/*1* Copyright (C) 2001-2011 Michael Niedermayer <[email protected]>2*3* This file is part of FFmpeg.4*5* FFmpeg is free software; you can redistribute it and/or6* modify it under the terms of the GNU Lesser General Public7* License as published by the Free Software Foundation; either8* version 2.1 of the License, or (at your option) any later version.9*10* FFmpeg is distributed in the hope that it will be useful,11* but WITHOUT ANY WARRANTY; without even the implied warranty of12* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU13* Lesser General Public License for more details.14*15* You should have received a copy of the GNU Lesser General Public16* License along with FFmpeg; if not, write to the Free Software17* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA18*/1920#ifndef SWSCALE_SWSCALE_INTERNAL_H21#define SWSCALE_SWSCALE_INTERNAL_H2223#include "config.h"2425#if HAVE_ALTIVEC_H26#include <altivec.h>27#endif2829#include "version.h"3031#include "libavutil/avassert.h"32#include "libavutil/avutil.h"33#include "libavutil/common.h"34#include "libavutil/intreadwrite.h"35#include "libavutil/log.h"36#include "libavutil/pixfmt.h"37#include "libavutil/pixdesc.h"3839#define STR(s) AV_TOSTRING(s) // AV_STRINGIFY is too long4041#define YUVRGB_TABLE_HEADROOM 51242#define YUVRGB_TABLE_LUMA_HEADROOM 5124344#define MAX_FILTER_SIZE SWS_MAX_FILTER_SIZE4546#define DITHER1XBPP4748#if HAVE_BIGENDIAN49#define ALT32_CORR (-1)50#else51#define ALT32_CORR 152#endif5354#if ARCH_X86_6455# define APCK_PTR2 856# define APCK_COEF 1657# define APCK_SIZE 2458#else59# define APCK_PTR2 460# define APCK_COEF 861# define APCK_SIZE 1662#endif6364#define RETCODE_USE_CASCADE -123456566struct SwsContext;6768typedef enum SwsDither {69SWS_DITHER_NONE = 0,70SWS_DITHER_AUTO,71SWS_DITHER_BAYER,72SWS_DITHER_ED,73SWS_DITHER_A_DITHER,74SWS_DITHER_X_DITHER,75NB_SWS_DITHER,76} SwsDither;7778typedef enum SwsAlphaBlend {79SWS_ALPHA_BLEND_NONE = 0,80SWS_ALPHA_BLEND_UNIFORM,81SWS_ALPHA_BLEND_CHECKERBOARD,82SWS_ALPHA_BLEND_NB,83} SwsAlphaBlend;8485typedef int (*SwsFunc)(struct SwsContext *context, const uint8_t *src[],86int srcStride[], int srcSliceY, int srcSliceH,87uint8_t *dst[], int dstStride[]);8889/**90* Write one line of horizontally scaled data to planar output91* without any additional vertical scaling (or point-scaling).92*93* @param src scaled source data, 15bit for 8-10bit output,94* 19-bit for 16bit output (in int32_t)95* @param dest pointer to the output plane. For >8bit96* output, this is in uint16_t97* @param dstW width of destination in pixels98* @param dither ordered dither array of type int16_t and size 899* @param offset Dither offset100*/101typedef void (*yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW,102const uint8_t *dither, int offset);103104/**105* Write one line of horizontally scaled data to planar output106* with multi-point vertical scaling between input pixels.107*108* @param filter vertical luma/alpha scaling coefficients, 12bit [0,4096]109* @param src scaled luma (Y) or alpha (A) source data, 15bit for 8-10bit output,110* 19-bit for 16bit output (in int32_t)111* @param filterSize number of vertical input lines to scale112* @param dest pointer to output plane. For >8bit113* output, this is in uint16_t114* @param dstW width of destination pixels115* @param offset Dither offset116*/117typedef void (*yuv2planarX_fn)(const int16_t *filter, int filterSize,118const int16_t **src, uint8_t *dest, int dstW,119const uint8_t *dither, int offset);120121/**122* Write one line of horizontally scaled chroma to interleaved output123* with multi-point vertical scaling between input pixels.124*125* @param c SWS scaling context126* @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]127* @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,128* 19-bit for 16bit output (in int32_t)129* @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,130* 19-bit for 16bit output (in int32_t)131* @param chrFilterSize number of vertical chroma input lines to scale132* @param dest pointer to the output plane. For >8bit133* output, this is in uint16_t134* @param dstW width of chroma planes135*/136typedef void (*yuv2interleavedX_fn)(struct SwsContext *c,137const int16_t *chrFilter,138int chrFilterSize,139const int16_t **chrUSrc,140const int16_t **chrVSrc,141uint8_t *dest, int dstW);142143/**144* Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB145* output without any additional vertical scaling (or point-scaling). Note146* that this function may do chroma scaling, see the "uvalpha" argument.147*148* @param c SWS scaling context149* @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,150* 19-bit for 16bit output (in int32_t)151* @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,152* 19-bit for 16bit output (in int32_t)153* @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,154* 19-bit for 16bit output (in int32_t)155* @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,156* 