc(ifft, fft_in);
678
679
for (j = 0; j < in->nb_samples; j++) {
680
/* write output signal of current channel to output buffer */
681
dst[2 * j] += fft_in[j].re / (float)n_fft;
682
}
683
684
for (j = 0; j < n_samples - 1; j++) { /* overflow length is IR length - 1 */
685
/* write the rest of output signal to overflow buffer */
686
int write_pos = (wr + j) & modulo;
687
688
*(ringbuffer + write_pos) += fft_in[in->nb_samples + j].re / (float)n_fft;
689
}
690
}
691
692
/* go through all samples of current output buffer: count clippings */
693
for (i = 0; i < out->nb_samples; i++) {
694
/* clippings counter */
695
if (fabs(*dst) > 1) { /* if current output sample > 1 */
696
*n_clippings = *n_clippings + 1;
697
}
698
699
/* move output buffer pointer by +2 to get to next sample of processed channel: */
700
dst += 2;
701
}
702
703
/* remember read/write position in ringbuffer for next call */
704
*write = wr;
705
706
return 0;
707
}
708
709
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
710
{
711
AVFilterContext *ctx = inlink->dst;
712
SOFAlizerContext *s = ctx->priv;
713
AVFilterLink *outlink = ctx->outputs[0];
714
int n_clippings[2] = { 0 };
715
ThreadData td;
716
AVFrame *out;
717
718
out = ff_get_audio_buffer(outlink, in->nb_samples);
719
if (!out) {
720
av_frame_free(&in);
721
return AVERROR(ENOMEM);
722
}
723
av_frame_copy_props(out, in);
724
725
td.in = in; td.out = out; td.write = s->write;
726
td.delay = s->delay; td.ir = s->data_ir; td.n_clippings = n_clippings;
727
td.ringbuffer = s->ringbuffer; td.temp_src = s->temp_src;
728
td.temp_fft = s->temp_fft;
729
730
if (s->type == TIME_DOMAIN) {
731
ctx->internal->execute(ctx, sofalizer_convolute, &td, NULL, 2);
732
} else {
733
ctx->internal->execute(ctx, sofalizer_fast_convolute, &td, NULL, 2);
734
}
735
emms_c();
736
737
/* display error message if clipping occurred */
738
if (n_clippings[0] + n_clippings[1] > 0) {
739
av_log(ctx, AV_LOG_WARNING, "%d of %d samples clipped. Please reduce gain.\n",
740
n_clippings[0] + n_clippings[1], out->nb_samples * 2);
741
}
742
743
av_frame_free(&in);
744
return ff_filter_frame(outlink, out);
745
}
746
747
static int query_formats(AVFilterContext *ctx)
748
{
749
struct SOFAlizerContext *s = ctx->priv;
750
AVFilterFormats *formats = NULL;
751
AVFilterChannelLayouts *layouts = NULL;
752
int ret, sample_rates[] = { 48000, -1 };
753
754
ret = ff_add_format(&formats, AV_SAMPLE_FMT_FLT);
755
if (ret)
756
return ret;
757
ret = ff_set_common_formats(ctx, formats);
758
if (ret)
759
return ret;
760
761
layouts = ff_all_channel_layouts();
762
if (!layouts)
763
return AVERROR(ENOMEM);
764
765
ret = ff_channel_layouts_ref(layouts, &ctx->inputs[0]->out_channel_layouts);
766
if (ret)
767
return ret;
768
769
layouts = NULL;
770
ret = ff_add_channel_layout(&layouts, AV_CH_LAYOUT_STEREO);
771
if (ret)
772
return ret;
773
774
ret = ff_channel_layouts_ref(layouts, &ctx->outputs[0]->in_channel_layouts);
775
if (ret)
776
return ret;
777
778
sample_rates[0] = s->sample_rate;
779
formats = ff_make_format_list(sample_rates);
780
if (!formats)
781
return AVERROR(ENOMEM);
782
return ff_set_common_samplerates(ctx, formats);
783
}
784
785
static int load_data(AVFilterContext *ctx, int azim, int elev, float radius)
786
{
787
struct SOFAlizerContext *s = ctx->priv;
788
const int n_samples = s->sofa.n_samples;
789
