Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
52868 views
1
/*
2
* Copyright (C) 2001-2011 Michael Niedermayer <[email protected]>
3
*
4
* This file is part of FFmpeg.
5
*
6
* FFmpeg is free software; you can redistribute it and/or
7
* modify it under the terms of the GNU Lesser General Public
8
* License as published by the Free Software Foundation; either
9
* version 2.1 of the License, or (at your option) any later version.
10
*
11
* FFmpeg is distributed in the hope that it will be useful,
12
* but WITHOUT ANY WARRANTY; without even the implied warranty of
13
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14
* Lesser General Public License for more details.
15
*
16
* You should have received a copy of the GNU Lesser General Public
17
* License along with FFmpeg; if not, write to the Free Software
18
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
*/
20
21
#include <inttypes.h>
22
#include <math.h>
23
#include <stdio.h>
24
#include <string.h>
25
26
#include "libavutil/avassert.h"
27
#include "libavutil/avutil.h"
28
#include "libavutil/bswap.h"
29
#include "libavutil/cpu.h"
30
#include "libavutil/imgutils.h"
31
#include "libavutil/intreadwrite.h"
32
#include "libavutil/mathematics.h"
33
#include "libavutil/pixdesc.h"
34
#include "config.h"
35
#include "rgb2rgb.h"
36
#include "swscale_internal.h"
37
#include "swscale.h"
38
39
DECLARE_ALIGNED(8, const uint8_t, ff_dither_8x8_128)[9][8] = {
40
{ 36, 68, 60, 92, 34, 66, 58, 90, },
41
{ 100, 4, 124, 28, 98, 2, 122, 26, },
42
{ 52, 84, 44, 76, 50, 82, 42, 74, },
43
{ 116, 20, 108, 12, 114, 18, 106, 10, },
44
{ 32, 64, 56, 88, 38, 70, 62, 94, },
45
{ 96, 0, 120, 24, 102, 6, 126, 30, },
46
{ 48, 80, 40, 72, 54, 86, 46, 78, },
47
{ 112, 16, 104, 8, 118, 22, 110, 14, },
48
{ 36, 68, 60, 92, 34, 66, 58, 90, },
49
};
50
51
DECLARE_ALIGNED(8, static const uint8_t, sws_pb_64)[8] = {
52
64, 64, 64, 64, 64, 64, 64, 64
53
};
54
55
#ifndef NEW_FILTER
56
static void gamma_convert(uint8_t * src[], int width, uint16_t *gamma)
57
{
58
int i;
59
uint16_t *src1 = (uint16_t*)src[0];
60
61
for (i = 0; i < width; ++i) {
62
uint16_t r = AV_RL16(src1 + i*4 + 0);
63
uint16_t g = AV_RL16(src1 + i*4 + 1);
64
uint16_t b = AV_RL16(src1 + i*4 + 2);
65
66
AV_WL16(src1 + i*4 + 0, gamma[r]);
67
AV_WL16(src1 + i*4 + 1, gamma[g]);
68
AV_WL16(src1 + i*4 + 2, gamma[b]);
69
}
70
}
71
#endif
72
73
static av_always_inline void fillPlane(uint8_t *plane, int stride, int width,
74
int height, int y, uint8_t val)
75
{
76
int i;
77
uint8_t *ptr = plane + stride * y;
78
for (i = 0; i < height; i++) {
79
memset(ptr, val, width);
80
ptr += stride;
81
}
82
}
83
84
static void hScale16To19_c(SwsContext *c, int16_t *_dst, int dstW,
85
const uint8_t *_src, const int16_t *filter,
86
const int32_t *filterPos, int filterSize)
87
{
88
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(c->srcFormat);
89
int i;
90
int32_t *dst = (int32_t *) _dst;
91
const uint16_t *src = (const uint16_t *) _src;
92
int bits = desc->comp[0].depth - 1;
93
int sh = bits - 4;
94
95
if((isAnyRGB(c->srcFormat) || c->srcFormat==AV_PIX_FMT_PAL8) && desc->comp[0].depth<16)
96
sh= 9;
97
98
for (i = 0; i < dstW; i++) {
99
int j;
100
int srcPos = filterPos[i];
101
int val = 0;
102
103
for (j = 0; j < filterSize; j++) {
104
val += src[srcPos + j] * filter[filterSize * i + j];
105
}
106
// filter=14 bit, input=16 bit, output=30 bit, >> 11 makes 19 bit
107
dst[i] = FFMIN(val >> sh, (1 << 19) - 1);
108
}
109
}
110
111
static void hScale16To15_c(SwsContext *c, int16_t *dst, int dstW,
112
const uint8_t *_src, const int16_t *filter,
113
const int32_t *filterPos, int filterSize)
114
{
115
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(c->srcFormat);
116
int i;
117
const uint16_t *src = (const uint16_t *) _src;
118
int sh = desc->comp[0].depth - 1;
119
120
if(sh<15)
121
sh= isAnyRGB(c->srcFormat) || c->srcFormat==AV_PIX_FMT_PAL8 ? 13 : (desc->comp[0].depth - 1);
122
123
for (i = 0; i < dstW; i++) {
124
int j;
125
int srcPos = filterPos[i];
126
int val = 0;
127
128
for (j = 0; j < filterSize; j++) {
129
val += src[srcPos + j] * filter[filterSize * i + j];
130
}
131
// filter=14 bit, input=16 bit, output=30 bit, >> 15 makes 15 bit
132
dst[i] = FFMIN(val >> sh, (1 << 15) - 1);
133
}
134
}
135
136
// bilinear / bicubic scaling
137
static void hScale8To15_c(SwsContext *c, int16_t *dst, int dstW,
138
const uint8_t *src, const int16_t *filter,
139
const int32_t *filterPos, int filterSize)
140
{
141
int i;
142
for (i = 0; i < dstW; i++) {
143
int j;
144
int srcPos = filterPos[i];
145
int val = 0;
146
for (j = 0; j < filterSize; j++) {
147
val += ((int)src[srcPos + j]) * filter[filterSize * i + j];
148
}
149
dst[i] = FFMIN(val >> 7, (1 << 15) - 1); // the cubic equation does overflow ...
150
}
151
}
152
153
static void hScale8To19_c(SwsContext *c, int16_t *_dst, int dstW,
154
const uint8_t *src, const int16_t *filter,
155
const int32_t *filterPos, int filterSize)
156
{
157
int i;
158
int32_t *dst = (int32_t *) _dst;
159
for (i = 0; i < dstW; i++) {
160
int j;
161
int srcPos = filterPos[i];
162
int val = 0;
163
for (j = 0; j < filterSize; j++) {
164
val += ((int)src[srcPos + j]) * filter[filterSize * i + j];
165
}
166
dst[i] = FFMIN(val >> 3, (1 << 19) - 1); // the cubic equation does overflow ...