19-bit for 16bit output (in int32_t)157* @param dest pointer to the output plane. For 16bit output, this is158* uint16_t159* @param dstW width of lumSrc and alpSrc in pixels, number of pixels160* to write into dest[]161* @param uvalpha chroma scaling coefficient for the second line of chroma162* pixels, either 2048 or 0. If 0, one chroma input is used163* for 2 output pixels (or if the SWS_FLAG_FULL_CHR_INT flag164* is set, it generates 1 output pixel). If 2048, two chroma165* input pixels should be averaged for 2 output pixels (this166* only happens if SWS_FLAG_FULL_CHR_INT is not set)167* @param y vertical line number for this output. This does not need168* to be used to calculate the offset in the destination,169* but can be used to generate comfort noise using dithering170* for some output formats.171*/172typedef void (*yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc,173const int16_t *chrUSrc[2],174const int16_t *chrVSrc[2],175const int16_t *alpSrc, uint8_t *dest,176int dstW, int uvalpha, int y);177/**178* Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB179* output by doing bilinear scaling between two input lines.180*181* @param c SWS scaling context182* @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,183* 19-bit for 16bit output (in int32_t)184* @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,185* 19-bit for 16bit output (in int32_t)186* @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,187* 19-bit for 16bit output (in int32_t)188* @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,189* 19-bit for 16bit output (in int32_t)190* @param dest pointer to the output plane. For 16bit output, this is191* uint16_t192* @param dstW width of lumSrc and alpSrc in pixels, number of pixels193* to write into dest[]194* @param yalpha luma/alpha scaling coefficients for the second input line.195* The first line's coefficients can be calculated by using196* 4096 - yalpha197* @param uvalpha chroma scaling coefficient for the second input line. The198* first line's coefficients can be calculated by using199* 4096 - uvalpha200* @param y vertical line number for this output. This does not need201* to be used to calculate the offset in the destination,202* but can be used to generate comfort noise using dithering203* for some output formats.204*/205typedef void (*yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2],206const int16_t *chrUSrc[2],207const int16_t *chrVSrc[2],208const int16_t *alpSrc[2],209uint8_t *dest,210int dstW, int yalpha, int uvalpha, int y);211/**212* Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB213* output by doing multi-point vertical scaling between input pixels.214*215* @param c SWS scaling context216* @param lumFilter vertical luma/alpha scaling coefficients, 12bit [0,4096]217* @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,218* 19-bit for 16bit output (in int32_t)219* @param lumFilterSize number of vertical luma/alpha input lines to scale220* @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]221* @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,222* 19-bit for 16bit output (in int32_t)223* @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,224* 19-bit for 16bit output (in int32_t)225* @param chrFilterSize number of vertical chroma input lines to scale226* @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,227* 19-bit for 16bit output (in int32_t)228* @param dest pointer to the output plane. For 16bit output, this is229* uint16_t230* @param dstW width of lumSrc and alpSrc in pixels, number of pixels231* to write into dest[]232* @param y vertical line number for this output. This does not need233* to be used to calculate the offset in the destination,234* but can be used to generate comfort noise using dithering235* or some output formats.236*/237typedef void (*yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter,238const int16_t **lumSrc, int lumFilterSize,239const int16_t *chrFilter,240const int16_t **chrUSrc,241const int16_t **chrVSrc, int chrFilterSize,242const int16_t **alpSrc, uint8_t *dest,243int dstW, int y);244245/**246* Write one line of horizontally scaled Y/U/V/A to YUV/RGB247* output by doing multi-point vertical scaling between input pixels.248*249* @param c SWS scaling context250* @param lumFilter vertical luma/alpha scaling coefficients, 12bit [0,4096]251* @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,252* 19-bit for 16bit output (in int32_t)253* @param lumFilterSize number of vertical luma/alpha input lines to scale254* @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]255* @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,256* 19-bit for 16bit output (in int32_t)257* @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,258* 19-bit for 16bit output (in int32_t)259* @param chrFilterSize number of vertical chroma input lines to scale260* @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,261* 