int n_conv = s->n_conv; /* no. channels to convolve */
790
int n_fft = s->n_fft;
791
int delay_l[16]; /* broadband delay for each IR */
792
int delay_r[16];
793
int nb_input_channels = ctx->inputs[0]->channels; /* no. input channels */
794
float gain_lin = expf((s->gain - 3 * nb_input_channels) / 20 * M_LN10); /* gain - 3dB/channel */
795
FFTComplex *data_hrtf_l = NULL;
796
FFTComplex *data_hrtf_r = NULL;
797
FFTComplex *fft_in_l = NULL;
798
FFTComplex *fft_in_r = NULL;
799
float *data_ir_l = NULL;
800
float *data_ir_r = NULL;
801
int offset = 0; /* used for faster pointer arithmetics in for-loop */
802
int m[16]; /* measurement index m of IR closest to required source positions */
803
int i, j, azim_orig = azim, elev_orig = elev;
804
805
if (!s->sofa.ncid) { /* if an invalid SOFA file has been selected */
806
av_log(ctx, AV_LOG_ERROR, "Selected SOFA file is invalid. Please select valid SOFA file.\n");
807
return AVERROR_INVALIDDATA;
808
}
809
810
if (s->type == TIME_DOMAIN) {
811
s->temp_src[0] = av_calloc(FFALIGN(n_samples, 16), sizeof(float));
812
s->temp_src[1] = av_calloc(FFALIGN(n_samples, 16), sizeof(float));
813
814
/* get temporary IR for L and R channel */
815
data_ir_l = av_malloc_array(n_conv * n_samples, sizeof(*data_ir_l));
816
data_ir_r = av_malloc_array(n_conv * n_samples, sizeof(*data_ir_r));
817
if (!data_ir_r || !data_ir_l || !s->temp_src[0] || !s->temp_src[1]) {
818
av_free(data_ir_l);
819
av_free(data_ir_r);
820
return AVERROR(ENOMEM);
821
}
822
} else {
823
/* get temporary HRTF memory for L and R channel */
824
data_hrtf_l = av_malloc_array(n_fft, sizeof(*data_hrtf_l) * n_conv);
825
data_hrtf_r = av_malloc_array(n_fft, sizeof(*data_hrtf_r) * n_conv);
826
if (!data_hrtf_r || !data_hrtf_l) {
827
av_free(data_hrtf_l);
828
av_free(data_hrtf_r);
829
return AVERROR(ENOMEM);
830
}
831
}
832
833
for (i = 0; i < s->n_conv; i++) {
834
/* load and store IRs and corresponding delays */
835
azim = (int)(s->speaker_azim[i] + azim_orig) % 360;
836
elev = (int)(s->speaker_elev[i] + elev_orig) % 90;
837
/* get id of IR closest to desired position */
838
m[i] = find_m(s, azim, elev, radius);
839
840
/* load the delays associated with the current IRs */
841
delay_l[i] = *(s->sofa.data_delay + 2 * m[i]);
842
delay_r[i] = *(s->sofa.data_delay + 2 * m[i] + 1);
843
844
if (s->type == TIME_DOMAIN) {
845
offset = i * n_samples; /* no. samples already written */
846
for (j = 0; j < n_samples; j++) {
847
/* load reversed IRs of the specified source position
848
* sample-by-sample for left and right ear; and apply gain */
849
*(data_ir_l + offset + j) = /* left channel */
850
*(s->sofa.data_ir + 2 * m[i] * n_samples + n_samples - 1 - j) * gain_lin;
851
*(data_ir_r + offset + j) = /* right channel */
852
*(s->sofa.data_ir + 2 * m[i] * n_samples + n_samples - 1 - j + n_samples) * gain_lin;
853
}
854
} else {
855
fft_in_l = av_calloc(n_fft, sizeof(*fft_in_l));
856
fft_in_r = av_calloc(n_fft, sizeof(*fft_in_r));
857
if (!fft_in_l || !fft_in_r) {
858
av_free(data_hrtf_l);
859
av_free(data_hrtf_r);
860
av_free(fft_in_l);
861
av_free(fft_in_r);
862
return AVERROR(ENOMEM);
863
}
864
865
offset = i * n_fft; /* no. samples already written */
866
for (j = 0; j < n_samples; j++) {
867
/* load non-reversed IRs of the specified source position
868
* sample-by-sample and apply gain,
869