167
}
168
}
169
170
// FIXME all pal and rgb srcFormats could do this conversion as well
171
// FIXME all scalers more complex than bilinear could do half of this transform
172
static void chrRangeToJpeg_c(int16_t *dstU, int16_t *dstV, int width)
173
{
174
int i;
175
for (i = 0; i < width; i++) {
176
dstU[i] = (FFMIN(dstU[i], 30775) * 4663 - 9289992) >> 12; // -264
177
dstV[i] = (FFMIN(dstV[i], 30775) * 4663 - 9289992) >> 12; // -264
178
}
179
}
180
181
static void chrRangeFromJpeg_c(int16_t *dstU, int16_t *dstV, int width)
182
{
183
int i;
184
for (i = 0; i < width; i++) {
185
dstU[i] = (dstU[i] * 1799 + 4081085) >> 11; // 1469
186
dstV[i] = (dstV[i] * 1799 + 4081085) >> 11; // 1469
187
}
188
}
189
190
static void lumRangeToJpeg_c(int16_t *dst, int width)
191
{
192
int i;
193
for (i = 0; i < width; i++)
194
dst[i] = (FFMIN(dst[i], 30189) * 19077 - 39057361) >> 14;
195
}
196
197
static void lumRangeFromJpeg_c(int16_t *dst, int width)
198
{
199
int i;
200
for (i = 0; i < width; i++)
201
dst[i] = (dst[i] * 14071 + 33561947) >> 14;
202
}
203
204
static void chrRangeToJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width)
205
{
206
int i;
207
int32_t *dstU = (int32_t *) _dstU;
208
int32_t *dstV = (int32_t *) _dstV;
209
for (i = 0; i < width; i++) {
210
dstU[i] = (FFMIN(dstU[i], 30775 << 4) * 4663 - (9289992 << 4)) >> 12; // -264
211
dstV[i] = (FFMIN(dstV[i], 30775 << 4) * 4663 - (9289992 << 4)) >> 12; // -264
212
}
213
}
214
215
static void chrRangeFromJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width)
216
{
217
int i;
218
int32_t *dstU = (int32_t *) _dstU;
219
int32_t *dstV = (int32_t *) _dstV;
220
for (i = 0; i < width; i++) {
221
dstU[i] = (dstU[i] * 1799 + (4081085 << 4)) >> 11; // 1469
222
dstV[i] = (dstV[i] * 1799 + (4081085 << 4)) >> 11; // 1469
223
}
224
}
225
226
static void lumRangeToJpeg16_c(int16_t *_dst, int width)
227
{
228
int i;
229
int32_t *dst = (int32_t *) _dst;
230
for (i = 0; i < width; i++) {
231
dst[i] = ((int)(FFMIN(dst[i], 30189 << 4) * 4769U - (39057361 << 2))) >> 12;
232
}
233
}
234
235
static void lumRangeFromJpeg16_c(int16_t *_dst, int width)
236
{
237
int i;
238
int32_t *dst = (int32_t *) _dst;
239
for (i = 0; i < width; i++)
240
dst[i] = (dst[i]*(14071/4) + (33561947<<4)/4)>>12;
241
}
242
243
#ifndef NEW_FILTER
244
// *** horizontal scale Y line to temp buffer
245
static av_always_inline void hyscale(SwsContext *c, int16_t *dst, int dstWidth,
246
const uint8_t *src_in[4],
247
int srcW, int xInc,
248
const int16_t *hLumFilter,
249
const int32_t *hLumFilterPos,
250
int hLumFilterSize,
251
uint8_t *formatConvBuffer,
252
uint32_t *pal, int isAlpha)
253
{
254
void (*toYV12)(uint8_t *, const uint8_t *, const uint8_t *, const uint8_t *, int, uint32_t *) =
255
isAlpha ? c->alpToYV12 : c->lumToYV12;
256
void (*convertRange)(int16_t *, int) = isAlpha ? NULL : c->lumConvertRange;
257
const uint8_t *src = src_in[isAlpha ? 3 : 0];
258
259
if (toYV12) {
260
toYV12(formatConvBuffer, src, src_in[1], src_in[2], srcW, pal);
261
src = formatConvBuffer;
262
} else if (c->readLumPlanar && !isAlpha) {
263
c->readLumPlanar(formatConvBuffer, src_in, srcW, c->input_rgb2yuv_table);
264
src = formatConvBuffer;
265
} else if (c->readAlpPlanar && isAlpha) {
266
c->readAlpPlanar(formatConvBuffer, src_in, srcW, NULL);
267
src = formatConvBuffer;
268
}
269
270
if (!c->hyscale_fast) {
271
c->hyScale(c, dst, dstWidth, src, hLumFilter,
272
hLumFilterPos, hLumFilterSize);
273
} else { // fast bilinear upscale / crap downscale
274
c->hyscale_fast(c, dst, dstWidth, src, srcW, xInc);
275
}
276
277
if (convertRange)
278
convertRange(dst, dstWidth);
279
}
280
281
static av_always_inline void hcscale(SwsContext *c, int16_t *dst1,
282
int16_t *dst2, int dstWidth,
283
const uint8_t *src_in[4],
284
int srcW, int xInc,
285
const int16_t *hChrFilter,
286
const int32_t *hChrFilterPos,
287
int hChrFilterSize,
288
uint8_t *formatConvBuffer, uint32_t *pal)
289
{
290
const uint8_t *src1 = src_in[1], *src2 = src_in[2];
291
if (c->chrToYV12) {
292
uint8_t *buf2 = formatConvBuffer +
293
FFALIGN(srcW*2+78, 16);
294
c->chrToYV12(formatConvBuffer, buf2, src_in[0], src1, src2, srcW, pal);
295
src1= formatConvBuffer;
296
src2= buf2;
297
} else if (c->readChrPlanar) {
298
uint8_t *buf2 = formatConvBuffer +
299
FFALIGN(srcW*2+78, 16);
300
c->readChrPlanar(formatConvBuffer, buf2, src_in, srcW, c->input_rgb2yuv_table);
301
src1 = formatConvBuffer;
302
src2 = buf2;
303
}
304
305
if (!c->hcscale_fast) {
306
c->hcScale(c, dst1, dstWidth, src1, hChrFilter, hChrFilterPos, hChrFilterSize);
307
c->hcScale(c, dst2, dstWidth, src2, hChrFilter, hChrFilterPos, hChrFilterSize);
308
} else { // fast bilinear upscale / crap downscale
309
c->hcscale_fast(c, dst1, dst2, dstWidth, src1, src2, srcW, xInc);
310
}
311
312
if (c->chrConvertRange)
313
c->chrConvertRange(dst1, dst2, dstWidth);
314
}
315
#endif /* NEW_FILTER */
316
317
#define DEBUG_SWSCALE_BUFFERS 0
318
#define DEBUG_BUFFERS(...) \
319
if (DEBUG_SWSCALE_BUFFERS) \
320
av_log(c, AV_LOG_DEBUG, __VA_ARGS__)
321
322
static int swscale(SwsContext *c, const uint8_t *src[],
323
int srcStride[], int srcSliceY,
324
int srcSliceH, uint8_t *dst[], int dstStride[])
325
{
326
/* load a few things into local vars to make the code more readable?