19-bit for 16bit output (in int32_t)262* @param dest pointer to the output planes. For 16bit output, this is263* uint16_t264* @param dstW width of lumSrc and alpSrc in pixels, number of pixels265* to write into dest[]266* @param y vertical line number for this output. This does not need267* to be used to calculate the offset in the destination,268* but can be used to generate comfort noise using dithering269* or some output formats.270*/271typedef void (*yuv2anyX_fn)(struct SwsContext *c, const int16_t *lumFilter,272const int16_t **lumSrc, int lumFilterSize,273const int16_t *chrFilter,274const int16_t **chrUSrc,275const int16_t **chrVSrc, int chrFilterSize,276const int16_t **alpSrc, uint8_t **dest,277int dstW, int y);278279struct SwsSlice;280struct SwsFilterDescriptor;281282/* This struct should be aligned on at least a 32-byte boundary. */283typedef struct SwsContext {284/**285* info on struct for av_log286*/287const AVClass *av_class;288289/**290* Note that src, dst, srcStride, dstStride will be copied in the291* sws_scale() wrapper so they can be freely modified here.292*/293SwsFunc swscale;294int srcW; ///< Width of source luma/alpha planes.295int srcH; ///< Height of source luma/alpha planes.296int dstH; ///< Height of destination luma/alpha planes.297int chrSrcW; ///< Width of source chroma planes.298int chrSrcH; ///< Height of source chroma planes.299int chrDstW; ///< Width of destination chroma planes.300int chrDstH; ///< Height of destination chroma planes.301int lumXInc, chrXInc;302int lumYInc, chrYInc;303enum AVPixelFormat dstFormat; ///< Destination pixel format.304enum AVPixelFormat srcFormat; ///< Source pixel format.305int dstFormatBpp; ///< Number of bits per pixel of the destination pixel format.306int srcFormatBpp; ///< Number of bits per pixel of the source pixel format.307int dstBpc, srcBpc;308int chrSrcHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source image.309int chrSrcVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image.310int chrDstHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination image.311int chrDstVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination image.312int vChrDrop; ///< Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user.313int sliceDir; ///< Direction that slices are fed to the scaler (1 = top-to-bottom, -1 = bottom-to-top).314double param[2]; ///< Input parameters for scaling algorithms that need them.315316/* The cascaded_* fields allow spliting a scaler task into multiple317* sequential steps, this is for example used to limit the maximum318* downscaling factor that needs to be supported in one scaler.319*/320struct SwsContext *cascaded_context[3];321int cascaded_tmpStride[4];322uint8_t *cascaded_tmp[4];323int cascaded1_tmpStride[4];324uint8_t *cascaded1_tmp[4];325int cascaded_mainindex;326327double gamma_value;328int gamma_flag;329int is_internal_gamma;330uint16_t *gamma;331uint16_t *inv_gamma;332333int numDesc;334int descIndex[2];335int numSlice;336struct SwsSlice *slice;337struct SwsFilterDescriptor *desc;338339uint32_t pal_yuv[256];340uint32_t pal_rgb[256];341342/**343* @name Scaled horizontal lines ring buffer.344* The horizontal scaler keeps just enough scaled lines in a ring buffer345* so they may be passed to the vertical scaler. The pointers to the346* allocated buffers for each line are duplicated in sequence in the ring347* buffer to simplify indexing and avoid wrapping around between lines348* inside the vertical scaler code. The wrapping is done before the349* vertical scaler is called.350*/351//@{352int16_t **lumPixBuf; ///< Ring buffer for scaled horizontal luma plane lines to be fed to the vertical scaler.353int16_t **chrUPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.354int16_t **chrVPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.355int16_t **alpPixBuf; ///< Ring buffer for scaled horizontal alpha plane lines to be fed to the vertical scaler.356int vLumBufSize; ///< Number of vertical luma/alpha lines allocated in the ring buffer.357int vChrBufSize; ///< Number of vertical chroma lines allocated in the ring buffer.358int lastInLumBuf; ///< Last scaled horizontal luma/alpha line from source in the ring buffer.359int lastInChrBuf; ///< Last scaled horizontal chroma line from source in the ring buffer.360int lumBufIndex; ///< Index in ring buffer of the last scaled horizontal luma/alpha line from source.361int chrBufIndex; ///< Index in ring buffer of the last scaled horizontal chroma line from source.362//@}363364uint8_t *formatConvBuffer;365366/**367* @name Horizontal and vertical filters.368* To better understand the following fields, here is a pseudo-code of369* their usage in filtering a horizontal line:370* @code371* for (i = 0; i < width; i++) {372* dst[i] = 0;373* for (j = 0; j < filterSize; j++)374* dst[i] += src[ filterPos[i] + j ] * filter[ filterSize * i + j ];375* dst[i] >>= FRAC_BITS; // The actual implementation