Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
52868 views
1
/*
2
* Copyright (C) 2001-2003 Michael Niedermayer <[email protected]>
3
*
4
* This file is part of FFmpeg.
5
*
6
* FFmpeg is free software; you can redistribute it and/or
7
* modify it under the terms of the GNU Lesser General Public
8
* License as published by the Free Software Foundation; either
9
* version 2.1 of the License, or (at your option) any later version.
10
*
11
* FFmpeg is distributed in the hope that it will be useful,
12
* but WITHOUT ANY WARRANTY; without even the implied warranty of
13
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14
* Lesser General Public License for more details.
15
*
16
* You should have received a copy of the GNU Lesser General Public
17
* License along with FFmpeg; if not, write to the Free Software
18
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
*/
20
21
#include "config.h"
22
23
#define _DEFAULT_SOURCE
24
#define _SVID_SOURCE // needed for MAP_ANONYMOUS
25
#define _DARWIN_C_SOURCE // needed for MAP_ANON
26
#include <inttypes.h>
27
#include <math.h>
28
#include <stdio.h>
29
#include <string.h>
30
#if HAVE_SYS_MMAN_H
31
#include <sys/mman.h>
32
#if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
33
#define MAP_ANONYMOUS MAP_ANON
34
#endif
35
#endif
36
#if HAVE_VIRTUALALLOC
37
#define WIN32_LEAN_AND_MEAN
38
#include <windows.h>
39
#endif
40
41
#include "libavutil/attributes.h"
42
#include "libavutil/avassert.h"
43
#include "libavutil/avutil.h"
44
#include "libavutil/bswap.h"
45
#include "libavutil/cpu.h"
46
#include "libavutil/imgutils.h"
47
#include "libavutil/intreadwrite.h"
48
#include "libavutil/libm.h"
49
#include "libavutil/mathematics.h"
50
#include "libavutil/opt.h"
51
#include "libavutil/pixdesc.h"
52
#include "libavutil/ppc/cpu.h"
53
#include "libavutil/x86/asm.h"
54
#include "libavutil/x86/cpu.h"
55
#include "rgb2rgb.h"
56
#include "swscale.h"
57
#include "swscale_internal.h"
58
59
static void handle_formats(SwsContext *c);
60
61
unsigned swscale_version(void)
62
{
63
av_assert0(LIBSWSCALE_VERSION_MICRO >= 100);
64
return LIBSWSCALE_VERSION_INT;
65
}
66
67
const char *swscale_configuration(void)
68
{
69
return FFMPEG_CONFIGURATION;
70
}
71
72
const char *swscale_license(void)
73
{
74
#define LICENSE_PREFIX "libswscale license: "
75
return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
76
}
77
78
typedef struct FormatEntry {
79
uint8_t is_supported_in :1;
80
uint8_t is_supported_out :1;
81
uint8_t is_supported_endianness :1;
82
} FormatEntry;
83
84
static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
85
[AV_PIX_FMT_YUV420P] = { 1, 1 },
86
[AV_PIX_FMT_YUYV422] = { 1, 1 },
87
[AV_PIX_FMT_RGB24] = { 1, 1 },
88
[AV_PIX_FMT_BGR24] = { 1, 1 },
89
[AV_PIX_FMT_YUV422P] = { 1, 1 },
90
[AV_PIX_FMT_YUV444P] = { 1, 1 },
91
[AV_PIX_FMT_YUV410P] = { 1, 1 },
92
[AV_PIX_FMT_YUV411P] = { 1, 1 },
93
[AV_PIX_FMT_GRAY8] = { 1, 1 },
94
[AV_PIX_FMT_MONOWHITE] = { 1, 1 },
95
[AV_PIX_FMT_MONOBLACK] = { 1, 1 },
96
[AV_PIX_FMT_PAL8] = { 1, 0 },
97
[AV_PIX_FMT_YUVJ420P] = { 1, 1 },
98
[AV_PIX_FMT_YUVJ411P] = { 1, 1 },
99
[AV_PIX_FMT_YUVJ422P] = { 1, 1 },
100
[AV_PIX_FMT_YUVJ444P] = { 1, 1 },
101
[AV_PIX_FMT_YVYU422] = { 1, 1 },
102
[AV_PIX_FMT_UYVY422] = { 1, 1 },
103
[AV_PIX_FMT_UYYVYY411] = { 0, 0 },
104
[AV_PIX_FMT_BGR8] = { 1, 1 },
105
[AV_PIX_FMT_BGR4] = { 0, 1 },
106
[AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
107
[AV_PIX_FMT_RGB8] = { 1, 1 },
108
[AV_PIX_FMT_RGB4] = { 0, 1 },
109
[AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
110
[AV_PIX_FMT_NV12] = { 1, 1 },
111
[AV_PIX_FMT_NV21] = { 1, 1 },
112
[AV_PIX_FMT_ARGB] = { 1, 1 },
113
[AV_PIX_FMT_RGBA] = { 1, 1 },
114
[AV_PIX_FMT_ABGR] = { 1, 1 },
115
[AV_PIX_FMT_BGRA] = { 1, 1 },
116
[AV_PIX_FMT_0RGB] = { 1, 1 },
117
[AV_PIX_FMT_RGB0] = { 1, 1 },
118
[AV_PIX_FMT_0BGR] = { 1, 1 },
119
[AV_PIX_FMT_BGR0] = { 1, 1 },
120
[AV_PIX_FMT_GRAY16BE] = { 1, 1 },
121
[AV_PIX_FMT_GRAY16LE] = { 1, 1 },
122
[AV_PIX_FMT_YUV440P] = { 1, 1 },
123
[AV_PIX_FMT_YUVJ440P] = { 1, 1 },
124
[AV_PIX_FMT_YUV440P10LE] = { 1, 1 },
125
[AV_PIX_FMT_YUV440P10BE] = { 1, 1 },
126
[AV_PIX_FMT_YUV440P12LE] = { 1, 1 },
127
[AV_PIX_FMT_YUV440P12BE] = { 1, 1 },
128
[AV_PIX_FMT_YUVA420P] = { 1, 1 },
129
[AV_PIX_FMT_YUVA422P] = { 1, 1 },
130
[AV_PIX_FMT_YUVA444P] = { 1, 1 },
131
[AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
132
[AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
133
[AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
134
[AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
135
[AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
136
[AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
137
[AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
138
[AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
139
[AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
140
[AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
141
[AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
142
[AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
143
[AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
144
[AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
145
[AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
146
[AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
147
[AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
148
[AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
149
[AV_PIX_FMT_RGB48BE] = { 1, 1 },
150
[AV_PIX_FMT_RGB48LE] = { 1, 1 },
151
[AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
152
[AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
153
[AV_PIX_FMT_RGB565BE] = { 1, 1 },
154
[AV_PIX_FMT_RGB565LE] = { 1, 1 },
155
[AV_PIX_FMT_RGB555BE] = { 1, 1 },
156
[AV_PIX_FMT_RGB555LE] = { 1, 1 },
157
[AV_PIX_FMT_BGR565BE] = { 1, 1 },
158
[AV_PIX_FMT_BGR565LE] = { 1, 1 },
159
[AV_PIX_FMT_BGR555BE] = { 1, 1 },
160
[AV_PIX_FMT_BGR555LE] = { 1, 1 },
161
[AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
162
[AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
163
[AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
164
[AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
165
[AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
166
[AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
167
[AV_PIX_FMT_RGB444LE] = { 1, 1 },
168
[AV_PIX_FMT_RGB444BE] = { 1, 1 },
169
[AV_PIX_FMT_BGR444LE] = { 1, 1 },
170
[AV_PIX_FMT_BGR444BE] = { 1, 1 },
171
[AV_PIX_FMT_YA8] = { 1, 1 },
172
[AV_PIX_FMT_YA16BE] = { 1, 0 },
173
[AV_PIX_FMT_YA16LE] = { 1, 0 },
174
[AV_PIX_FMT_BGR48BE] = { 1, 1 },
175
[AV_PIX_FMT_BGR48LE] = { 1, 1 },
176
[AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
177
[AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
178
[AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
179
[AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
180
[AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
181
[AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
182
[AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
183
[AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
184
[AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
185
[AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
186
[AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
187
[AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
188
[AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
189
[AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
190
[AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
191
[AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
192
[AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
193
[AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
194
[AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
195
[AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
196
[AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
197
[AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
198
[AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
199
[AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
200
[AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
201
[AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
202
[AV_PIX_FMT_GBRP] = { 1, 1 },
203
[AV_PIX_FMT_GBRP9LE] = { 1, 1 },
204
[AV_PIX_FMT_GBRP9BE] = { 1, 1 },
205
[AV_PIX_FMT_GBRP10LE] = { 1, 1 },
206
[AV_PIX_FMT_GBRP10BE] = { 1, 1 },
207
[AV_PIX_FMT_GBRP12LE] = { 1, 1 },
208
[AV_PIX_FMT_GBRP12BE] = { 1, 1 },
209
[AV_PIX_FMT_GBRP14LE] = { 1, 1 },
210
[AV_PIX_FMT_GBRP14BE] = { 1, 1 },
211
[AV_PIX_FMT_GBRP16LE] = { 1, 0 },
212
[AV_PIX_FMT_GBRP16BE] = { 1, 0 },
213
[AV_PIX_FMT_GBRAP] = { 1, 1 },
214
[AV_PIX_FMT_GBRAP16LE] = { 1, 0 },
215
[AV_PIX_FMT_GBRAP16BE] = { 1, 0 },
216
[AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
217
[AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
218
[AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
219
[AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
220
[AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
221
[AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
222
[AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
223
[AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
224
[AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
225
[AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
226
[AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
227
[AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
228
[AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
229
[AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
230
[AV_PIX_FMT_AYUV64LE] = { 1, 1},
231
[AV_PIX_FMT_P010LE] = { 1, 0 },
232
[AV_PIX_FMT_P010BE] = { 1, 0 },
233
};
234
235
int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
236
{
237
return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
238
format_entries[pix_fmt].is_supported_in : 0;
239
}
240
241
int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
242
{
243
return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
244
format_entries[pix_fmt].is_supported_out : 0;
245
}
246
247
int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
248
{
249
return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
250
format_entries[pix_fmt].is_supported_endianness : 0;
251
}
252
253
static double getSplineCoeff(double a, double b, double c, double d,
254
double dist)
255
{
256
if (dist <= 1.0)
257
return ((d * dist + c) * dist + b) * dist + a;
258
else
259
return getSplineCoeff(0.0,
260
b + 2.0 * c + 3.0 * d,
261
c + 3.0 * d,
262
-b - 3.0 * c - 6.0 * d,
263
dist - 1.0);
264
}
265
266
static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
267
{
268
if (pos == -1 || pos <= -513) {
269
pos = (128 << chr_subsample) - 128;
270
}
271
pos += 128; // relative to ideal left edge
272
return pos >> chr_subsample;
273
}
274
275
typedef struct {
276
int flag; ///< flag associated to the algorithm
277
const char *description; ///< human-readable description
278
int size_factor; ///< size factor used when initing the filters
279
} ScaleAlgorithm;
280
281
static const ScaleAlgorithm scale_algorithms[] = {
282
{ SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
283
{ SWS_BICUBIC, "bicubic", 4 },
284
{ SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
285
{ SWS_BILINEAR, "bilinear", 2 },
286
{ SWS_FAST_BILINEAR, "fast bilinear", -1 },
287
{ SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
288
{ SWS_LANCZOS, "Lanczos", -1 /* custom */ },
289
{ SWS_POINT, "nearest neighbor / point", -1 },
290
{ SWS_SINC, "sinc", 20 /* infinite ;) */ },
291
{ SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
292
{ SWS_X, "experimental", 8 },
293
};
294
295
static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
296
int *outFilterSize, int xInc, int srcW,
297
int dstW, int filterAlign, int one,
298
int flags, int cpu_flags,
299
SwsVector *srcFilter, SwsVector *dstFilter,
300
double param[2], int srcPos, int dstPos)
301
{
302
int i;
303
int filterSize;
304
int filter2Size;
305
int minFilterSize;
306
int64_t *filter = NULL;
307
int64_t *filter2 = NULL;
308
const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
309
int ret = -1;
310
311
emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
312
313
// NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
314
FF_ALLOC_ARRAY_OR_GOTO(NULL, *filterPos, (dstW + 3), sizeof(**filterPos), fail);
315
316
if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
317
int i;
318
filterSize = 1;
319
FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter,
320
dstW, sizeof(*filter) * filterSize, fail);
321
322
for (i = 0; i < dstW; i++) {
323
filter[i * filterSize] = fone;
324
(*filterPos)[i] = i;
325
}
326
} else if (flags & SWS_POINT) { // lame looking point sampling mode
327
int i;
328
int64_t xDstInSrc;
329
filterSize = 1;
330
FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
331
dstW, sizeof(*filter) * filterSize, fail);
332
333
xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
334
for (i = 0; i < dstW; i++) {
335
int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
336
337
(*filterPos)[i] = xx;
338
filter[i] = fone;
339
xDstInSrc += xInc;
340
}
341
} else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
342
(flags & SWS_FAST_BILINEAR)) { // bilinear upscale
343
int i;
344
int64_t xDstInSrc;
345
filterSize = 2;
346
FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
347
dstW, sizeof(*filter) * filterSize, fail);
348
349
xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
350
for (i = 0; i < dstW; i++) {
351
int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
352
int j;
353
354
(*filterPos)[i] = xx;
355
// bilinear upscale / linear interpolate / area averaging
356
for (j = 0; j < filterSize; j++) {
357
int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
358
if (coeff < 0)
359
coeff = 0;
360
filter[i * filterSize + j] = coeff;