* L channel is loaded to real part, R channel to imag part,
870
* IRs ared shifted by L and R delay */
871
fft_in_l[delay_l[i] + j].re = /* left channel */
872
*(s->sofa.data_ir + 2 * m[i] * n_samples + j) * gain_lin;
873
fft_in_r[delay_r[i] + j].re = /* right channel */
874
*(s->sofa.data_ir + (2 * m[i] + 1) * n_samples + j) * gain_lin;
875
}
876
877
/* actually transform to frequency domain (IRs -> HRTFs) */
878
av_fft_permute(s->fft[0], fft_in_l);
879
av_fft_calc(s->fft[0], fft_in_l);
880
memcpy(data_hrtf_l + offset, fft_in_l, n_fft * sizeof(*fft_in_l));
881
av_fft_permute(s->fft[0], fft_in_r);
882
av_fft_calc(s->fft[0], fft_in_r);
883
memcpy(data_hrtf_r + offset, fft_in_r, n_fft * sizeof(*fft_in_r));
884
}
885
886
av_log(ctx, AV_LOG_DEBUG, "Index: %d, Azimuth: %f, Elevation: %f, Radius: %f of SOFA file.\n",
887
m[i], *(s->sofa.sp_a + m[i]), *(s->sofa.sp_e + m[i]), *(s->sofa.sp_r + m[i]));
888
}
889
890
if (s->type == TIME_DOMAIN) {
891
/* copy IRs and delays to allocated memory in the SOFAlizerContext struct: */
892
memcpy(s->data_ir[0], data_ir_l, sizeof(float) * n_conv * n_samples);
893
memcpy(s->data_ir[1], data_ir_r, sizeof(float) * n_conv * n_samples);
894
895
av_freep(&data_ir_l); /* free temporary IR memory */
896
av_freep(&data_ir_r);
897
} else {
898
s->data_hrtf[0] = av_malloc_array(n_fft * s->n_conv, sizeof(FFTComplex));
899
s->data_hrtf[1] = av_malloc_array(n_fft * s->n_conv, sizeof(FFTComplex));
900
if (!s->data_hrtf[0] || !s->data_hrtf[1]) {
901
av_freep(&data_hrtf_l);
902
av_freep(&data_hrtf_r);
903
av_freep(&fft_in_l);
904
av_freep(&fft_in_r);
905
return AVERROR(ENOMEM); /* memory allocation failed */
906
}
907
908
memcpy(s->data_hrtf[0], data_hrtf_l, /* copy HRTF data to */
909
sizeof(FFTComplex) * n_conv * n_fft); /* filter struct */
910
memcpy(s->data_hrtf[1], data_hrtf_r,
911
sizeof(FFTComplex) * n_conv * n_fft);
912
913
av_freep(&data_hrtf_l); /* free temporary HRTF memory */
914
av_freep(&data_hrtf_r);
915
916
av_freep(&fft_in_l); /* free temporary FFT memory */
917
av_freep(&fft_in_r);
918
}
919
920
memcpy(s->delay[0], &delay_l[0], sizeof(int) * s->n_conv);
921
memcpy(s->delay[1], &delay_r[0], sizeof(int) * s->n_conv);
922
923
return 0;
924
}
925
926
static av_cold int init(AVFilterContext *ctx)
927
{
928
SOFAlizerContext *s = ctx->priv;
929
int ret;
930
931
/* load SOFA file, */
932
/* initialize file IDs to 0 before attempting to load SOFA files,
933
* this assures that in case of error, only the memory of already
934
* loaded files is free'd */
935
s->sofa.ncid = 0;
936
ret = load_sofa(ctx, s->filename, &s->sample_rate);
937
if (ret) {
938
/* file loading error */
939
av_log(ctx, AV_LOG_ERROR, "Error while loading SOFA file: '%s'\n", s->filename);
940
} else { /* no file loading error, resampling not required */
941
av_log(ctx, AV_LOG_DEBUG, "File '%s' loaded.\n", s->filename);
942
}
943
944
if (ret) {
945
av_log(ctx, AV_LOG_ERROR, "No valid SOFA file could be loaded. Please specify valid SOFA file.\n");
946
return ret;
947
}
948
949
s->fdsp = avpriv_float_dsp_alloc(0);
950
if (!s->fdsp)
951
return AVERROR(ENOMEM);
952
953
return 0;
954
}
955
956
static int config_input(AVFilterLink *inlink)
957
{
958
AVFilterContext *ctx = inlink->dst;
959
SOFAlizerContext *s = ctx->priv;
960
int nb_input_channels = inlink->channels; /* no. input channels */
961
int n_max_ir = 0;
962
int n_current;