is fixed-point.376* }377* @endcode378*/379//@{380int16_t *hLumFilter; ///< Array of horizontal filter coefficients for luma/alpha planes.381int16_t *hChrFilter; ///< Array of horizontal filter coefficients for chroma planes.382int16_t *vLumFilter; ///< Array of vertical filter coefficients for luma/alpha planes.383int16_t *vChrFilter; ///< Array of vertical filter coefficients for chroma planes.384int32_t *hLumFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.385int32_t *hChrFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for chroma planes.386int32_t *vLumFilterPos; ///< Array of vertical filter starting positions for each dst[i] for luma/alpha planes.387int32_t *vChrFilterPos; ///< Array of vertical filter starting positions for each dst[i] for chroma planes.388int hLumFilterSize; ///< Horizontal filter size for luma/alpha pixels.389int hChrFilterSize; ///< Horizontal filter size for chroma pixels.390int vLumFilterSize; ///< Vertical filter size for luma/alpha pixels.391int vChrFilterSize; ///< Vertical filter size for chroma pixels.392//@}393394int lumMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes.395int chrMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.396uint8_t *lumMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.397uint8_t *chrMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.398399int canMMXEXTBeUsed;400int warned_unuseable_bilinear;401402int dstY; ///< Last destination vertical line output from last slice.403int flags; ///< Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...404void *yuvTable; // pointer to the yuv->rgb table start so it can be freed()405// alignment ensures the offset can be added in a single406// instruction on e.g. ARM407DECLARE_ALIGNED(16, int, table_gV)[256 + 2*YUVRGB_TABLE_HEADROOM];408uint8_t *table_rV[256 + 2*YUVRGB_TABLE_HEADROOM];409uint8_t *table_gU[256 + 2*YUVRGB_TABLE_HEADROOM];410uint8_t *table_bU[256 + 2*YUVRGB_TABLE_HEADROOM];411DECLARE_ALIGNED(16, int32_t, input_rgb2yuv_table)[16+40*4]; // This table can contain both C and SIMD formatted values, the C vales are always at the XY_IDX points412#define RY_IDX 0413#define GY_IDX 1414#define BY_IDX 2415#define RU_IDX 3416#define GU_IDX 4417#define BU_IDX 5418#define RV_IDX 6419#define GV_IDX 7420#define BV_IDX 8421#define RGB2YUV_SHIFT 15422423int *dither_error[4];424425//Colorspace stuff426int contrast, brightness, saturation; // for sws_getColorspaceDetails427int srcColorspaceTable[4];428int dstColorspaceTable[4];429int srcRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (source image).430int dstRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (destination image).431int src0Alpha;432int dst0Alpha;433int srcXYZ;434int dstXYZ;435int src_h_chr_pos;436int dst_h_chr_pos;437int src_v_chr_pos;438int dst_v_chr_pos;439int yuv2rgb_y_offset;440int yuv2rgb_y_coeff;441int yuv2rgb_v2r_coeff;442int yuv2rgb_v2g_coeff;443int yuv2rgb_u2g_coeff;444int yuv2rgb_u2b_coeff;445446#define RED_DITHER "0*8"447#define GREEN_DITHER "1*8"448#define BLUE_DITHER "2*8"449#define Y_COEFF "3*8"450#define VR_COEFF "4*8"451#define UB_COEFF "5*8"452#define VG_COEFF "6*8"453#define UG_COEFF "7*8"454#define Y_OFFSET "8*8"455#define U_OFFSET "9*8"456#define V_OFFSET "10*8"457#define LUM_MMX_FILTER_OFFSET "11*8"458#define CHR_MMX_FILTER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)459#define DSTW_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2"460#define ESP_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+8"461#define VROUNDER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+16"462#define U_TEMP "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+24"463#define V_TEMP "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+32"464#define Y_TEMP "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+40"465#define ALP_MMX_FILTER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+48"466#define UV_OFF_PX "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+48"467#define UV_OFF_BYTE "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+56"468#define DITHER16 "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+64"469#define DITHER32 "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+80"470#define DITHER32_INT (11*8+4*4*MAX_FILTER_SIZE*3+80) // value equal to above, used for checking that the struct hasn't been changed by mistake471472DECLARE_ALIGNED(8, uint64_t, redDither);473DECLARE_ALIGNED(8, uint64_t, greenDither);474DECLARE_ALIGNED(8, uint64_t, blueDither);475476DECLARE_ALIGNED(8, uint64_t, yCoeff);477DECLARE_ALIGNED(8, uint64_t, vrCoeff);478DECLARE_ALIGNED(8, uint64_t, ubCoeff);479DECLARE_ALIGNED(8, uint64_t, vgCoeff);480DECLARE_ALIGNED(8, uint64_t, ugCoeff);481DECLARE_ALIGNED(8, uint64_t, yOffset);482DECLARE_ALIGNED(8, uint64_t, uOffset);483DECLARE_ALIGNED(8, uint64_t, vOffset);484int32_t lumMmxFilter[4 * MAX_FILTER_SIZE];485int32_t chrMmxFilter[4 * MAX_FILTER_SIZE];486int dstW; ///< Width of