327
* and faster */
328
#ifndef NEW_FILTER
329
const int srcW = c->srcW;
330
#endif
331
const int dstW = c->dstW;
332
const int dstH = c->dstH;
333
#ifndef NEW_FILTER
334
const int chrDstW = c->chrDstW;
335
const int chrSrcW = c->chrSrcW;
336
const int lumXInc = c->lumXInc;
337
const int chrXInc = c->chrXInc;
338
#endif
339
const enum AVPixelFormat dstFormat = c->dstFormat;
340
const int flags = c->flags;
341
int32_t *vLumFilterPos = c->vLumFilterPos;
342
int32_t *vChrFilterPos = c->vChrFilterPos;
343
#ifndef NEW_FILTER
344
int32_t *hLumFilterPos = c->hLumFilterPos;
345
int32_t *hChrFilterPos = c->hChrFilterPos;
346
int16_t *hLumFilter = c->hLumFilter;
347
int16_t *hChrFilter = c->hChrFilter;
348
int32_t *lumMmxFilter = c->lumMmxFilter;
349
int32_t *chrMmxFilter = c->chrMmxFilter;
350
#endif
351
const int vLumFilterSize = c->vLumFilterSize;
352
const int vChrFilterSize = c->vChrFilterSize;
353
#ifndef NEW_FILTER
354
const int hLumFilterSize = c->hLumFilterSize;
355
const int hChrFilterSize = c->hChrFilterSize;
356
int16_t **lumPixBuf = c->lumPixBuf;
357
int16_t **chrUPixBuf = c->chrUPixBuf;
358
int16_t **chrVPixBuf = c->chrVPixBuf;
359
#endif
360
int16_t **alpPixBuf = c->alpPixBuf;
361
const int vLumBufSize = c->vLumBufSize;
362
const int vChrBufSize = c->vChrBufSize;
363
#ifndef NEW_FILTER
364
uint8_t *formatConvBuffer = c->formatConvBuffer;
365
uint32_t *pal = c->pal_yuv;
366
int perform_gamma = c->is_internal_gamma;
367
#endif
368
yuv2planar1_fn yuv2plane1 = c->yuv2plane1;
369
yuv2planarX_fn yuv2planeX = c->yuv2planeX;
370
yuv2interleavedX_fn yuv2nv12cX = c->yuv2nv12cX;
371
yuv2packed1_fn yuv2packed1 = c->yuv2packed1;
372
yuv2packed2_fn yuv2packed2 = c->yuv2packed2;
373
yuv2packedX_fn yuv2packedX = c->yuv2packedX;
374
yuv2anyX_fn yuv2anyX = c->yuv2anyX;
375
const int chrSrcSliceY = srcSliceY >> c->chrSrcVSubSample;
376
const int chrSrcSliceH = AV_CEIL_RSHIFT(srcSliceH, c->chrSrcVSubSample);
377
int should_dither = is9_OR_10BPS(c->srcFormat) ||
378
is16BPS(c->srcFormat);
379
int lastDstY;
380
381
/* vars which will change and which we need to store back in the context */
382
int dstY = c->dstY;
383
int lumBufIndex = c->lumBufIndex;
384
int chrBufIndex = c->chrBufIndex;
385
int lastInLumBuf = c->lastInLumBuf;
386
int lastInChrBuf = c->lastInChrBuf;
387
388
#ifdef NEW_FILTER
389
int lumStart = 0;
390
int lumEnd = c->descIndex[0];
391
int chrStart = lumEnd;
392
int chrEnd = c->descIndex[1];
393
int vStart = chrEnd;
394
int vEnd = c->numDesc;
395
SwsSlice *src_slice = &c->slice[lumStart];
396
SwsSlice *hout_slice = &c->slice[c->numSlice-2];
397
SwsSlice *vout_slice = &c->slice[c->numSlice-1];
398
SwsFilterDescriptor *desc = c->desc;
399
400
int hasLumHoles = 1;
401
int hasChrHoles = 1;
402
#endif
403
404
#ifndef NEW_FILTER
405
if (!usePal(c->srcFormat)) {
406
pal = c->input_rgb2yuv_table;
407
}
408
#endif
409
410
if (isPacked(c->srcFormat)) {
411
src[0] =
412
src[1] =
413
src[2] =
414
src[3] = src[0];
415
srcStride[0] =
416
srcStride[1] =
417
srcStride[2] =
418
srcStride[3] = srcStride[0];
419
}
420
srcStride[1] <<= c->vChrDrop;
421
srcStride[2] <<= c->vChrDrop;
422
423
DEBUG_BUFFERS("swscale() %p[%d] %p[%d] %p[%d] %p[%d] -> %p[%d] %p[%d] %p[%d] %p[%d]\n",
424
src[0], srcStride[0], src[1], srcStride[1],
425
src[2], srcStride[2], src[3], srcStride[3],
426
dst[0], dstStride[0], dst[1], dstStride[1],
427
dst[2], dstStride[2], dst[3], dstStride[3]);
428
DEBUG_BUFFERS("srcSliceY: %d srcSliceH: %d dstY: %d dstH: %d\n",
429
srcSliceY, srcSliceH, dstY, dstH);
430
DEBUG_BUFFERS("vLumFilterSize: %d vLumBufSize: %d vChrFilterSize: %d vChrBufSize: %d\n",
431
vLumFilterSize, vLumBufSize, vChrFilterSize, vChrBufSize);
432
433
if (dstStride[0]&15 || dstStride[1]&15 ||
434
dstStride[2]&15 || dstStride[3]&15) {
435
static int warnedAlready = 0; // FIXME maybe move this into the context
436
if (flags & SWS_PRINT_INFO && !warnedAlready) {
437
av_log(c, AV_LOG_WARNING,
438
"Warning: dstStride is not aligned!\n"
439
" ->cannot do aligned memory accesses anymore\n");
440
warnedAlready = 1;
441
}
442
}
443
444
if ( (uintptr_t)dst[0]&15 || (uintptr_t)dst[1]&15 || (uintptr_t)dst[2]&15
445
|| (uintptr_t)src[0]&15 || (uintptr_t)src[1]&15 || (uintptr_t)src[2]&15
446
|| dstStride[0]&15 || dstStride[1]&15 || dstStride[2]&15 || dstStride[3]&15
447
|| srcStride[0]&15 || srcStride[1]&15 || srcStride[2]&15 || srcStride[3]&15
448
) {
449
static int warnedAlready=0;
450
int cpu_flags = av_get_cpu_flags();
451
if (HAVE_MMXEXT && (cpu_flags & AV_CPU_FLAG_SSE2) && !warnedAlready){
452
av_log(c, AV_LOG_WARNING, "Warning: data is not aligned! This can lead to a speedloss\n");
453
warnedAlready=1;
454
}
455
}
456
457
/* Note the user might start scaling the picture in the middle so this
458
* will not get executed. This is not really intended but works
459
* currently, so people might do it. */
460
if (srcSliceY == 0) {
461
lumBufIndex = -1;
462
chrBufIndex = -1;
463
dstY = 0;
464
lastInLumBuf = -1;
465
lastInChrBuf = -1;
466
}
467
468
if (!should_dither) {
469
c->chrDither8 = c->lumDither8 = sws_pb_64;
470
}
471
lastDstY = dstY;
472
473
#ifdef NEW_FILTER
474
ff_init_vscale_pfn(c, yuv2plane1, yuv2planeX, yuv2nv12cX,
475
yuv2packed1, yuv2packed2, yuv2packedX, yuv2anyX, c->use_mmx_vfilter);
476
477
ff_init_slice_from_src(src_slice, (uint8_t**)src, srcStride, c->srcW,
478
srcSliceY, srcSliceH, chrSrcSliceY, chrSrcSliceH, 1);
479
480
ff_init_slice_from_src(vout_slice, (uint8_t**)dst, dstStride, c->dstW,
481
dstY, dstH, dstY >> c->chrDstVSubSample,
482
AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample), 0);
483
if (srcSliceY == 0) {
484
hout_slice->plane[0].sliceY = lastInLumBuf + 1;
485
hout_slice->plane[1].sliceY = lastInChrBuf + 1;
486
hout_slice->plane[2].sliceY = lastInChrBuf + 1;
487
hout_slice->plane[3].sliceY = lastInLumBuf + 1;
488
489
hout_slice->plane[0].sliceH =
490
hout_slice->plane[1].sliceH =
491
hout_slice->plane[2].sliceH =
492
hout_slice->plane[3].sliceH = 0;
493
hout_slice->width = dstW;
494
}
495
#endif
496
497
for (; dstY < dstH; dstY++) {
498
const int chrDstY = dstY >> c->chrDstVSubSample;
499
#ifndef NEW_FILTER
500
uint8_t *dest[4] = {
501
dst[0] + dstStride[0] * dstY,
502
dst[1] + dstStride[1] * chrDstY,
503
dst[2] + dstStride[2] * chrDstY,
504
(CONFIG_SWSCALE_ALPHA && alpPixBuf) ? dst[3] + dstStride[3] * dstY : NULL,
505
};
506
#endif
507
int use_mmx_vfilter= c->use_mmx_vfilter;
508
509
// First line needed as input
510
const int firstLumSrcY = FFMAX(1 - vLumFilterSize, vLumFilterPos[dstY]);
511
const int firstLumSrcY2 = FFMAX(1 - vLumFilterSize, vLumFilterPos[FFMIN(dstY | ((1 << c->chrDstVSubSample) - 1), dstH - 1)]);
512
// First line needed as input
513
const int firstChrSrcY = FFMAX(1 - vChrFilterSize, vChrFilterPos[chrDstY]);
514
515
// Last line needed as input
516
int lastLumSrcY = FFMIN(c->srcH, firstLumSrcY + vLumFilterSize) - 1;
517
int lastLumSrcY2 = FFMIN(c->srcH, firstLumSrcY2 + vLumFilterSize) - 1;
518
int lastChrSrcY = FFMIN(c->chrSrcH, firstChrSrcY + vChrFilterSize) - 1;
519
int enough_lines;
520
#ifdef NEW_FILTER
521
int i;
522
int posY, cPosY, firstPosY, lastPosY, firstCPosY, lastCPosY;
523
#endif
524
525
// handle holes (FAST_BILINEAR & weird filters)
526
if (firstLumSrcY > lastInLumBuf) {
527
#ifdef NEW_FILTER
528
hasLumHoles = lastInLumBuf != firstLumSrcY - 1;
529
if (hasLumHoles) {
530
hout_slice->plane[0].sliceY = firstLumSrcY;
531
hout_slice->plane[3].sliceY = firstLumSrcY;
532
hout_slice->plane[0].sliceH =
533
hout_slice->plane[3].sliceH = 0;
534
}
535
#endif
536
lastInLumBuf = firstLumSrcY - 1;
537
}
538
if (firstChrSrcY > lastInChrBuf) {
539
#ifdef NEW_FILTER
540
hasChrHoles = lastInChrBuf != firstChrSrcY - 1;
541
if (hasChrHoles) {
542
hout_slice->plane[1].sliceY = firstChrSrcY;
543
hout_slice->plane[2].sliceY = firstChrSrcY;
544
hout_slice->plane[1].sliceH =
545
hout_slice->plane[2].sliceH = 0;
546
}
547
#endif
548
lastInChrBuf = firstChrSrcY - 1;
549
}
550
av_assert0(firstLumSrcY >= lastInLumBuf - vLumBufSize + 1);
551
av_assert0(firstChrSrcY >= lastInChrBuf - vChrBufSize + 1);
552
553
DEBUG_BUFFERS("dstY: %d\n", dstY);
554
DEBUG_BUFFERS("\tfirstLumSrcY: %d lastLumSrcY: %d lastInLumBuf: %d\n",
555
firstLumSrcY, lastLumSrcY, lastInLumBuf);
556
DEBUG_BUFFERS("\tfirstChrSrcY: %d lastChrSrcY: %d lastInChrBuf: %d\n",
557
firstChrSrcY, lastChrSrcY, lastInChrBuf);
558
559
// Do we have enough lines in this slice to output the dstY line
560
enough_lines = lastLumSrcY2 < srcSliceY + srcSliceH &&
561
lastChrSrcY < AV_CEIL_RSHIFT(srcSliceY + srcSliceH, c->chrSrcVSubSample);
562
563
if (!enough_lines) {
564
lastLumSrcY = srcSliceY + srcSliceH - 1;
565
lastChrSrcY = chrSrcSliceY + chrSrcSliceH - 1;
566
DEBUG_BUFFERS("buffering slice: lastLumSrcY %d lastChrSrcY %d\n",
567
lastLumSrcY, lastChrSrcY);
568
}
569
570
#ifdef NEW_FILTER
571
posY = hout_slice->plane[0].sliceY + hout_slice->plane[0].sliceH;
572
if (posY <= lastLumSrcY && !hasLumHoles) {
573
firstPosY = FFMAX(firstLumSrcY, posY);
574
lastPosY = FFMIN(lastLumSrcY + MAX_LINES_AHEAD, srcSliceY + srcSliceH - 1);
575
} else {
576
firstPosY = lastInLumBuf + 1;
577
lastPosY = lastLumSrcY;
578
}
579
580
cPosY = hout_slice->plane[1].sliceY + hout_slice->plane[1].sliceH;
581
if (cPosY <= lastChrSrcY && !hasChrHoles) {
582
firstCPosY = FFMAX(firstChrSrcY, cPosY);
583
lastCPosY = FFMIN(lastChrSrcY + MAX_LINES_AHEAD, AV_CEIL_RSHIFT(srcSliceY + srcSliceH, c->chrSrcVSubSample) - 1);
584
} else {
585
firstCPosY = lastInChrBuf + 1;
586
lastCPosY = lastChrSrcY;
587
}
588
589
ff_rotate_slice(hout_slice, lastPosY, lastCPosY);
590
591
if (posY < lastLumSrcY + 1) {
592
for (i = lumStart; i < lumEnd; ++i)
593
desc[i].process(c, &desc[i], firstPosY, lastPosY - firstPosY + 1);
594
}
595
596
lumBufIndex += lastLumSrcY - lastInLumBuf;
597
lastInLumBuf = lastLumSrcY;
598
599
if (cPosY < lastChrSrcY + 1) {
600
for (i = chrStart; i < chrEnd; ++i)
601
desc[i].process(c, &desc[i], firstCPosY, lastCPosY - firstCPosY + 1);
602
}
603
604
chrBufIndex += lastChrSrcY - lastInChrBuf;
605
lastInChrBuf = lastChrSrcY;
606
607
#else
608
// Do horizontal scaling
609
while (lastInLumBuf < lastLumSrcY) {
610
const uint8_t *src1[4] = {
611
src[0] + (lastInLumBuf + 1 - srcSliceY) * srcStride[0],
612
src[1] + (lastInLumBuf + 1 - srcSliceY) * srcStride[1],
613
src[2] + (lastInLumBuf + 1 - srcSliceY) * srcStride[2],
614
src[3] + (lastInLumBuf + 1 - srcSliceY) * srcStride[3],
615
};
616
lumBufIndex++;
617
av_assert0(lumBufIndex < 2 * vLumBufSize);
618
av_assert0(lastInLumBuf + 1 - srcSliceY < srcSliceH);
619
av_assert0(lastInLumBuf + 1 - srcSliceY >= 0);
620
621
if (perform_gamma)
622
gamma_convert((uint8_t **)src1, srcW, c->inv_gamma);
623
624
hyscale(c, lumPixBuf[lumBufIndex], dstW, src1, srcW, lumXInc,
625
hLumFilter, hLumFilterPos, hLumFilterSize,
626
formatConvBuffer, pal, 0);
627
if (CONFIG_SWSCALE_ALPHA && alpPixBuf)
628
hyscale(c, alpPixBuf[lumBufIndex], dstW, src1, srcW,
629
lumXInc, hLumFilter, hLumFilterPos, hLumFilterSize,
630
formatConvBuffer, pal, 1);
631
lastInLumBuf++;
632