361
xx++;
362
}
363
xDstInSrc += xInc;
364
}
365
} else {
366
int64_t xDstInSrc;
367
int sizeFactor = -1;
368
369
for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
370
if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
371
sizeFactor = scale_algorithms[i].size_factor;
372
break;
373
}
374
}
375
if (flags & SWS_LANCZOS)
376
sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
377
av_assert0(sizeFactor > 0);
378
379
if (xInc <= 1 << 16)
380
filterSize = 1 + sizeFactor; // upscale
381
else
382
filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
383
384
filterSize = FFMIN(filterSize, srcW - 2);
385
filterSize = FFMAX(filterSize, 1);
386
387
FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
388
dstW, sizeof(*filter) * filterSize, fail);
389
390
xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
391
for (i = 0; i < dstW; i++) {
392
int xx = (xDstInSrc - (filterSize - 2) * (1LL<<16)) / (1 << 17);
393
int j;
394
(*filterPos)[i] = xx;
395
for (j = 0; j < filterSize; j++) {
396
int64_t d = (FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
397
double floatd;
398
int64_t coeff;
399
400
if (xInc > 1 << 16)
401
d = d * dstW / srcW;
402
floatd = d * (1.0 / (1 << 30));
403
404
if (flags & SWS_BICUBIC) {
405
int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
406
int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
407
408
if (d >= 1LL << 31) {
409
coeff = 0.0;
410
} else {
411
int64_t dd = (d * d) >> 30;
412
int64_t ddd = (dd * d) >> 30;
413
414
if (d < 1LL << 30)
415
coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
416
(-18 * (1 << 24) + 12 * B + 6 * C) * dd +
417
(6 * (1 << 24) - 2 * B) * (1 << 30);
418
else
419
coeff = (-B - 6 * C) * ddd +
420
(6 * B + 30 * C) * dd +
421
(-12 * B - 48 * C) * d +
422
(8 * B + 24 * C) * (1 << 30);
423
}
424
coeff /= (1LL<<54)/fone;
425
}
426
#if 0
427
else if (flags & SWS_X) {
428
double p = param ? param * 0.01 : 0.3;
429
coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
430
coeff *= pow(2.0, -p * d * d);
431
}
432
#endif
433
else if (flags & SWS_X) {
434
double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
435
double c;
436
437
if (floatd < 1.0)
438
c = cos(floatd * M_PI);
439
else
440
c = -1.0;
441
if (c < 0.0)
442
c = -pow(-c, A);
443
else
444
c = pow(c, A);
445
coeff = (c * 0.5 + 0.5) * fone;
446
} else if (flags & SWS_AREA) {
447
int64_t d2 = d - (1 << 29);
448
if (d2 * xInc < -(1LL << (29 + 16)))
449
coeff = 1.0 * (1LL << (30 + 16));
450
else if (d2 * xInc < (1LL << (29 + 16)))
451
coeff = -d2 * xInc + (1LL << (29 + 16));
452
else
453
coeff = 0.0;
454
coeff *= fone >> (30 + 16);
455
} else if (flags & SWS_GAUSS) {
456
double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
457
coeff = exp2(-p * floatd * floatd) * fone;
458
} else if (flags & SWS_SINC) {
459
coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
460
} else if (flags & SWS_LANCZOS) {
461
double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
462
coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
463
(floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
464
if (floatd > p)
465
coeff = 0;
466
} else if (flags & SWS_BILINEAR) {
467
coeff = (1 << 30) - d;
468
if (coeff < 0)
469
coeff = 0;
470
coeff *= fone >> 30;
471
} else if (flags & SWS_SPLINE) {
472
double p = -2.196152422706632;
473
coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
474
} else {
475
av_assert0(0);
476
}
477
478
filter[i * filterSize + j] = coeff;
479
xx++;
480
}
481
xDstInSrc += 2 * xInc;
482
}
483
}
484
485
/* apply src & dst Filter to filter -> filter2
486
* av_free(filter);
487
*/
488
av_assert0(filterSize > 0);
489
filter2Size = filterSize;
490
if (srcFilter)
491
filter2Size += srcFilter->length - 1;
492
if (dstFilter)
493
filter2Size += dstFilter->length - 1;
494
av_assert0(filter2Size > 0);
495
FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter2, dstW, filter2Size * sizeof(*filter2), fail);
496
497
for (i = 0; i < dstW; i++) {
498
int j, k;
499
500
if (srcFilter) {
501
for (k = 0; k < srcFilter->length; k++) {
502
for (j = 0; j < filterSize; j++)
503
filter2[i * filter2Size + k + j] +=
504
srcFilter->coeff[k] * filter[i * filterSize + j];
505
}
506
} else {
507
for (j = 0; j < filterSize; j++)
508
filter2[i * filter2Size + j] = filter[i * filterSize + j];
509
}
510
// FIXME dstFilter
511
512
(*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
513
}
514
av_freep(&filter);
515
516
/* try to reduce the filter-size (step1 find size and shift left) */
517
// Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
518
minFilterSize = 0;
519
for (i = dstW - 1; i >= 0; i--) {
520
int min = filter2Size;
521
int j;
522
int64_t cutOff = 0.0;
523
524
/* get rid of near zero elements on the left by shifting left */
525
for (j = 0; j < filter2Size; j++) {
526
int k;
527
cutOff += FFABS(filter2[i * filter2Size]);
528
529
if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
530
break;
531
532
/* preserve monotonicity because the core can't handle the
533
* filter otherwise */
534
if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
535
break;
536
537
// move filter coefficients left
538
for (k = 1; k < filter2Size; k++)
539
filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
540
filter2[i * filter2Size + k - 1] = 0;
541
(*filterPos)[i]++;
542
}
543
544
cutOff = 0;
545
/* count near zeros on the right */
546
for (j = filter2Size - 1; j > 0; j--) {
547
cutOff += FFABS(filter2[i * filter2Size + j]);
548
549
if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
550
break;
551
min--;
552
}
553
554
if (min > minFilterSize)
555
minFilterSize = min;
556
}
557
558
if (PPC_ALTIVEC(cpu_flags)) {
559
// we can handle the special case 4, so we don't want to go the full 8
560
if (minFilterSize < 5)
561
filterAlign = 4;
562
563
/* We really don't want to waste our time doing useless computation, so
564
* fall back on the scalar C code for very small filters.
565
* Vectorizing is worth it only if you have a decent-sized vector. */
566
if (minFilterSize < 3)
567
filterAlign = 1;
568
}
569
570
if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
571
// special case for unscaled vertical filtering
572
if (minFilterSize == 1 && filterAlign == 2)
573
filterAlign = 1;
574
}
575
576
av_assert0(minFilterSize > 0);
577
filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
578
av_assert0(filterSize > 0);
579
filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
580
if (!filter)
581
goto fail;
582
if (filterSize >= MAX_FILTER_SIZE * 16 /
583
((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
584
ret = RETCODE_USE_CASCADE;
585
goto fail;
586
}
587
*outFilterSize = filterSize;
588
589
if (flags & SWS_PRINT_INFO)
590
av_log(NULL, AV_LOG_VERBOSE,
591
"SwScaler: reducing / aligning filtersize %d -> %d\n",
592
filter2Size, filterSize);
593
/* try to reduce the filter-size (step2 reduce it) */
594
for (i = 0; i < dstW; i++) {