destination luma/alpha planes.487DECLARE_ALIGNED(8, uint64_t, esp);488DECLARE_ALIGNED(8, uint64_t, vRounder);489DECLARE_ALIGNED(8, uint64_t, u_temp);490DECLARE_ALIGNED(8, uint64_t, v_temp);491DECLARE_ALIGNED(8, uint64_t, y_temp);492int32_t alpMmxFilter[4 * MAX_FILTER_SIZE];493// alignment of these values is not necessary, but merely here494// to maintain the same offset across x8632 and x86-64. Once we495// use proper offset macros in the asm, they can be removed.496DECLARE_ALIGNED(8, ptrdiff_t, uv_off); ///< offset (in pixels) between u and v planes497DECLARE_ALIGNED(8, ptrdiff_t, uv_offx2); ///< offset (in bytes) between u and v planes498DECLARE_ALIGNED(8, uint16_t, dither16)[8];499DECLARE_ALIGNED(8, uint32_t, dither32)[8];500501const uint8_t *chrDither8, *lumDither8;502503#if HAVE_ALTIVEC504vector signed short CY;505vector signed short CRV;506vector signed short CBU;507vector signed short CGU;508vector signed short CGV;509vector signed short OY;510vector unsigned short CSHIFT;511vector signed short *vYCoeffsBank, *vCCoeffsBank;512#endif513514int use_mmx_vfilter;515516/* pre defined color-spaces gamma */517#define XYZ_GAMMA (2.6f)518#define RGB_GAMMA (2.2f)519int16_t *xyzgamma;520int16_t *rgbgamma;521int16_t *xyzgammainv;522int16_t *rgbgammainv;523int16_t xyz2rgb_matrix[3][4];524int16_t rgb2xyz_matrix[3][4];525526/* function pointers for swscale() */527yuv2planar1_fn yuv2plane1;528yuv2planarX_fn yuv2planeX;529yuv2interleavedX_fn yuv2nv12cX;530yuv2packed1_fn yuv2packed1;531yuv2packed2_fn yuv2packed2;532yuv2packedX_fn yuv2packedX;533yuv2anyX_fn yuv2anyX;534535/// Unscaled conversion of luma plane to YV12 for horizontal scaler.536void (*lumToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,537int width, uint32_t *pal);538/// Unscaled conversion of alpha plane to YV12 for horizontal scaler.539void (*alpToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,540int width, uint32_t *pal);541/// Unscaled conversion of chroma planes to YV12 for horizontal scaler.542void (*chrToYV12)(uint8_t *dstU, uint8_t *dstV,543const uint8_t *src1, const uint8_t *src2, const uint8_t *src3,544int width, uint32_t *pal);545546/**547* Functions to read planar input, such as planar RGB, and convert548* internally to Y/UV/A.549*/550/** @{ */551void (*readLumPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv);552void (*readChrPlanar)(uint8_t *dstU, uint8_t *dstV, const uint8_t *src[4],553int width, int32_t *rgb2yuv);554void (*readAlpPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv);555/** @} */556557/**558* Scale one horizontal line of input data using a bilinear filter559* to produce one line of output data. Compared to SwsContext->hScale(),560* please take note of the following caveats when using these:561* - Scaling is done using only 7bit instead of 14bit coefficients.562* - You can use no more than 5 input pixels to produce 4 output563* pixels. Therefore, this filter should not be used for downscaling564* by more than ~20% in width (because that equals more than 5/4th565* downscaling and thus more than 5 pixels input per 4 pixels output).566* - In general, bilinear filters create artifacts during downscaling567* (even when <20%), because one output pixel will span more than one568* input pixel, and thus some pixels will need edges of both neighbor569* pixels to interpolate the output pixel. Since you can use at most570* two input pixels per output pixel in bilinear scaling, this is571* impossible and thus downscaling by any size will create artifacts.572* To enable this type of scaling, set SWS_FLAG_FAST_BILINEAR573* in SwsContext->flags.574*/575/** @{ */576void (*hyscale_fast)(struct SwsContext *c,577int16_t *dst, int dstWidth,578const uint8_t *src, int srcW, int xInc);579void (*hcscale_fast)(struct SwsContext *c,580int16_t *dst1, int16_t *dst2, int dstWidth,581const uint8_t *src1, const uint8_t *src2,582int srcW, int xInc);583/** @} */584585/**586* Scale one horizontal line of input data using a filter over the input587* lines, to produce one (differently sized) line of output data.588*589* @param dst pointer to destination buffer for horizontally scaled590* data. If the number of bits per component of one591* destination pixel (SwsContext->dstBpc) is <= 10, data592* will be 15bpc in 16bits (int16_t) width. Else (i.e.593* SwsContext->dstBpc == 16), data will be 19bpc in594* 32bits (int32_t) width.595* @param dstW width of destination image596* @param src pointer to source data to be scaled. If the number of597* bits per component of a source pixel (SwsContext->srcBpc)598* is 8, this is 8bpc in 8bits (uint8_t) width. Else599* (i.e. SwsContext->dstBpc > 8), this is native depth600* in 16bits (uint16_t) width. In other words, for 9-bit601* YUV input, this is 9bpc, for 10-bit YUV input, this is602* 10bpc, and for 16-bit RGB or YUV, this is 16bpc.603* @param filter filter coefficients to be used per output pixel for604* scaling. This contains 14bpp