DEBUG_BUFFERS("\t\tlumBufIndex %d: lastInLumBuf: %d\n",
633
lumBufIndex, lastInLumBuf);
634
}
635
while (lastInChrBuf < lastChrSrcY) {
636
const uint8_t *src1[4] = {
637
src[0] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[0],
638
src[1] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[1],
639
src[2] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[2],
640
src[3] + (lastInChrBuf + 1 - chrSrcSliceY) * srcStride[3],
641
};
642
chrBufIndex++;
643
av_assert0(chrBufIndex < 2 * vChrBufSize);
644
av_assert0(lastInChrBuf + 1 - chrSrcSliceY < (chrSrcSliceH));
645
av_assert0(lastInChrBuf + 1 - chrSrcSliceY >= 0);
646
// FIXME replace parameters through context struct (some at least)
647
648
if (c->needs_hcscale)
649
hcscale(c, chrUPixBuf[chrBufIndex], chrVPixBuf[chrBufIndex],
650
chrDstW, src1, chrSrcW, chrXInc,
651
hChrFilter, hChrFilterPos, hChrFilterSize,
652
formatConvBuffer, pal);
653
lastInChrBuf++;
654
DEBUG_BUFFERS("\t\tchrBufIndex %d: lastInChrBuf: %d\n",
655
chrBufIndex, lastInChrBuf);
656
}
657
#endif
658
// wrap buf index around to stay inside the ring buffer
659
if (lumBufIndex >= vLumBufSize)
660
lumBufIndex -= vLumBufSize;
661
if (chrBufIndex >= vChrBufSize)
662
chrBufIndex -= vChrBufSize;
663
if (!enough_lines)
664
break; // we can't output a dstY line so let's try with the next slice
665
666
#if HAVE_MMX_INLINE
667
ff_updateMMXDitherTables(c, dstY, lumBufIndex, chrBufIndex,
668
lastInLumBuf, lastInChrBuf);
669
#endif
670
if (should_dither) {
671
c->chrDither8 = ff_dither_8x8_128[chrDstY & 7];
672
c->lumDither8 = ff_dither_8x8_128[dstY & 7];
673
}
674
if (dstY >= dstH - 2) {
675
/* hmm looks like we can't use MMX here without overwriting
676
* this array's tail */
677
ff_sws_init_output_funcs(c, &yuv2plane1, &yuv2planeX, &yuv2nv12cX,
678
&yuv2packed1, &yuv2packed2, &yuv2packedX, &yuv2anyX);
679
use_mmx_vfilter= 0;
680
ff_init_vscale_pfn(c, yuv2plane1, yuv2planeX, yuv2nv12cX,
681
yuv2packed1, yuv2packed2, yuv2packedX, yuv2anyX, use_mmx_vfilter);
682
}
683
684
{
685
#ifdef NEW_FILTER
686
for (i = vStart; i < vEnd; ++i)
687
desc[i].process(c, &desc[i], dstY, 1);
688
#else
689
const int16_t **lumSrcPtr = (const int16_t **)(void*) lumPixBuf + lumBufIndex + firstLumSrcY - lastInLumBuf + vLumBufSize;
690
const int16_t **chrUSrcPtr = (const int16_t **)(void*) chrUPixBuf + chrBufIndex + firstChrSrcY - lastInChrBuf + vChrBufSize;
691
const int16_t **chrVSrcPtr = (const int16_t **)(void*) chrVPixBuf + chrBufIndex + firstChrSrcY - lastInChrBuf + vChrBufSize;
692
const int16_t **alpSrcPtr = (CONFIG_SWSCALE_ALPHA && alpPixBuf) ?
693
(const int16_t **)(void*) alpPixBuf + lumBufIndex + firstLumSrcY - lastInLumBuf + vLumBufSize : NULL;
694
int16_t *vLumFilter = c->vLumFilter;
695
int16_t *vChrFilter = c->vChrFilter;
696
697
if (isPlanarYUV(dstFormat) ||
698
(isGray(dstFormat) && !isALPHA(dstFormat))) { // YV12 like
699
const int chrSkipMask = (1 << c->chrDstVSubSample) - 1;
700
701
vLumFilter += dstY * vLumFilterSize;
702
vChrFilter += chrDstY * vChrFilterSize;
703
704
// av_assert0(use_mmx_vfilter != (
705
// yuv2planeX == yuv2planeX_10BE_c
706
// || yuv2planeX == yuv2planeX_10LE_c
707
// || yuv2planeX == yuv2planeX_9BE_c
708
// || yuv2planeX == yuv2planeX_9LE_c
709
// || yuv2planeX == yuv2planeX_16BE_c
710
// || yuv2planeX == yuv2planeX_16LE_c
711
// || yuv2planeX == yuv2planeX_8_c) || !ARCH_X86);
712
713
if(use_mmx_vfilter){
714
vLumFilter= (int16_t *)c->lumMmxFilter;
715
vChrFilter= (int16_t *)c->chrMmxFilter;
716
}
717
718
if (vLumFilterSize == 1) {
719
yuv2plane1(lumSrcPtr[0], dest[0], dstW, c->lumDither8, 0);
720
} else {
721
yuv2planeX(vLumFilter, vLumFilterSize,
722
lumSrcPtr, dest[0],
723
dstW, c->lumDither8, 0);
724
}
725
726
if (!((dstY & chrSkipMask) || isGray(dstFormat))) {
727
if (yuv2nv12cX) {
728
yuv2nv12cX(c, vChrFilter,
729
vChrFilterSize, chrUSrcPtr, chrVSrcPtr,
730
dest[1], chrDstW);
731
} else if (vChrFilterSize == 1) {
732
yuv2plane1(chrUSrcPtr[0], dest[1], chrDstW, c->chrDither8, 0);
733
yuv2plane1(chrVSrcPtr[0], dest[2], chrDstW, c->chrDither8, 3);
734
} else {
735
yuv2planeX(vChrFilter,
736
vChrFilterSize, chrUSrcPtr, dest[1],
737
chrDstW, c->chrDither8, 0);
738
yuv2planeX(vChrFilter,
739
vChrFilterSize, chrVSrcPtr, dest[2],
740
chrDstW, c->chrDither8, use_mmx_vfilter ? (c->uv_offx2 >> 1) : 3);
741
}
742
}
743
744
if (CONFIG_SWSCALE_ALPHA && alpPixBuf) {
745
if(use_mmx_vfilter){
746
vLumFilter= (int16_t *)c->alpMmxFilter;
747
}
748
if (vLumFilterSize == 1) {
749
yuv2plane1(alpSrcPtr[0], dest[3], dstW,
750
c->lumDither8, 0);
751
} else {
752
yuv2planeX(vLumFilter,
753
vLumFilterSize, alpSrcPtr, dest[3],
754
dstW, c->lumDither8, 0);
755
}
756
}
757
} else if (yuv2packedX) {
758
av_assert1(lumSrcPtr + vLumFilterSize - 1 < (const int16_t **)lumPixBuf + vLumBufSize * 2);
759
av_assert1(chrUSrcPtr + vChrFilterSize - 1 < (const int16_t **)chrUPixBuf + vChrBufSize * 2);
760
if (c->yuv2packed1 && vLumFilterSize == 1 &&
761
vChrFilterSize <= 2) { // unscaled RGB
762
int chrAlpha = vChrFilterSize == 1 ? 0 : vChrFilter[2 * dstY + 1];
763
yuv2packed1(c, *lumSrcPtr, chrUSrcPtr, chrVSrcPtr,
764
alpPixBuf ? *alpSrcPtr : NULL,
765
dest[0], dstW, chrAlpha, dstY);
766
} else if (c->yuv2packed2 && vLumFilterSize == 2 &&
767
vChrFilterSize == 2) { // bilinear upscale RGB
768
int lumAlpha = vLumFilter[2 * dstY + 1];
769
int chrAlpha = vChrFilter[2 * dstY + 1];
770
lumMmxFilter[2] =
771
lumMmxFilter[3] = vLumFilter[2 * dstY] * 0x10001;
772
chrMmxFilter[2] =
773
chrMmxFilter[3] = vChrFilter[2 * chrDstY] * 0x10001;
774