595
int j;
596
597
for (j = 0; j < filterSize; j++) {
598
if (j >= filter2Size)
599
filter[i * filterSize + j] = 0;
600
else
601
filter[i * filterSize + j] = filter2[i * filter2Size + j];
602
if ((flags & SWS_BITEXACT) && j >= minFilterSize)
603
filter[i * filterSize + j] = 0;
604
}
605
}
606
607
// FIXME try to align filterPos if possible
608
609
// fix borders
610
for (i = 0; i < dstW; i++) {
611
int j;
612
if ((*filterPos)[i] < 0) {
613
// move filter coefficients left to compensate for filterPos
614
for (j = 1; j < filterSize; j++) {
615
int left = FFMAX(j + (*filterPos)[i], 0);
616
filter[i * filterSize + left] += filter[i * filterSize + j];
617
filter[i * filterSize + j] = 0;
618
}
619
(*filterPos)[i]= 0;
620
}
621
622
if ((*filterPos)[i] + filterSize > srcW) {
623
int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
624
int64_t acc = 0;
625
626
for (j = filterSize - 1; j >= 0; j--) {
627
if ((*filterPos)[i] + j >= srcW) {
628
acc += filter[i * filterSize + j];
629
filter[i * filterSize + j] = 0;
630
}
631
}
632
for (j = filterSize - 1; j >= 0; j--) {
633
if (j < shift) {
634
filter[i * filterSize + j] = 0;
635
} else {
636
filter[i * filterSize + j] = filter[i * filterSize + j - shift];
637
}
638
}
639
640
(*filterPos)[i]-= shift;
641
filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
642
}
643
av_assert0((*filterPos)[i] >= 0);
644
av_assert0((*filterPos)[i] < srcW);
645
if ((*filterPos)[i] + filterSize > srcW) {
646
for (j = 0; j < filterSize; j++) {
647
av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
648
}
649
}
650
}
651
652
// Note the +1 is for the MMX scaler which reads over the end
653
/* align at 16 for AltiVec (needed by hScale_altivec_real) */
654
FF_ALLOCZ_ARRAY_OR_GOTO(NULL, *outFilter,
655
(dstW + 3), *outFilterSize * sizeof(int16_t), fail);
656
657
/* normalize & store in outFilter */
658
for (i = 0; i < dstW; i++) {
659
int j;
660
int64_t error = 0;
661
int64_t sum = 0;
662
663
for (j = 0; j < filterSize; j++) {
664
sum += filter[i * filterSize + j];
665
}
666
sum = (sum + one / 2) / one;
667
if (!sum) {
668
av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
669
sum = 1;
670
}
671
for (j = 0; j < *outFilterSize; j++) {
672
int64_t v = filter[i * filterSize + j] + error;
673
int intV = ROUNDED_DIV(v, sum);
674
(*outFilter)[i * (*outFilterSize) + j] = intV;
675
error = v - intV * sum;
676
}
677
}
678
679
(*filterPos)[dstW + 0] =
680
(*filterPos)[dstW + 1] =
681
(*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
682
* read over the end */
683
for (i = 0; i < *outFilterSize; i++) {
684
int k = (dstW - 1) * (*outFilterSize) + i;
685
(*outFilter)[k + 1 * (*outFilterSize)] =
686
(*outFilter)[k + 2 * (*outFilterSize)] =
687
(*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
688
}
689
690
ret = 0;
691
692
fail:
693
if(ret < 0)
694
av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
695
av_free(filter);
696
av_free(filter2);
697
return ret;
698
}
699
700
static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
701
{
702
int64_t W, V, Z, Cy, Cu, Cv;
703
int64_t vr = table[0];
704
int64_t ub = table[1];
705
int64_t ug = -table[2];
706
int64_t vg = -table[3];
707
int64_t ONE = 65536;
708
int64_t cy = ONE;
709
uint8_t *p = (uint8_t*)c->input_rgb2yuv_table;
710
int i;
711
static const int8_t map[] = {
712
BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
713
RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
714
RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
715
BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
716
BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
717
RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
718
RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
719
BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
720
BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
721
RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
722
RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
723
BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
724
RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX,
725
BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX,
726
GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
727
-1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
728
RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX,
729
BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX,
730
GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
731
-1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
732
RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX,
733
BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX,
734
GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
735
-1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
736
-1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
737
-1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
738
-1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
739
-1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
740
-1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
741
-1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
742
-1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
743
-1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
744
BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
745
BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
746
BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
747
};
748
749
dstRange = 0; //FIXME range = 1 is handled elsewhere
750
751
if (!dstRange) {
752
cy = cy * 255 / 219;
753
} else {
754
vr = vr * 224 / 255;
755
ub = ub * 224 / 255;
756
ug = ug * 224 / 255;
757
vg = vg * 224 / 255;
758
}
759
W = ROUNDED_DIV(ONE*ONE*ug, ub);
760
V = ROUNDED_DIV(ONE*ONE*vg, vr);
761
Z = ONE*ONE-W-V;
762
763
Cy = ROUNDED_DIV(cy*Z, ONE);
764
Cu = ROUNDED_DIV(ub*Z, ONE);
765
Cv = ROUNDED_DIV(vr*Z, ONE);
766
767
c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
768
c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
769
c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
770
771
c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
772
c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
773
c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
774
775
c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
776
c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
777
c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
778
779
if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
780
c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
781
c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
782
c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
783
c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
784
c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
785
c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
786
c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
787
c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