filtering coefficients.605* Guaranteed to contain dstW * filterSize entries.606* @param filterPos position of the first input pixel to be used for607* each output pixel during scaling. Guaranteed to608* contain dstW entries.609* @param filterSize the number of input coefficients to be used (and610* thus the number of input pixels to be used) for611* creating a single output pixel. Is aligned to 4612* (and input coefficients thus padded with zeroes)613* to simplify creating SIMD code.614*/615/** @{ */616void (*hyScale)(struct SwsContext *c, int16_t *dst, int dstW,617const uint8_t *src, const int16_t *filter,618const int32_t *filterPos, int filterSize);619void (*hcScale)(struct SwsContext *c, int16_t *dst, int dstW,620const uint8_t *src, const int16_t *filter,621const int32_t *filterPos, int filterSize);622/** @} */623624/// Color range conversion function for luma plane if needed.625void (*lumConvertRange)(int16_t *dst, int width);626/// Color range conversion function for chroma planes if needed.627void (*chrConvertRange)(int16_t *dst1, int16_t *dst2, int width);628629int needs_hcscale; ///< Set if there are chroma planes to be converted.630631SwsDither dither;632633SwsAlphaBlend alphablend;634} SwsContext;635//FIXME check init (where 0)636637SwsFunc ff_yuv2rgb_get_func_ptr(SwsContext *c);638int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4],639int fullRange, int brightness,640int contrast, int saturation);641void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4],642int brightness, int contrast, int saturation);643644void ff_updateMMXDitherTables(SwsContext *c, int dstY, int lumBufIndex, int chrBufIndex,645int lastInLumBuf, int lastInChrBuf);646647av_cold void ff_sws_init_range_convert(SwsContext *c);648649SwsFunc ff_yuv2rgb_init_x86(SwsContext *c);650SwsFunc ff_yuv2rgb_init_ppc(SwsContext *c);651652static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)653{654const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);655av_assert0(desc);656return desc->comp[0].depth == 16;657}658659static av_always_inline int is9_OR_10BPS(enum AVPixelFormat pix_fmt)660{661const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);662av_assert0(desc);663return desc->comp[0].depth >= 9 && desc->comp[0].depth <= 14;664}665666#define isNBPS(x) is9_OR_10BPS(x)667668static av_always_inline int isBE(enum AVPixelFormat pix_fmt)669{670const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);671av_assert0(desc);672return desc->flags & AV_PIX_FMT_FLAG_BE;673}674675static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)676{677const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);678av_assert0(desc);679return !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2;680}681682static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt)683{684const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);685av_assert0(desc);686return ((desc->flags & AV_PIX_FMT_FLAG_PLANAR) && isYUV(pix_fmt));687}688689static av_always_inline int isRGB(enum AVPixelFormat pix_fmt)690{691const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);692av_assert0(desc);693return (desc->flags & AV_PIX_FMT_FLAG_RGB);694}695696#if 0 // FIXME697#define isGray(x) \698(!(av_pix_fmt_desc_get(x)->flags & AV_PIX_FMT_FLAG_PAL) && \699av_pix_fmt_desc_get(x)->nb_components <= 2)700#else701#define isGray(x) \702((x) == AV_PIX_FMT_GRAY8 || \703(x) == AV_PIX_FMT_YA8 || \704(x) == AV_PIX_FMT_GRAY16BE || \705(x) == AV_PIX_FMT_GRAY16LE || \706(x) == AV_PIX_FMT_YA16BE || \707(x) == AV_PIX_FMT_YA16LE)708#endif709710#define isRGBinInt(x) \711( \712(x) == AV_PIX_FMT_RGB48BE || \713(x) == AV_PIX_FMT_RGB48LE || \714(x) == AV_PIX_FMT_RGB32 || \715(x) == AV_PIX_FMT_RGB32_1 || \716(x) == AV_PIX_FMT_RGB24 || \717(x) == AV_PIX_FMT_RGB565BE || \718(x) == AV_PIX_FMT_RGB565LE || \719(x) == AV_PIX_FMT_RGB555BE || \720(x) == AV_PIX_FMT_RGB555LE || \721(x) == AV_PIX_FMT_RGB444BE || \722(x) == AV_PIX_FMT_RGB444LE || \723(x) == AV_PIX_FMT_RGB8 || \724(x) == AV_PIX_FMT_RGB4 || \725(x) == AV_PIX_FMT_RGB4_BYTE || \726(x) == AV_PIX_FMT_RGBA64BE || \727(x) == AV_PIX_FMT_RGBA64LE || \728(x) == AV_PIX_FMT_MONOBLACK || \729(x) == AV_PIX_FMT_MONOWHITE \730)731#define isBGRinInt(x) \732( \733(x) == AV_PIX_FMT_BGR48BE || \734(x) == AV_PIX_FMT_BGR48LE || \735(x) == AV_PIX_FMT_BGR32 || \736(x) == AV_PIX_FMT_BGR32_1 || \737(x) == AV_PIX_FMT_BGR24 || \738(x) == AV_PIX_FMT_BGR565BE || \739(x) == AV_PIX_FMT_BGR565LE || \740(x) == AV_PIX_FMT_BGR555BE || \741(x) == AV_PIX_FMT_BGR555LE || \742(x) == AV_PIX_FMT_BGR444BE || \743(x) == AV_PIX_FMT_BGR444LE || \744(x) == AV_PIX_FMT_BGR8 || \745(x) == AV_PIX_FMT_BGR4 || \746(x) == AV_PIX_FMT_BGR4_BYTE || \747(x) == AV_PIX_FMT_BGRA64BE || \748(x) == AV_PIX_FMT_BGRA64LE || \749(x) == AV_PIX_FMT_MONOBLACK || \750(x) == AV_PIX_FMT_MONOWHITE \751)752753#define isRGBinBytes(x) ( \754(x) == AV_PIX_FMT_RGB48BE \755|| (x) == AV_PIX_FMT_RGB48LE \756|| (x) == AV_PIX_FMT_RGBA64BE \757|| (x) == AV_PIX_FMT_RGBA64LE \758|| (x) == AV_PIX_FMT_RGBA \759|| (x) == AV_PIX_FMT_ARGB \760|| (x) == AV_PIX_FMT_RGB24 \761)762#define isBGRinBytes(x) ( \763(x) == AV_PIX_FMT_BGR48BE \764|| (x) == AV_PIX_FMT_BGR48LE \765|| (x) == AV_PIX_FMT_BGRA64BE \766|| (x) == AV_PIX_FMT_BGRA64LE \767|| (x) == AV_PIX_FMT_BGRA \768|| (x) == AV_PIX_FMT_ABGR \769|| (x) == AV_PIX_FMT_BGR24 \770)771772#define isBayer(x) ( \773(x)==AV_PIX_FMT_BAYER_BGGR8 \774|| (x)==AV_PIX_FMT_BAYER_BGGR16LE \775|| (x)==AV_PIX_FMT_BAYER_BGGR16BE \776|| (x)==AV_PIX_FMT_BAYER_RGGB8 \777|| (x)==AV_PIX_FMT_BAYER_RGGB16LE \778|| (x)==AV_PIX_FMT_BAYER_RGGB16BE \779|| (x)==AV_PIX_FMT_BAYER_GBRG8 \780|| (x)==AV_PIX_FMT_BAYER_GBRG16LE \781|| (x)==AV_PIX_FMT_BAYER_GBRG16BE \782|| (x)==AV_PIX_FMT_BAYER_GRBG8 \783|| (x)==AV_PIX_FMT_BAYER_GRBG16LE \784|| (x)==AV_PIX_FMT_BAYER_GRBG16BE \785)786787#define isAnyRGB(x) \788( \789isBayer(x) || \790isRGBinInt(x) || \791isBGRinInt(x) || \792isRGB(x) \793)794795static av_always_inline int isALPHA(enum AVPixelFormat pix_fmt)796{797const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);798av_assert0(desc);799if (pix_fmt == AV_PIX_FMT_PAL8)800return 1;801return desc->flags & AV_PIX_FMT_FLAG_ALPHA;802}803804#if 1805#define isPacked(x) ( \806(x)==AV_PIX_FMT_PAL8 \807|| (x)==AV_PIX_FMT_YUYV422 \808|| (x)==AV_PIX_FMT_YVYU422 \809|| (x)==AV_PIX_FMT_UYVY422 \810|| (x)==AV_PIX_FMT_YA8 \811|| (x)==AV_PIX_FMT_YA16LE \812|| (x)==AV_PIX_FMT_YA16BE \813|| (x)==AV_PIX_FMT_AYUV64LE \814|| (x)==AV_PIX_FMT_AYUV64BE \815|| isRGBinInt(x) \816|| isBGRinInt(x) \817)818#else819static av_always_inline int isPacked(enum AVPixelFormat pix_fmt)820{821const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);822av_assert0(desc);823return ((desc->nb_components >= 2 && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR)) ||824pix_fmt == AV_PIX_FMT_PAL8);825}826827#endif828static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt)829{830const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);831av_assert0(desc);832return (desc->nb_components >= 2 && (desc->flags & AV_PIX_FMT_FLAG_PLANAR));833}834835static av_always_inline int isPackedRGB(enum AVPixelFormat pix_fmt)836{837const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);838av_assert0(desc);839return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) == AV_PIX_FMT_FLAG_RGB);840}841842static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)843{844const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);845av_assert0(desc);846return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) ==847(AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB));848}849850static av_always_inline int usePal(enum AVPixelFormat pix_fmt)851{852const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);853av_assert0(desc);854return (desc->flags & AV_PIX_FMT_FLAG_PAL) || (desc->flags & AV_PIX_FMT_FLAG_PSEUDOPAL);855}856857extern const uint64_t ff_dither4[2];858extern const uint64_t ff_dither8[2];859860extern const uint8_t ff_dither_2x2_4[3][8];861extern const uint8_t ff_dither_2x2_8[3][8];862extern const uint8_t ff_dither_4x4_16[5][8];863extern const uint8_t ff_dither_8x8_32[9][8];864extern const uint8_t ff_dither_8x8_73[9][8];865extern const uint8_t ff_dither_8x8_128[9][8];866extern const uint8_t ff_dither_8x8_220[9][8];867868extern const int32_t ff_yuv2rgb_coeffs[8][4];869870extern const AVClass ff_sws_context_class;871872/**873* Set c->swscale to an unscaled converter if one exists for the specific874* source and destination formats, bit depths, flags, etc.875*/876void ff_get_unscaled_swscale(SwsContext *c);877void ff_get_unscaled_swscale_ppc(SwsContext *c);878void ff_get_unscaled_swscale_arm(SwsContext *c);879880/**881* Return function pointer to fastest main scaler path function depending882* on architecture and available optimizations.883*/884SwsFunc ff_getSwsFunc(SwsContext *c);885886void ff_sws_init_input_funcs(SwsContext *c);887void ff_sws_init_output_funcs(SwsContext *c,888yuv2planar1_fn *yuv2plane1,889yuv2planarX_fn *yuv2planeX,890yuv2interleavedX_fn *yuv2nv12cX,891yuv2packed1_fn *yuv2packed1,892yuv2packed2_fn *yuv2packed2,893yuv2packedX_fn *yuv2packedX,894yuv2anyX_fn *yuv2anyX);895void ff_sws_init_swscale_ppc(SwsContext *c);896void ff_sws_init_swscale_x86(SwsContext *c);897898void ff_hyscale_fast_c(SwsContext *c, int16_t *dst, int dstWidth,899const uint8_t *src, int srcW, int xInc);900void ff_hcscale_fast_c(SwsContext *c, int16_t *dst1, int16_t *dst2,901int dstWidth, const uint8_t *src1,902const uint8_t *src2, int srcW, int xInc);903int ff_init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,904int16_t *filter, int32_t *filterPos,905int numSplits);906void ff_hyscale_fast_mmxext(SwsContext *c, int16_t *dst,907int dstWidth, const uint8_t *src,908int srcW, int xInc);909void ff_hcscale_fast_mmxext(SwsContext *c, int16_t *dst1, int16_t *dst2,910int dstWidth, const uint8_t *src1,911const