963
int n_max = 0;
964
int ret;
965
966
if (s->type == FREQUENCY_DOMAIN) {
967
inlink->partial_buf_size =
968
inlink->min_samples =
969
inlink->max_samples = inlink->sample_rate;
970
}
971
972
/* gain -3 dB per channel, -6 dB to get LFE on a similar level */
973
s->gain_lfe = expf((s->gain - 3 * inlink->channels - 6) / 20 * M_LN10);
974
975
s->n_conv = nb_input_channels;
976
977
/* get size of ringbuffer (longest IR plus max. delay) */
978
/* then choose next power of 2 for performance optimization */
979
n_current = s->sofa.n_samples + max_delay(&s->sofa);
980
if (n_current > n_max) {
981
/* length of longest IR plus max. delay (in all SOFA files) */
982
n_max = n_current;
983
/* length of longest IR (without delay, in all SOFA files) */
984
n_max_ir = s->sofa.n_samples;
985
}
986
/* buffer length is longest IR plus max. delay -> next power of 2
987
(32 - count leading zeros gives required exponent) */
988
s->buffer_length = 1 << (32 - ff_clz(n_max));
989
s->n_fft = 1 << (32 - ff_clz(n_max + inlink->sample_rate));
990
991
if (s->type == FREQUENCY_DOMAIN) {
992
av_fft_end(s->fft[0]);
993
av_fft_end(s->fft[1]);
994
s->fft[0] = av_fft_init(log2(s->n_fft), 0);
995
s->fft[1] = av_fft_init(log2(s->n_fft), 0);
996
av_fft_end(s->ifft[0]);
997
av_fft_end(s->ifft[1]);
998
s->ifft[0] = av_fft_init(log2(s->n_fft), 1);
999
s->ifft[1] = av_fft_init(log2(s->n_fft), 1);
1000
1001
if (!s->fft[0] || !s->fft[1] || !s->ifft[0] || !s->ifft[1]) {
1002
av_log(ctx, AV_LOG_ERROR, "Unable to create FFT contexts.\n");
1003
return AVERROR(ENOMEM);
1004
}
1005
}
1006
1007
/* Allocate memory for the impulse responses, delays and the ringbuffers */
1008
/* size: (longest IR) * (number of channels to convolute) */
1009
s->data_ir[0] = av_malloc_array(n_max_ir, sizeof(float) * s->n_conv);
1010
s->data_ir[1] = av_malloc_array(n_max_ir, sizeof(float) * s->n_conv);
1011
/* length: number of channels to convolute */
1012
s->delay[0] = av_malloc_array(s->n_conv, sizeof(float));
1013
s->delay[1] = av_malloc_array(s->n_conv, sizeof(float));
1014
/* length: (buffer length) * (number of input channels),
1015
* OR: buffer length (if frequency domain processing)
1016
* calloc zero-initializes the buffer */
1017
1018
if (s->type == TIME_DOMAIN) {
1019
s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels);
1020
s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels);
1021
} else {
1022
s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float));
1023
s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float));
1024
s->temp_fft[0] = av_malloc_array(s->n_fft, sizeof(FFTComplex));
1025
s->temp_fft[1] = av_malloc_array(s->n_fft, sizeof(FFTComplex));
1026
if (!s->temp_fft[0] || !s->temp_fft[1])
1027
return AVERROR(ENOMEM);
1028
}
1029
1030
/* length: number of channels to convolute */
1031
s->speaker_azim = av_calloc(s->n_conv, sizeof(*s->speaker_azim));
1032
s->speaker_elev = av_calloc(s->n_conv, sizeof(*s->speaker_elev));
1033
1034
/* memory allocation failed: */
1035
if (!s->data_ir[0] || !s->data_ir[1] || !s->delay[1] ||
1036
!s->delay[0] || !s->ringbuffer[0] || !s->ringbuffer[1] ||
1037
!s->speaker_azim || !s->speaker_elev)
1038
return AVERROR(ENOMEM);
1039
1040
compensate_volume(ctx);
1041
1042
/* get speaker positions */
1043
if ((ret = get_speaker_pos(ctx, s->speaker_azim, s->speaker_elev)) < 0) {
1044