788
c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
789
}
790
for(i=0; i<FF_ARRAY_ELEMS(map); i++)
791
AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
792
}
793
794
static void fill_xyztables(struct SwsContext *c)
795
{
796
int i;
797
double xyzgamma = XYZ_GAMMA;
798
double rgbgamma = 1.0 / RGB_GAMMA;
799
double xyzgammainv = 1.0 / XYZ_GAMMA;
800
double rgbgammainv = RGB_GAMMA;
801
static const int16_t xyz2rgb_matrix[3][4] = {
802
{13270, -6295, -2041},
803
{-3969, 7682, 170},
804
{ 228, -835, 4329} };
805
static const int16_t rgb2xyz_matrix[3][4] = {
806
{1689, 1464, 739},
807
{ 871, 2929, 296},
808
{ 79, 488, 3891} };
809
static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
810
811
memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
812
memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
813
c->xyzgamma = xyzgamma_tab;
814
c->rgbgamma = rgbgamma_tab;
815
c->xyzgammainv = xyzgammainv_tab;
816
c->rgbgammainv = rgbgammainv_tab;
817
818
if (rgbgamma_tab[4095])
819
return;
820
821
/* set gamma vectors */
822
for (i = 0; i < 4096; i++) {
823
xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
824
rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
825
xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
826
rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
827
}
828
}
829
830
int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
831
int srcRange, const int table[4], int dstRange,
832
int brightness, int contrast, int saturation)
833
{
834
const AVPixFmtDescriptor *desc_dst;
835
const AVPixFmtDescriptor *desc_src;
836
int need_reinit = 0;
837
838
handle_formats(c);
839
desc_dst = av_pix_fmt_desc_get(c->dstFormat);
840
desc_src = av_pix_fmt_desc_get(c->srcFormat);
841
842
if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
843
dstRange = 0;
844
if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
845
srcRange = 0;
846
847
if (c->srcRange != srcRange ||
848
c->dstRange != dstRange ||
849
c->brightness != brightness ||
850
c->contrast != contrast ||
851
c->saturation != saturation ||
852
memcmp(c->srcColorspaceTable, inv_table, sizeof(int) * 4) ||
853
memcmp(c->dstColorspaceTable, table, sizeof(int) * 4)
854
)
855
need_reinit = 1;
856
857
memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
858
memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
859
860
861
862
c->brightness = brightness;
863
c->contrast = contrast;
864
c->saturation = saturation;
865
c->srcRange = srcRange;
866
c->dstRange = dstRange;
867
868
//The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
869
//and what we have in ticket 2939 looks better with this check
870
if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
871
ff_sws_init_range_convert(c);
872
873
c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
874
c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
875
876
if (c->cascaded_context[c->cascaded_mainindex])
877
return sws_setColorspaceDetails(c->cascaded_context[c->cascaded_mainindex],inv_table, srcRange,table, dstRange, brightness, contrast, saturation);
878
879
if (!need_reinit)
880
return 0;
881
882
if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat))) {
883
if (!c->cascaded_context[0] &&
884
memcmp(c->dstColorspaceTable, c->srcColorspaceTable, sizeof(int) * 4) &&
885
c->srcW && c->srcH && c->dstW && c->dstH) {
886
enum AVPixelFormat tmp_format;
887
int tmp_width, tmp_height;
888
int srcW = c->srcW;
889
int srcH = c->srcH;
890
int dstW = c->dstW;
891
int dstH = c->dstH;
892
int ret;
893
av_log(c, AV_LOG_VERBOSE, "YUV color matrix differs for YUV->YUV, using intermediate RGB to convert\n");
894
895
if (isNBPS(c->dstFormat) || is16BPS(c->dstFormat)) {
896
if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
897
tmp_format = AV_PIX_FMT_BGRA64;
898
} else {
899
tmp_format = AV_PIX_FMT_BGR48;
900
}
901
} else {
902
if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
903
tmp_format = AV_PIX_FMT_BGRA;
904
} else {
905
tmp_format = AV_PIX_FMT_BGR24;
906
}
907
}
908
909
if (srcW*srcH > dstW*dstH) {
910
tmp_width = dstW;
911
tmp_height = dstH;
912
} else {
913
tmp_width = srcW;
914
tmp_height = srcH;
915
}
916
917
ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
918
tmp_width, tmp_height, tmp_format, 64);
919
if (ret < 0)
920
return ret;
921
922
c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, c->srcFormat,
923
tmp_width, tmp_height, tmp_format,
924
c->flags, c->param);
925
if (!c->cascaded_context[0])
926
return -1;
927
928
c->cascaded_context[0]->alphablend = c->alphablend;
929
ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
930
if (ret < 0)
931
return ret;
932
//we set both src and dst depending on that the RGB side will be ignored
933
sws_setColorspaceDetails(c->cascaded_context[0], inv_table,
934
srcRange, table, dstRange,
935
brightness, contrast, saturation);
936
937
c->cascaded_context[1] = sws_getContext(tmp_width, tmp_height, tmp_format,
938
dstW, dstH, c->dstFormat,
939
c->flags, NULL, NULL, c->param);
940
if (!c->cascaded_context[1])
941
return -1;
942
sws_setColorspaceDetails(c->cascaded_context[1], inv_table,
943
srcRange, table, dstRange,
944
0, 1 << 16, 1 << 16);
945
return 0;
946
}
947
return -1;
948
}
949
950
if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
951
ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
952
contrast, saturation);
953
// FIXME factorize
954
955
if (ARCH_PPC)
956
ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
957
contrast, saturation);
958
}
959
960
fill_rgb2yuv_table(c, table, dstRange);
961
962
return 0;
963
}
964
965
int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
966
int *srcRange, int **table, int *dstRange,
967
int *brightness, int *contrast, int *saturation)
968
{
969
if (!c )
970
return -1;
971
972
*inv_table = c->srcColorspaceTable;
973
*table = c->dstColorspaceTable;
974
*srcRange = c->srcRange;
975
*dstRange = c->dstRange;
976
*brightness = c->brightness;
977
*contrast = c->contrast;
978
*saturation = c->saturation;
979
980
return 0;
981
}
982
983
static int handle_jpeg(enum AVPixelFormat *format)
984
{
985
switch (*format) {
986
case AV_PIX_FMT_YUVJ420P:
987
*format = AV_PIX_FMT_YUV420P;
988
return 1;
989
case AV_PIX_FMT_YUVJ411P:
990
*format = AV_PIX_FMT_YUV411P;
991
return 1;
992
case AV_PIX_FMT_YUVJ422P:
993
*format = AV_PIX_FMT_YUV422P;
994
return 1;
995
case AV_PIX_FMT_YUVJ444P:
996
*format = AV_PIX_FMT_YUV444P;
997
return 1;
998
case AV_PIX_FMT_YUVJ440P:
999
*format = AV_PIX_FMT_YUV440P;
1000
return 1;
1001
case AV_PIX_FMT_GRAY8:
1002
case AV_PIX_FMT_YA8:
1003
case AV_PIX_FMT_GRAY16LE:
1004
case AV_PIX_FMT_GRAY16BE:
1005
case AV_PIX_FMT_YA16BE:
1006
case AV_PIX_FMT_YA16LE:
1007
return 1;
1008
default:
1009
return 0;
1010
}
1011
}
1012
1013
static int handle_0alpha(enum AVPixelFormat *format)
1014
{
1015
switch (*format) {
1016
case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