uint8_t *src2, int srcW, int xInc);912913/**914* Allocate and return an SwsContext.915* This is like sws_getContext() but does not perform the init step, allowing916* the user to set additional AVOptions.917*918* @see sws_getContext()919*/920struct SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,921int dstW, int dstH, enum AVPixelFormat dstFormat,922int flags, const double *param);923924int ff_sws_alphablendaway(SwsContext *c, const uint8_t *src[],925int srcStride[], int srcSliceY, int srcSliceH,926uint8_t *dst[], int dstStride[]);927928static inline void fillPlane16(uint8_t *plane, int stride, int width, int height, int y,929int alpha, int bits, const int big_endian)930{931int i, j;932uint8_t *ptr = plane + stride * y;933int v = alpha ? 0xFFFF>>(16-bits) : (1<<(bits-1));934for (i = 0; i < height; i++) {935#define FILL(wfunc) \936for (j = 0; j < width; j++) {\937wfunc(ptr+2*j, v);\938}939if (big_endian) {940FILL(AV_WB16);941} else {942FILL(AV_WL16);943}944ptr += stride;945}946}947948#define MAX_SLICE_PLANES 4949950/// Slice plane951typedef struct SwsPlane952{953int available_lines; ///< max number of lines that can be hold by this plane954int sliceY; ///< index of first line955int sliceH; ///< number of lines956uint8_t **line; ///< line buffer957uint8_t **tmp; ///< Tmp line buffer used by mmx code958} SwsPlane;959960/**961* Struct which defines a slice of an image to be scaled or a output for962* a scaled slice.963* A slice can also be used as intermediate ring buffer for scaling steps.964*/965typedef struct SwsSlice966{967int width; ///< Slice line width968int h_chr_sub_sample; ///< horizontal chroma subsampling factor969int v_chr_sub_sample; ///< vertical chroma subsampling factor970int is_ring; ///< flag to identify if this slice is a ring buffer971int should_free_lines; ///< flag to identify if there are dynamic allocated lines972enum AVPixelFormat fmt; ///< planes pixel format973SwsPlane plane[MAX_SLICE_PLANES]; ///< color planes974} SwsSlice;975976/**977* Struct which holds all necessary data for processing a slice.978* A processing step can be a color conversion or horizontal/vertical scaling.979*/980typedef struct SwsFilterDescriptor981{982SwsSlice *src; ///< Source slice983SwsSlice *dst; ///< Output slice984985int alpha; ///< Flag for processing alpha channel986void *instance; ///< Filter instance data987988/// Function for processing input slice sliceH lines starting from line sliceY989int (*process)(SwsContext *c, struct SwsFilterDescriptor *desc, int sliceY, int sliceH);990} SwsFilterDescriptor;991992// warp input lines in the form (src + width*i + j) to slice format (line[i][j])993// relative=true means first line src[x][0] otherwise first line is src[x][lum/crh Y]994int ff_init_slice_from_src(SwsSlice * s, uint8_t *src[4], int stride[4], int srcW, int lumY, int lumH, int chrY, int chrH, int relative);995996// Initialize scaler filter descriptor chain997int ff_init_filters(SwsContext *c);998999// Free all filter data1000int ff_free_filters(SwsContext *c);10011002/*1003function for applying ring buffer logic into slice s1004It checks if the slice can hold more @lum lines, if yes1005do nothing otherwise remove @lum least used lines.1006It applies the same procedure for @chr lines.1007*/1008int ff_rotate_slice(SwsSlice *s, int lum, int chr);10091010/// initializes gamma conversion descriptor1011int ff_init_gamma_convert(SwsFilterDescriptor *desc, SwsSlice * src, uint16_t *table);10121013/// initializes lum pixel format conversion descriptor1014int ff_init_desc_fmt_convert(SwsFilterDescriptor *desc, SwsSlice * src, SwsSlice *dst, uint32_t *pal);10151016/// initializes lum horizontal scaling descriptor1017int ff_init_desc_hscale(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint16_t *filter, int * filter_pos, int filter_size, int xInc);10181019/// initializes chr pixel format conversion descriptor1020int ff_init_desc_cfmt_convert(SwsFilterDescriptor *desc, SwsSlice * src, SwsSlice *dst, uint32_t *pal);10211022/// initializes chr horizontal scaling descriptor1023int ff_init_desc_chscale(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint16_t *filter, int * filter_pos, int filter_size, int xInc);10241025int ff_init_desc_no_chr(SwsFilterDescriptor *desc, SwsSlice * src, SwsSlice *dst);10261027/// initializes vertical scaling descriptors1028int ff_init_vscale(SwsContext *c, SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst);10291030/// setup vertical scaler functions1031void ff_init_vscale_pfn(SwsContext *c, yuv2planar1_fn yuv2plane1, yuv2planarX_fn yuv2planeX,1032yuv2interleavedX_fn yuv2nv12cX, yuv2packed1_fn yuv2packed1, yuv2packed2_fn yuv2packed2,1033yuv2packedX_fn yuv2packedX, yuv2anyX_fn yuv2anyX, int use_mmx);10341035//number of extra lines to process1036#define MAX_LINES_AHEAD 410371038// enable use of refactored scaler code1039#define NEW_FILTER10401041#endif /* SWSCALE_SWSCALE_INTERNAL_H */104210431044