av_log(ctx, AV_LOG_ERROR, "Couldn't get speaker positions. Input channel configuration not supported.\n");
1045
return ret;
1046
}
1047
1048
/* load IRs to data_ir[0] and data_ir[1] for required directions */
1049
if ((ret = load_data(ctx, s->rotation, s->elevation, s->radius)) < 0)
1050
return ret;
1051
1052
av_log(ctx, AV_LOG_DEBUG, "Samplerate: %d Channels to convolute: %d, Length of ringbuffer: %d x %d\n",
1053
inlink->sample_rate, s->n_conv, nb_input_channels, s->buffer_length);
1054
1055
return 0;
1056
}
1057
1058
static av_cold void uninit(AVFilterContext *ctx)
1059
{
1060
SOFAlizerContext *s = ctx->priv;
1061
1062
if (s->sofa.ncid) {
1063
av_freep(&s->sofa.sp_a);
1064
av_freep(&s->sofa.sp_e);
1065
av_freep(&s->sofa.sp_r);
1066
av_freep(&s->sofa.data_delay);
1067
av_freep(&s->sofa.data_ir);
1068
}
1069
av_fft_end(s->ifft[0]);
1070
av_fft_end(s->ifft[1]);
1071
av_fft_end(s->fft[0]);
1072
av_fft_end(s->fft[1]);
1073
av_freep(&s->delay[0]);
1074
av_freep(&s->delay[1]);
1075
av_freep(&s->data_ir[0]);
1076
av_freep(&s->data_ir[1]);
1077
av_freep(&s->ringbuffer[0]);
1078
av_freep(&s->ringbuffer[1]);
1079
av_freep(&s->speaker_azim);
1080
av_freep(&s->speaker_elev);
1081
av_freep(&s->temp_src[0]);
1082
av_freep(&s->temp_src[1]);
1083
av_freep(&s->temp_fft[0]);
1084
av_freep(&s->temp_fft[1]);
1085
av_freep(&s->data_hrtf[0]);
1086
av_freep(&s->data_hrtf[1]);
1087
av_freep(&s->fdsp);
1088
}
1089
1090
#define OFFSET(x) offsetof(SOFAlizerContext, x)
1091
#define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
1092
1093
static const AVOption sofalizer_options[] = {
1094
{ "sofa", "sofa filename", OFFSET(filename), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
1095
{ "gain", "set gain in dB", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl=0}, -20, 40, .flags = FLAGS },
1096
{ "rotation", "set rotation" , OFFSET(rotation), AV_OPT_TYPE_FLOAT, {.dbl=0}, -360, 360, .flags = FLAGS },
1097
{ "elevation", "set elevation", OFFSET(elevation), AV_OPT_TYPE_FLOAT, {.dbl=0}, -90, 90, .flags = FLAGS },
1098
{ "radius", "set radius", OFFSET(radius), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 3, .flags = FLAGS },
1099
{ "type", "set processing", OFFSET(type), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, .flags = FLAGS, "type" },
1100
{ "time", "time domain", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, .flags = FLAGS, "type" },
1101
{ "freq", "frequency domain", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, .flags = FLAGS, "type" },
1102
{ NULL }
1103
};
1104
1105
AVFILTER_DEFINE_CLASS(sofalizer);
1106
1107
static const AVFilterPad inputs[] = {
1108
{
1109
.name = "default",
1110
.type = AVMEDIA_TYPE_AUDIO,
1111
.config_props = config_input,
1112
.filter_frame = filter_frame,
1113
},
1114
{ NULL }
1115
};
1116
1117
static const AVFilterPad outputs[] = {
1118
{
1119
.name = "default",
1120
.type = AVMEDIA_TYPE_AUDIO,
1121
},
1122
{ NULL }
1123
};
1124
1125
AVFilter ff_af_sofalizer = {
1126
.name = "sofalizer",
1127
.description = NULL_IF_CONFIG_SMALL("SOFAlizer (Spatially Oriented Format for Acoustics)."),
1128
.priv_size = sizeof(SOFAlizerContext),
1129
.priv_class = &sofalizer_class,
1130
.init = init,
1131
.uninit = uninit,
1132
.query_formats = query_formats,
1133
.inputs = inputs,
1134
.outputs = outputs,
1135
.flags = AVFILTER_FLAG_SLICE_THREADS,
1136
};
1137
1138