yuv2packed2(c, lumSrcPtr, chrUSrcPtr, chrVSrcPtr,
775
alpPixBuf ? alpSrcPtr : NULL,
776
dest[0], dstW, lumAlpha, chrAlpha, dstY);
777
} else { // general RGB
778
yuv2packedX(c, vLumFilter + dstY * vLumFilterSize,
779
lumSrcPtr, vLumFilterSize,
780
vChrFilter + dstY * vChrFilterSize,
781
chrUSrcPtr, chrVSrcPtr, vChrFilterSize,
782
alpSrcPtr, dest[0], dstW, dstY);
783
}
784
} else {
785
av_assert1(!yuv2packed1 && !yuv2packed2);
786
yuv2anyX(c, vLumFilter + dstY * vLumFilterSize,
787
lumSrcPtr, vLumFilterSize,
788
vChrFilter + dstY * vChrFilterSize,
789
chrUSrcPtr, chrVSrcPtr, vChrFilterSize,
790
alpSrcPtr, dest, dstW, dstY);
791
}
792
if (perform_gamma)
793
gamma_convert(dest, dstW, c->gamma);
794
#endif
795
}
796
}
797
if (isPlanar(dstFormat) && isALPHA(dstFormat) && !alpPixBuf) {
798
int length = dstW;
799
int height = dstY - lastDstY;
800
801
if (is16BPS(dstFormat) || isNBPS(dstFormat)) {
802
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(dstFormat);
803
fillPlane16(dst[3], dstStride[3], length, height, lastDstY,
804
1, desc->comp[3].depth,
805
isBE(dstFormat));
806
} else
807
fillPlane(dst[3], dstStride[3], length, height, lastDstY, 255);
808
}
809
810
#if HAVE_MMXEXT_INLINE
811
if (av_get_cpu_flags() & AV_CPU_FLAG_MMXEXT)
812
__asm__ volatile ("sfence" ::: "memory");
813
#endif
814
emms_c();
815
816
/* store changed local vars back in the context */
817
c->dstY = dstY;
818
c->lumBufIndex = lumBufIndex;
819
c->chrBufIndex = chrBufIndex;
820
c->lastInLumBuf = lastInLumBuf;
821
c->lastInChrBuf = lastInChrBuf;
822
823
return dstY - lastDstY;
824
}
825
826
av_cold void ff_sws_init_range_convert(SwsContext *c)
827
{
828
c->lumConvertRange = NULL;
829
c->chrConvertRange = NULL;
830
if (c->srcRange != c->dstRange && !isAnyRGB(c->dstFormat)) {
831
if (c->dstBpc <= 14) {
832
if (c->srcRange) {
833
c->lumConvertRange = lumRangeFromJpeg_c;
834
c->chrConvertRange = chrRangeFromJpeg_c;
835
} else {
836
c->lumConvertRange = lumRangeToJpeg_c;
837
c->chrConvertRange = chrRangeToJpeg_c;
838
}
839
} else {
840
if (c->srcRange) {
841
c->lumConvertRange = lumRangeFromJpeg16_c;
842
c->chrConvertRange = chrRangeFromJpeg16_c;
843
} else {
844
c->lumConvertRange = lumRangeToJpeg16_c;
845
c->chrConvertRange = chrRangeToJpeg16_c;
846
}
847
}
848
}
849
}
850
851
static av_cold void sws_init_swscale(SwsContext *c)
852
{
853
enum AVPixelFormat srcFormat = c->srcFormat;
854
855
ff_sws_init_output_funcs(c, &c->yuv2plane1, &c->yuv2planeX,
856
&c->yuv2nv12cX, &c->yuv2packed1,
857
&c->yuv2packed2, &c->yuv2packedX, &c->yuv2anyX);
858
859
ff_sws_init_input_funcs(c);
860
861
862
if (c->srcBpc == 8) {
863
if (c->dstBpc <= 14) {
864
c->hyScale = c->hcScale = hScale8To15_c;
865
if (c->flags & SWS_FAST_BILINEAR) {
866
c->hyscale_fast = ff_hyscale_fast_c;
867
c->hcscale_fast = ff_hcscale_fast_c;
868
}
869
} else {
870
c->hyScale = c->hcScale = hScale8To19_c;
871
}
872
} else {
873
c->hyScale = c->hcScale = c->dstBpc > 14 ? hScale16To19_c
874
: hScale16To15_c;
875
}
876
877
ff_sws_init_range_convert(c);
878
879
if (!(isGray(srcFormat) || isGray(c->dstFormat) ||
880
srcFormat == AV_PIX_FMT_MONOBLACK || srcFormat == AV_PIX_FMT_MONOWHITE))
881
c->needs_hcscale = 1;
882
}
883
884
SwsFunc ff_getSwsFunc(SwsContext *c)
885
{
886
sws_init_swscale(c);
887
888
if (ARCH_PPC)
889
ff_sws_init_swscale_ppc(c);
890
if (ARCH_X86)
891
ff_sws_init_swscale_x86(c);
892
893
return swscale;
894
}
895
896
static void reset_ptr(const uint8_t *src[], enum AVPixelFormat format)
897
{
898
if (!isALPHA(format))
899
src[3] = NULL;
900
if (!isPlanar(format)) {
901
src[3] = src[2] = NULL;
902
903
if (!usePal(format))
904
src[1] = NULL;
905
}
906
}
907
908
static int check_image_pointers(const uint8_t * const data[4], enum AVPixelFormat pix_fmt,
909
const int linesizes[4])
910
{
911
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
912
int i;
913
914
av_assert2(desc);
915
916
for (i = 0; i < 4; i++) {
917
int plane = desc->comp[i].plane;
918
if (!data[plane] || !linesizes[plane])
919
return 0;
920
}
921
922
return 1;
923
}
924
925
static void xyz12Torgb48(struct SwsContext *c, uint16_t *dst,
926
const uint16_t *src, int stride, int h)
927
{
928
int xp,yp;
929
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(c->srcFormat);
930
931
for (yp=0; yp<h; yp++) {
932
for (xp=0; xp+2<stride; xp+=3) {
933
int x, y, z, r, g, b;
934
935
if (desc->flags & AV_PIX_FMT_FLAG_BE) {
936
x = AV_RB16(src + xp + 0);
937
y = AV_RB16(src + xp + 1);
938
z = AV_RB16(src + xp + 2);
939
} else {
940
x = AV_RL16(src + xp + 0);
941
y = AV_RL16(src + xp + 1);
942
z = AV_RL16(src + xp + 2);
943
}
944
945
x = c->xyzgamma[x>>4];
946
y = c->xyzgamma[y>>4];
947
z = c->xyzgamma[z>>4];
948
949
// convert from XYZlinear to sRGBlinear
950
r = c->xyz2rgb_matrix[0][0] * x +
951
c->xyz2rgb_matrix[0][1] * y +
952
c->xyz2rgb_matrix[0][2] * z >> 12;
953
g = c->xyz2rgb_matrix[1][0] * x +
954
c->xyz2rgb_matrix[1][1] * y +
955
c->xyz2rgb_matrix[1][2] * z >> 12;
956
b = c->xyz2rgb_matrix[2][0] * x +
957
c->xyz2rgb_matrix[2][1] * y +
958
c->xyz2rgb_matrix[2][2] * z >> 12;
959
960
// limit values to 12-bit depth
961
r = av_clip_uintp2(r, 12);
962
g = av_clip_uintp2(g, 12);
963
b = av_clip_uintp2(b, 12);
964
965
// convert from sRGBlinear to RGB and scale from 12bit to 16bit
966
if (desc->flags & AV_PIX_FMT_FLAG_BE) {
967
AV_WB16(dst + xp + 0, c->rgbgamma[r] << 4);
968
AV_WB16(dst + xp + 1, c->rgbgamma[g] << 4);
969
AV_WB16(dst + xp + 2, c->rgbgamma[b] << 4);
970
} else {
971
AV_WL16(dst + xp + 0, c->rgbgamma[r] << 4);
972