1017
case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
1018
case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
1019
case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
1020
default: return 0;
1021
}
1022
}
1023
1024
static int handle_xyz(enum AVPixelFormat *format)
1025
{
1026
switch (*format) {
1027
case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
1028
case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
1029
default: return 0;
1030
}
1031
}
1032
1033
static void handle_formats(SwsContext *c)
1034
{
1035
c->src0Alpha |= handle_0alpha(&c->srcFormat);
1036
c->dst0Alpha |= handle_0alpha(&c->dstFormat);
1037
c->srcXYZ |= handle_xyz(&c->srcFormat);
1038
c->dstXYZ |= handle_xyz(&c->dstFormat);
1039
if (c->srcXYZ || c->dstXYZ)
1040
fill_xyztables(c);
1041
}
1042
1043
SwsContext *sws_alloc_context(void)
1044
{
1045
SwsContext *c = av_mallocz(sizeof(SwsContext));
1046
1047
av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
1048
1049
if (c) {
1050
c->av_class = &ff_sws_context_class;
1051
av_opt_set_defaults(c);
1052
}
1053
1054
return c;
1055
}
1056
1057
static uint16_t * alloc_gamma_tbl(double e)
1058
{
1059
int i = 0;
1060
uint16_t * tbl;
1061
tbl = (uint16_t*)av_malloc(sizeof(uint16_t) * 1 << 16);
1062
if (!tbl)
1063
return NULL;
1064
1065
for (i = 0; i < 65536; ++i) {
1066
tbl[i] = pow(i / 65535.0, e) * 65535.0;
1067
}
1068
return tbl;
1069
}
1070
1071
static enum AVPixelFormat alphaless_fmt(enum AVPixelFormat fmt)
1072
{
1073
switch(fmt) {
1074
case AV_PIX_FMT_ARGB: return AV_PIX_FMT_RGB24;
1075
case AV_PIX_FMT_RGBA: return AV_PIX_FMT_RGB24;
1076
case AV_PIX_FMT_ABGR: return AV_PIX_FMT_BGR24;
1077
case AV_PIX_FMT_BGRA: return AV_PIX_FMT_BGR24;
1078
case AV_PIX_FMT_YA8: return AV_PIX_FMT_GRAY8;
1079
1080
case AV_PIX_FMT_YUVA420P: return AV_PIX_FMT_YUV420P;
1081
case AV_PIX_FMT_YUVA422P: return AV_PIX_FMT_YUV422P;
1082
case AV_PIX_FMT_YUVA444P: return AV_PIX_FMT_YUV444P;
1083
1084
case AV_PIX_FMT_GBRAP: return AV_PIX_FMT_GBRP;
1085
1086
case AV_PIX_FMT_GBRAP16LE: return AV_PIX_FMT_GBRP16;
1087
case AV_PIX_FMT_GBRAP16BE: return AV_PIX_FMT_GBRP16;
1088
1089
case AV_PIX_FMT_RGBA64LE: return AV_PIX_FMT_RGB48;
1090
case AV_PIX_FMT_RGBA64BE: return AV_PIX_FMT_RGB48;
1091
case AV_PIX_FMT_BGRA64LE: return AV_PIX_FMT_BGR48;
1092
case AV_PIX_FMT_BGRA64BE: return AV_PIX_FMT_BGR48;
1093
1094
case AV_PIX_FMT_YA16BE: return AV_PIX_FMT_GRAY16;
1095
case AV_PIX_FMT_YA16LE: return AV_PIX_FMT_GRAY16;
1096
1097
case AV_PIX_FMT_YUVA420P9BE: return AV_PIX_FMT_YUV420P9;
1098
case AV_PIX_FMT_YUVA422P9BE: return AV_PIX_FMT_YUV422P9;
1099
case AV_PIX_FMT_YUVA444P9BE: return AV_PIX_FMT_YUV444P9;
1100
case AV_PIX_FMT_YUVA420P9LE: return AV_PIX_FMT_YUV420P9;
1101
case AV_PIX_FMT_YUVA422P9LE: return AV_PIX_FMT_YUV422P9;
1102
case AV_PIX_FMT_YUVA444P9LE: return AV_PIX_FMT_YUV444P9;
1103
case AV_PIX_FMT_YUVA420P10BE: return AV_PIX_FMT_YUV420P10;
1104
case AV_PIX_FMT_YUVA422P10BE: return AV_PIX_FMT_YUV422P10;
1105
case AV_PIX_FMT_YUVA444P10BE: return AV_PIX_FMT_YUV444P10;
1106
case AV_PIX_FMT_YUVA420P10LE: return AV_PIX_FMT_YUV420P10;
1107
case AV_PIX_FMT_YUVA422P10LE: return AV_PIX_FMT_YUV422P10;
1108
case AV_PIX_FMT_YUVA444P10LE: return AV_PIX_FMT_YUV444P10;
1109
case AV_PIX_FMT_YUVA420P16BE: return AV_PIX_FMT_YUV420P16;
1110
case AV_PIX_FMT_YUVA422P16BE: return AV_PIX_FMT_YUV422P16;
1111
case AV_PIX_FMT_YUVA444P16BE: return AV_PIX_FMT_YUV444P16;
1112
case AV_PIX_FMT_YUVA420P16LE: return AV_PIX_FMT_YUV420P16;
1113
case AV_PIX_FMT_YUVA422P16LE: return AV_PIX_FMT_YUV422P16;
1114
case AV_PIX_FMT_YUVA444P16LE: return AV_PIX_FMT_YUV444P16;
1115
1116
// case AV_PIX_FMT_AYUV64LE:
1117
// case AV_PIX_FMT_AYUV64BE:
1118
// case AV_PIX_FMT_PAL8:
1119
default: return AV_PIX_FMT_NONE;
1120
}
1121
}
1122
1123
av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
1124
SwsFilter *dstFilter)
1125
{
1126
int i, j;
1127
int usesVFilter, usesHFilter;
1128
int unscaled;
1129
SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
1130
int srcW = c->srcW;
1131
int srcH = c->srcH;
1132
int dstW = c->dstW;
1133
int dstH = c->dstH;
1134
int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
1135
int flags, cpu_flags;
1136
enum AVPixelFormat srcFormat = c->srcFormat;
1137
enum AVPixelFormat dstFormat = c->dstFormat;
1138
const AVPixFmtDescriptor *desc_src;
1139
const AVPixFmtDescriptor *desc_dst;
1140
int ret = 0;
1141
enum AVPixelFormat tmpFmt;
1142
1143
cpu_flags = av_get_cpu_flags();
1144
flags = c->flags;
1145
emms_c();
1146
if (!rgb15to16)
1147
ff_sws_rgb2rgb_init();
1148
1149
unscaled = (srcW == dstW && srcH == dstH);
1150
1151
c->srcRange |= handle_jpeg(&c->srcFormat);
1152
c->dstRange |= handle_jpeg(&c->dstFormat);
1153
1154
if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
1155
av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
1156
1157
if (!c->contrast && !c->saturation && !c->dstFormatBpp)
1158
sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
1159
ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
1160
c->dstRange, 0, 1 << 16, 1 << 16);
1161
1162
handle_formats(c);
1163
srcFormat = c->srcFormat;
1164
dstFormat = c->dstFormat;
1165
desc_src = av_pix_fmt_desc_get(srcFormat);
1166
desc_dst = av_pix_fmt_desc_get(dstFormat);
1167
1168
// If the source has no alpha then disable alpha blendaway
1169
if (c->src0Alpha)
1170
c->alphablend = SWS_ALPHA_BLEND_NONE;
1171
1172
if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
1173
av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
1174
if (!sws_isSupportedInput(srcFormat)) {
1175
av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
1176
av_get_pix_fmt_name(srcFormat));
1177
return AVERROR(EINVAL);
1178
}
1179
if (!sws_isSupportedOutput(dstFormat)) {
1180
av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
1181
av_get_pix_fmt_name(dstFormat));
1182
return AVERROR(EINVAL);
1183
}
1184
}
1185
av_assert2(desc_src && desc_dst);
1186
1187
i = flags & (SWS_POINT |
1188
SWS_AREA |
1189
SWS_BILINEAR |
1190
SWS_FAST_BILINEAR |
1191
SWS_BICUBIC |
1192
SWS_X |
1193
SWS_GAUSS |
1194
SWS_LANCZOS |
1195
SWS_SINC |
1196
SWS_SPLINE |
1197
SWS_BICUBLIN);
1198
1199
/* provide a default scaler if not set by caller */
1200
if (!i) {
1201
if (dstW < srcW && dstH < srcH)
1202
flags |= SWS_BICUBIC;
1203
else if (dstW > srcW && dstH > srcH)
1204
flags |= SWS_BICUBIC;
1205
else
1206
flags |= SWS_BICUBIC;
1207
c->flags = flags;
1208
} else if (i & (i - 1)) {
1209
av_log(c, AV_LOG_ERROR,
1210
"Exactly one scaler algorithm must be chosen, got %X\n", i);
1211
return AVERROR(EINVAL);
1212
}
1213
/* sanity check */
1214
if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
1215
/* FIXME check if these are enough and try to lower them after
1216
* fixing the relevant parts of the code */
1217
av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
1218
srcW, srcH, dstW, dstH);
1219
return AVERROR(EINVAL);
1220
}
1221
if (flags & SWS_FAST_BILINEAR) {
1222
if (srcW < 8 || dstW < 8) {
1223
flags ^= SWS_FAST_BILINEAR | SWS_BILINEAR;
1224
c->flags = flags;
1225
}
1226
}
1227
1228
if (!dstFilter)
1229
dstFilter = &dummyFilter;
1230
if (!srcFilter)
1231
srcFilter = &dummyFilter;
1232
1233
c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
1234
c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
1235
c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
1236
c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
1237
c->vRounder = 4 * 0x0001000100010001ULL;
1238
1239
usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
1240
(srcFilter->chrV && srcFilter->chrV->length > 1) ||
1241
(dstFilter->lumV && dstFilter->lumV->length > 1) ||
1242
(dstFilter->chrV && dstFilter->chrV->length > 1);
1243
usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
1244
(srcFilter->chrH && srcFilter->chrH->length > 1) ||
1245
(dstFilter->lumH && dstFilter->lumH->length > 1) ||
1246
(dstFilter->chrH && dstFilter->chrH->length > 1);
1247
1248
av_pix_fmt_get_chroma_sub_sample(srcFormat, &c->chrSrcHSubSample, &c->chrSrcVSubSample);
1249
av_pix_fmt_get_chroma_sub_sample(dstFormat, &c->chrDstHSubSample, &c->chrDstVSubSample);
1250
1251
if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
1252
if (dstW&1) {
1253
av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
1254
flags |= SWS_FULL_CHR_H_INT;
1255
c->flags = flags;
1256
}
1257
1258
if ( c->chrSrcHSubSample == 0
1259
&& c->chrSrcVSubSample == 0
1260
&& c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
1261
&& !(c->flags & SWS_FAST_BILINEAR)
1262
) {
1263
av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
1264
flags |= SWS_FULL_CHR_H_INT;
1265
c->flags = flags;
1266
}
1267
}
1268
1269
if (c->dither == SWS_DITHER_AUTO) {
1270
if (flags & SWS_ERROR_DIFFUSION)
1271
c->dither = SWS_DITHER_ED;
1272
}
1273
1274
if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
1275
dstFormat == AV_PIX_FMT_RGB4_BYTE ||
1276
dstFormat == AV_PIX_FMT_BGR8 ||
1277
dstFormat == AV_PIX_FMT_RGB8) {
1278
if (c->dither == SWS_DITHER_AUTO)
1279
c->dither = (flags & SWS_FULL_CHR_H_INT) ? SWS_DITHER_ED : SWS_DITHER_BAYER;
1280
if (!(flags & SWS_FULL_CHR_H_INT)) {
1281
if (c->dither == SWS_DITHER_ED || c->dither == SWS_DITHER_A_DITHER || c->dither == SWS_DITHER_X_DITHER) {
1282
av_log(c, AV_LOG_DEBUG,
1283
"Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
1284
av_get_pix_fmt_name(dstFormat));
1285
flags |= SWS_FULL_CHR_H_INT;
1286
c->flags = flags;
1287
}
1288
}
1289
if (flags & SWS_FULL_CHR_H_INT) {
1290
if (c->dither == SWS_DITHER_BAYER) {
1291
av_log(c, AV_LOG_DEBUG,
1292
"Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
1293
av_get_pix_fmt_name(dstFormat));
1294
c->dither = SWS_DITHER_ED;
1295
}
1296
}
1297
}
1298
if (isPlanarRGB(dstFormat)) {
1299
if (!(flags & SWS_FULL_CHR_H_INT)) {
1300
av_log(c, AV_LOG_DEBUG,
1301
"%s output is not supported with half chroma resolution, switching to full\n",
1302
av_get_pix_fmt_name(dstFormat));
1303
flags |= SWS_FULL_CHR_H_INT;
1304
c->flags = flags;
1305
}
1306
}
1307
1308
/* reuse chroma for 2 pixels RGB/BGR unless user wants full
1309
* chroma interpolation */
1310
if (flags & SWS_FULL_CHR_H_INT &&
1311
isAnyRGB(dstFormat) &&
1312
!isPlanarRGB(dstFormat) &&
1313
dstFormat != AV_PIX_FMT_RGBA64LE &&
1314
dstFormat != AV_PIX_FMT_RGBA64BE &&
1315
dstFormat != AV_PIX_FMT_BGRA64LE &&
1316
dstFormat != AV_PIX_FMT_BGRA64BE &&
1317
dstFormat != AV_PIX_FMT_RGB48LE &&
1318
dstFormat != AV_PIX_FMT_RGB48BE &&
1319
dstFormat != AV_PIX_FMT_BGR48LE &&
1320
dstFormat != AV_PIX_FMT_BGR48BE &&
1321
dstFormat != AV_PIX_FMT_RGBA &&
1322
dstFormat != AV_PIX_FMT_ARGB &&
1323
dstFormat != AV_PIX_FMT_BGRA &&
1324
dstFormat != AV_PIX_FMT_ABGR &&
1325
dstFormat != AV_PIX_FMT_RGB24 &&
1326
dstFormat != AV_PIX_FMT_BGR24 &&
1327
dstFormat != AV_PIX_FMT_BGR4_BYTE &&
1328
dstFormat != AV_PIX_FMT_RGB4_BYTE &&
1329
dstFormat != AV_PIX_FMT_BGR8 &&
1330
dstFormat != AV_PIX_FMT_RGB8
1331
) {
1332
av_log(c, AV_LOG_WARNING,
1333
"full chroma interpolation for destination format '%s' not yet implemented\n",
1334
av_get_pix_fmt_name(dstFormat));
1335
flags &= ~SWS_FULL_CHR_H_INT;
1336
c->flags = flags;
1337
}
1338
if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
1339
c->chrDstHSubSample = 1;
1340
1341
// drop some chroma lines if the user wants it
1342
c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
1343
SWS_SRC_V_CHR_DROP_SHIFT;
1344
c->chrSrcVSubSample += c->vChrDrop;
1345
1346
/* drop every other pixel for chroma calculation unless user
1347
* wants full chroma */
1348
if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
1349
srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
1350
srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
1351
srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
1352
srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
1353
srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
1354
srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
1355
srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
1356
srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
1357
((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
1358
(flags & SWS_FAST_BILINEAR)))
1359
c->chrSrcHSubSample = 1;
1360
1361
// Note the AV_CEIL_RSHIFT is so that we always round toward +inf.
1362
c->chrSrcW = AV_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
1363
c->chrSrcH = AV_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
1364
c->chrDstW = AV_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
1365
c->chrDstH = AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
1366
1367
FF_ALLOCZ_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
1368
1369
c->srcBpc = desc_src->comp[0].depth;
1370
if (c->srcBpc < 8)
1371
c->srcBpc = 8;
1372
c->dstBpc = desc_dst->comp[0].depth;
1373
if (c->dstBpc < 8)
1374
c->dstBpc = 8;
1375
if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
1376
c->srcBpc = 16;
1377
if (c->dstBpc == 16)
1378
dst_stride <<= 1;
1379
1380
if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
1381
c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
1382
c->chrDstW >= c->chrSrcW &&
1383
(srcW & 15) == 0;
1384
if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
1385
1386
&& (flags & SWS_FAST_BILINEAR)) {
1387
if (flags & SWS_PRINT_INFO)
1388
av_log(c, AV_LOG_INFO,
1389
"output width is not a multiple of 32 -> no MMXEXT scaler\n");
1390
}
1391
if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
1392
c->canMMXEXTBeUsed = 0;
1393
} else
1394
c->canMMXEXTBeUsed = 0;
1395
1396
c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
1397
c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
1398
1399
/* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
1400
* to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
1401
* correct scaling.
1402
* n-2 is the last chrominance sample available.