AV_WL16(dst + xp + 1, c->rgbgamma[g] << 4);
973
AV_WL16(dst + xp + 2, c->rgbgamma[b] << 4);
974
}
975
}
976
src += stride;
977
dst += stride;
978
}
979
}
980
981
static void rgb48Toxyz12(struct SwsContext *c, uint16_t *dst,
982
const uint16_t *src, int stride, int h)
983
{
984
int xp,yp;
985
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(c->dstFormat);
986
987
for (yp=0; yp<h; yp++) {
988
for (xp=0; xp+2<stride; xp+=3) {
989
int x, y, z, r, g, b;
990
991
if (desc->flags & AV_PIX_FMT_FLAG_BE) {
992
r = AV_RB16(src + xp + 0);
993
g = AV_RB16(src + xp + 1);
994
b = AV_RB16(src + xp + 2);
995
} else {
996
r = AV_RL16(src + xp + 0);
997
g = AV_RL16(src + xp + 1);
998
b = AV_RL16(src + xp + 2);
999
}
1000
1001
r = c->rgbgammainv[r>>4];
1002
g = c->rgbgammainv[g>>4];
1003
b = c->rgbgammainv[b>>4];
1004
1005
// convert from sRGBlinear to XYZlinear
1006
x = c->rgb2xyz_matrix[0][0] * r +
1007
c->rgb2xyz_matrix[0][1] * g +
1008
c->rgb2xyz_matrix[0][2] * b >> 12;
1009
y = c->rgb2xyz_matrix[1][0] * r +
1010
c->rgb2xyz_matrix[1][1] * g +
1011
c->rgb2xyz_matrix[1][2] * b >> 12;
1012
z = c->rgb2xyz_matrix[2][0] * r +
1013
c->rgb2xyz_matrix[2][1] * g +
1014
c->rgb2xyz_matrix[2][2] * b >> 12;
1015
1016
// limit values to 12-bit depth
1017
x = av_clip_uintp2(x, 12);
1018
y = av_clip_uintp2(y, 12);
1019
z = av_clip_uintp2(z, 12);
1020
1021
// convert from XYZlinear to X'Y'Z' and scale from 12bit to 16bit
1022
if (desc->flags & AV_PIX_FMT_FLAG_BE) {
1023
AV_WB16(dst + xp + 0, c->xyzgammainv[x] << 4);
1024
AV_WB16(dst + xp + 1, c->xyzgammainv[y] << 4);
1025
AV_WB16(dst + xp + 2, c->xyzgammainv[z] << 4);
1026
} else {
1027
AV_WL16(dst + xp + 0, c->xyzgammainv[x] << 4);
1028
AV_WL16(dst + xp + 1, c->xyzgammainv[y] << 4);
1029
AV_WL16(dst + xp + 2, c->xyzgammainv[z] << 4);
1030
}
1031
}
1032
src += stride;
1033
dst += stride;
1034
}
1035
}
1036
1037
/**
1038
* swscale wrapper, so we don't need to export the SwsContext.
1039
* Assumes planar YUV to be in YUV order instead of YVU.
1040
*/
1041
int attribute_align_arg sws_scale(struct SwsContext *c,
1042
const uint8_t * const srcSlice[],
1043
const int srcStride[], int srcSliceY,
1044
int srcSliceH, uint8_t *const dst[],
1045
const int dstStride[])
1046
{
1047
int i, ret;
1048
const uint8_t *src2[4];
1049
uint8_t *dst2[4];
1050
uint8_t *rgb0_tmp = NULL;
1051
int macro_height = isBayer(c->srcFormat) ? 2 : (1 << c->chrSrcVSubSample);
1052
1053
if (!srcStride || !dstStride || !dst || !srcSlice) {
1054
av_log(c, AV_LOG_ERROR, "One of the input parameters to sws_scale() is NULL, please check the calling code\n");
1055
return 0;
1056
}
1057
1058
if ((srcSliceY & (macro_height-1)) ||
1059
((srcSliceH& (macro_height-1)) && srcSliceY + srcSliceH != c->srcH) ||
1060
srcSliceY + srcSliceH > c->srcH) {
1061
av_log(c, AV_LOG_ERROR, "Slice parameters %d, %d are invalid\n", srcSliceY, srcSliceH);
1062
return AVERROR(EINVAL);
1063
}
1064
1065
if (c->gamma_flag && c->cascaded_context[0]) {
1066
1067
1068
ret = sws_scale(c->cascaded_context[0],
1069
srcSlice, srcStride, srcSliceY, srcSliceH,
1070
c->cascaded_tmp, c->cascaded_tmpStride);
1071
1072
if (ret < 0)
1073
return ret;
1074
1075
if (c->cascaded_context[2])
1076
ret = sws_scale(c->cascaded_context[1], (const uint8_t * const *)c->cascaded_tmp, c->cascaded_tmpStride, srcSliceY, srcSliceH, c->cascaded1_tmp, c->cascaded1_tmpStride);
1077
else
1078
ret = sws_scale(c->cascaded_context[1], (const uint8_t * const *)c->cascaded_tmp, c->cascaded_tmpStride, srcSliceY, srcSliceH, dst, dstStride);
1079
1080
if (ret < 0)
1081
return ret;
1082
1083
if (c->cascaded_context[2]) {
1084
ret = sws_scale(c->cascaded_context[2],
1085
(const uint8_t * const *)c->cascaded1_tmp, c->cascaded1_tmpStride, c->cascaded_context[1]->dstY - ret, c->cascaded_context[1]->dstY,
1086
dst, dstStride);
1087
}
1088
return ret;
1089
}
1090
1091
if (c->cascaded_context[0] && srcSliceY == 0 && srcSliceH == c->cascaded_context[0]->srcH) {
1092
ret = sws_scale(c->cascaded_context[0],
1093
srcSlice, srcStride, srcSliceY, srcSliceH,
1094
c->cascaded_tmp, c->cascaded_tmpStride);
1095
if (ret < 0)
1096
return ret;
1097
ret = sws_scale(c->cascaded_context[1],
1098
(const uint8_t * const * )c->cascaded_tmp, c->cascaded_tmpStride, 0, c->cascaded_context[0]->dstH,
1099
dst, dstStride);
1100
return ret;
1101
}
1102
1103
memcpy(src2, srcSlice, sizeof(src2));
1104
memcpy(dst2, dst, sizeof(dst2));
1105
1106
// do not mess up sliceDir if we have a "trailing" 0-size slice
1107
if (srcSliceH == 0)
1108
return 0;
1109
1110
if (!check_image_pointers(srcSlice, c->srcFormat, srcStride)) {
1111
av_log(c, AV_LOG_ERROR, "bad src image pointers\n");
1112
return 0;
1113
}
1114
if (!check_image_pointers((const uint8_t* const*)dst, c->dstFormat, dstStride)) {
1115
av_log(c, AV_LOG_ERROR, "bad dst image pointers\n");
1116
return 0;
1117
}
1118
1119
if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
1120
av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
1121
return 0;
1122
}
1123
if (c->sliceDir == 0) {
1124
if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
1125
}
1126
1127
if (usePal(c->srcFormat)) {
1128
for (i = 0; i < 256; i++) {
1129
int r, g, b, y, u, v, a = 0xff;
1130
if (c->srcFormat == AV_PIX_FMT_PAL8) {
1131
uint32_t p = ((const uint32_t *)(srcSlice[1]))[i];
1132
a = (p >> 24) & 0xFF;
1133
r = (p >> 16) & 0xFF;
1134
g = (p >> 8) & 0xFF;
1135
b = p & 0xFF;
1136
} else if (c->srcFormat == AV_PIX_FMT_RGB8) {
1137
r = ( i >> 5 ) * 36;
1138
g = ((i >> 2) & 7) * 36;
1139
b = ( i & 3) * 85;
1140
} else if (c->srcFormat == AV_PIX_FMT_BGR8) {
1141
b = ( i >> 6 ) * 85;
1142
g = ((i >> 3) & 7) * 36;
1143
r = ( i & 7) * 36;
1144
} else if (c->srcFormat == AV_PIX_FMT_RGB4_BYTE) {
1145
r = ( i >> 3 ) * 255;
1146
g = ((i >> 1) & 3) * 85;
1147
b = ( i & 1) * 255;
1148
} else if (c->srcFormat == AV_PIX_FMT_GRAY8 || c->srcFormat == AV_PIX_FMT_GRAY8A) {
1149
r = g = b = i;
1150
} else {
1151
av_assert1(c->srcFormat == AV_PIX_FMT_BGR4_BYTE);
1152
b = ( i >> 3 ) * 255;
1153
g = ((i >> 1) & 3) * 85;
1154
r = ( i & 1) * 255;
1155
}
1156
#define RGB2YUV_SHIFT 15
1157
#define BY ( (int) (0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
1158
#define BV (-(int) (0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
1159
#define BU ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
1160
#define GY ( (int) (0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
1161
#define GV (-(int) (0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
1162
#define GU (-(int) (0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
1163
#define RY ( (int) (0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
1164
#define RV ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
1165
#define RU (-(int) (0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
1166
1167
y = av_clip_uint8((RY * r + GY * g + BY * b + ( 33 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
1168
u = av_clip_uint8((RU * r + GU * g + BU * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
1169
v = av_clip_uint8((RV * r + GV * g + BV * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
1170
c->pal_yuv[i]= y + (u<<8) + (v<<16) + ((unsigned)a<<24);
1171
1172
switch (c->dstFormat) {
1173
case AV_PIX_FMT_BGR32:
1174
#if !HAVE_BIGENDIAN
1175
case AV_PIX_FMT_RGB24:
1176
#endif
1177
c->pal_rgb[i]= r + (g<<8) + (b<<16) + ((unsigned)a<<24);
1178
break;
1179
case AV_PIX_FMT_BGR32_1:
1180
#if HAVE_BIGENDIAN
1181
case AV_PIX_FMT_BGR24:
1182
#endif
1183
c->pal_rgb[i]= a + (r<<8) + (g<<16) + ((unsigned)b<<24);
1184
break;
1185
case AV_PIX_FMT_RGB32_1:
1186
#if HAVE_BIGENDIAN
1187
case AV_PIX_FMT_RGB24:
1188
#endif
1189
c->pal_rgb[i]= a + (b<<8) + (g<<16) + ((unsigned)r<<24);
1190
break;
1191
case AV_PIX_FMT_RGB32:
1192
#if !HAVE_BIGENDIAN
1193
case AV_PIX_FMT_BGR24:
1194
#endif
1195
default:
1196
c->pal_rgb[i]= b + (g<<8) + (r<<16) + ((unsigned)a<<24);
1197
}
1198
}
1199
}
1200
1201
if (c->src0Alpha && !c->dst0Alpha && isALPHA(c->dstFormat)) {
1202
uint8_t *base;
1203
int x,y;
1204
rgb0_tmp = av_malloc(FFABS(srcStride[0]) * srcSliceH + 32);
1205
if (!rgb0_tmp)
1206
return AVERROR(ENOMEM);
1207
1208
base = srcStride[0] < 0 ? rgb0_tmp - srcStride[0] * (srcSliceH-1) : rgb0_tmp;
1209
for (y=0; y<srcSliceH; y++){
1210
memcpy(base + srcStride[0]*y, src2[0] + srcStride[0]*y, 4*c->srcW);
1211
for (x=c->src0Alpha-1; x<4*c->srcW; x+=4) {
1212
base[ srcStride[0]*y + x] = 0xFF;
1213
}
1214
}
1215
src2[0] = base;
1216
}
1217
1218
if (c->srcXYZ && !(c->dstXYZ && c->srcW==c->dstW && c->srcH==c->dstH)) {
1219
uint8_t *base;
1220
rgb0_tmp = av_malloc(FFABS(srcStride[0]) * srcSliceH + 32);
1221
if (!rgb0_tmp)
1222
return AVERROR(ENOMEM);
1223
1224
base = srcStride[0] < 0 ? rgb0_tmp - srcStride[0] * (srcSliceH-1) : rgb0_tmp;
1225
1226
xyz12Torgb48(c, (uint16_t*)base, (const uint16_t*)src2[0], srcStride[0]/2, srcSliceH);
1227
src2[0] = base;
1228
}
1229
1230
if (!srcSliceY && (c->flags & SWS_BITEXACT) && c->dither == SWS_DITHER_ED && c->dither_error[0])
1231
for (i = 0; i < 4; i++)
1232
memset(c->dither_error[i], 0, sizeof(c->dither_error[0][0]) * (c->dstW+2));
1233
1234
1235
// copy strides, so they can safely be modified
1236
if (c->sliceDir == 1) {
1237
// slices go from top to bottom
1238
int srcStride2[4] = { srcStride[0], srcStride[1], srcStride[2],
1239
srcStride[3] };
1240
int dstStride2[4] = { dstStride[0], dstStride[1], dstStride[2],
1241
dstStride[3] };
1242
1243
reset_ptr(src2, c->srcFormat);
1244
reset_ptr((void*)dst2, c->dstFormat);
1245
1246
/* reset slice direction at end of frame */
1247
if (srcSliceY + srcSliceH == c->srcH)
1248
c->sliceDir = 0;
1249
1250
ret = c->swscale(c, src2, srcStride2, srcSliceY, srcSliceH, dst2,
1251
dstStride2);
1252
} else {
1253
// slices go from bottom to top => we flip the image internally
1254
int srcStride2[4] = { -srcStride[0], -srcStride[1], -srcStride[2],
1255
-srcStride[3] };
1256
int dstStride2[4] = { -dstStride[0], -dstStride[1], -dstStride[2],
1257
-dstStride[3] };
1258
1259
src2[0] += (srcSliceH - 1) * srcStride[0];
1260
if (!usePal(c->srcFormat))
1261
src2[1] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[1];
1262
src2[2] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[2];
1263
src2[3] += (srcSliceH - 1) * srcStride[3];
1264
dst2[0] += ( c->dstH - 1) * dstStride[0];
1265
dst2[1] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[1];
1266
dst2[2] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[2];
1267
dst2[3] += ( c->dstH - 1) * dstStride[3];
1268
1269
reset_ptr(src2, c->srcFormat);
1270
reset_ptr((void*)dst2, c->dstFormat);
1271
1272
/* reset slice direction at end of frame */
1273
if (!srcSliceY)
1274
c->sliceDir = 0;
1275
1276
ret = c->swscale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH,
1277
srcSliceH, dst2, dstStride2);
1278
}
1279
1280
1281
if (c->dstXYZ && !(c->srcXYZ && c->srcW==c->dstW && c->srcH==c->dstH)) {
1282
/* replace on the same data */
1283
rgb48Toxyz12(c, (uint16_t*)dst2[0], (const uint16_t*)dst2[0], dstStride[0]/2, ret);
1284
}
1285
1286
av_free(rgb0_tmp);
1287
return ret;
1288
}
1289
1290