1403
* This is not perfect, but no one should notice the difference, the more
1404
* correct variant would be like the vertical one, but that would require
1405
* some special code for the first and last pixel */
1406
if (flags & SWS_FAST_BILINEAR) {
1407
if (c->canMMXEXTBeUsed) {
1408
c->lumXInc += 20;
1409
c->chrXInc += 20;
1410
}
1411
// we don't use the x86 asm scaler if MMX is available
1412
else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
1413
c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
1414
c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
1415
}
1416
}
1417
1418
// hardcoded for now
1419
c->gamma_value = 2.2;
1420
tmpFmt = AV_PIX_FMT_RGBA64LE;
1421
1422
1423
if (!unscaled && c->gamma_flag && (srcFormat != tmpFmt || dstFormat != tmpFmt)) {
1424
SwsContext *c2;
1425
c->cascaded_context[0] = NULL;
1426
1427
ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
1428
srcW, srcH, tmpFmt, 64);
1429
if (ret < 0)
1430
return ret;
1431
1432
c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1433
srcW, srcH, tmpFmt,
1434
flags, NULL, NULL, c->param);
1435
if (!c->cascaded_context[0]) {
1436
return -1;
1437
}
1438
1439
c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFmt,
1440
dstW, dstH, tmpFmt,
1441
flags, srcFilter, dstFilter, c->param);
1442
1443
if (!c->cascaded_context[1])
1444
return -1;
1445
1446
c2 = c->cascaded_context[1];
1447
c2->is_internal_gamma = 1;
1448
c2->gamma = alloc_gamma_tbl( c->gamma_value);
1449
c2->inv_gamma = alloc_gamma_tbl(1.f/c->gamma_value);
1450
if (!c2->gamma || !c2->inv_gamma)
1451
return AVERROR(ENOMEM);
1452
1453
// is_internal_flag is set after creating the context
1454
// to properly create the gamma convert FilterDescriptor
1455
// we have to re-initialize it
1456
ff_free_filters(c2);
1457
if (ff_init_filters(c2) < 0) {
1458
sws_freeContext(c2);
1459
return -1;
1460
}
1461
1462
c->cascaded_context[2] = NULL;
1463
if (dstFormat != tmpFmt) {
1464
ret = av_image_alloc(c->cascaded1_tmp, c->cascaded1_tmpStride,
1465
dstW, dstH, tmpFmt, 64);
1466
if (ret < 0)
1467
return ret;
1468
1469
c->cascaded_context[2] = sws_getContext(dstW, dstH, tmpFmt,
1470
dstW, dstH, dstFormat,
1471
flags, NULL, NULL, c->param);
1472
if (!c->cascaded_context[2])
1473
return -1;
1474
}
1475
return 0;
1476
}
1477
1478
if (isBayer(srcFormat)) {
1479
if (!unscaled ||
1480
(dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P)) {
1481
enum AVPixelFormat tmpFormat = AV_PIX_FMT_RGB24;
1482
1483
ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
1484
srcW, srcH, tmpFormat, 64);
1485
if (ret < 0)
1486
return ret;
1487
1488
c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1489
srcW, srcH, tmpFormat,
1490
flags, srcFilter, NULL, c->param);
1491
if (!c->cascaded_context[0])
1492
return -1;
1493
1494
c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
1495
dstW, dstH, dstFormat,
1496
flags, NULL, dstFilter, c->param);
1497
if (!c->cascaded_context[1])
1498
return -1;
1499
return 0;
1500
}
1501
}
1502
1503
if (CONFIG_SWSCALE_ALPHA && isALPHA(srcFormat) && !isALPHA(dstFormat)) {
1504
enum AVPixelFormat tmpFormat = alphaless_fmt(srcFormat);
1505
1506
if (tmpFormat != AV_PIX_FMT_NONE && c->alphablend != SWS_ALPHA_BLEND_NONE)
1507
if (!unscaled ||
1508
dstFormat != tmpFormat ||
1509
usesHFilter || usesVFilter ||
1510
c->srcRange != c->dstRange
1511
) {
1512
c->cascaded_mainindex = 1;
1513
ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
1514
srcW, srcH, tmpFormat, 64);
1515
if (ret < 0)
1516
return ret;
1517
1518
c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, srcFormat,
1519
srcW, srcH, tmpFormat,
1520
flags, c->param);
1521
if (!c->cascaded_context[0])
1522
return -1;
1523
c->cascaded_context[0]->alphablend = c->alphablend;
1524
ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
1525
if (ret < 0)
1526
return ret;
1527
1528
c->cascaded_context[1] = sws_alloc_set_opts(srcW, srcH, tmpFormat,
1529
dstW, dstH, dstFormat,
1530
flags, c->param);
1531
if (!c->cascaded_context[1])
1532
return -1;
1533
1534
c->cascaded_context[1]->srcRange = c->srcRange;
1535
c->cascaded_context[1]->dstRange = c->dstRange;
1536
ret = sws_init_context(c->cascaded_context[1], srcFilter , dstFilter);
1537
if (ret < 0)
1538
return ret;
1539
1540
return 0;
1541
}
1542
}
1543
1544
#define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
1545
1546
/* precalculate horizontal scaler filter coefficients */
1547
{
1548
#if HAVE_MMXEXT_INLINE
1549
// can't downscale !!!
1550
if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
1551
c->lumMmxextFilterCodeSize = ff_init_hscaler_mmxext(dstW, c->lumXInc, NULL,
1552
NULL, NULL, 8);
1553
c->chrMmxextFilterCodeSize = ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc,
1554
NULL, NULL, NULL, 4);
1555
1556
#if USE_MMAP
1557
c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
1558
PROT_READ | PROT_WRITE,
1559
MAP_PRIVATE | MAP_ANONYMOUS,
1560
-1, 0);
1561
c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
1562
PROT_READ | PROT_WRITE,
1563
MAP_PRIVATE | MAP_ANONYMOUS,
1564
-1, 0);
1565
#elif HAVE_VIRTUALALLOC
1566
c->lumMmxextFilterCode = VirtualAlloc(NULL,
1567
c->lumMmxextFilterCodeSize,
1568
MEM_COMMIT,
1569
PAGE_EXECUTE_READWRITE);
1570
c->chrMmxextFilterCode = VirtualAlloc(NULL,
1571
c->chrMmxextFilterCodeSize,
1572
MEM_COMMIT,
1573
PAGE_EXECUTE_READWRITE);
1574
#else
1575
c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
1576
c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
1577
#endif
1578
1579
#ifdef MAP_ANONYMOUS
1580
if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
1581
#else
1582
if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
1583
#endif
1584
{
1585
av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
1586
return AVERROR(ENOMEM);
1587
}
1588
1589
FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
1590
FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
1591
FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
1592
FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
1593
1594
ff_init_hscaler_mmxext( dstW, c->lumXInc, c->lumMmxextFilterCode,
1595
c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
1596
ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
1597
c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
1598
1599
#if USE_MMAP
1600
if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
1601
|| mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
1602
av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
1603
goto fail;
1604
}
1605
#endif
1606
} else
1607
#endif /* HAVE_MMXEXT_INLINE */
1608
{
1609
const int filterAlign = X86_MMX(cpu_flags) ? 4 :
1610
PPC_ALTIVEC(cpu_flags) ? 8 : 1;
1611
1612
if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
1613
&c->hLumFilterSize, c->lumXInc,
1614
srcW, dstW, filterAlign, 1 << 14,
1615
(flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1616
cpu_flags, srcFilter->lumH, dstFilter->lumH,
1617
c->param,
1618
get_local_pos(c, 0, 0, 0),
1619
get_local_pos(c, 0, 0, 0))) < 0)
1620
goto fail;
1621
if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
1622
&c->hChrFilterSize, c->chrXInc,
1623
c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
1624
(flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1625
cpu_flags, srcFilter->chrH, dstFilter->chrH,
1626
c->param,
1627
get_local_pos(c, c->chrSrcHSubSample, c->src_h_chr_pos, 0),
1628
get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
1629
goto fail;
1630
}
1631
} // initialize horizontal stuff
1632
1633
/* precalculate vertical scaler filter coefficients */
1634
{
1635
const int filterAlign = X86_MMX(cpu_flags) ? 2 :
1636
PPC_ALTIVEC(cpu_flags) ? 8 : 1;
1637
1638
if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
1639
c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
1640
(flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1641
cpu_flags, srcFilter->lumV, dstFilter->lumV,
1642
c->param,
1643
get_local_pos(c, 0, 0, 1),
1644
get_local_pos(c, 0, 0, 1))) < 0)
1645
goto fail;
1646
if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
1647
c->chrYInc, c->chrSrcH, c->chrDstH,
1648
filterAlign, (1 << 12),
1649
(flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1650
cpu_flags, srcFilter->chrV, dstFilter->chrV,
1651
c->param,
1652
get_local_pos(c, c->chrSrcVSubSample, c->src_v_chr_pos, 1),
1653
get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
1654
1655
goto fail;
1656
1657
#if HAVE_ALTIVEC
1658
FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
1659
FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
1660
1661
for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
1662
int j;
1663
short *p = (short *)&c->vYCoeffsBank[i];
1664
for (j = 0; j < 8; j++)
1665
p[j] = c->vLumFilter[i];
1666
}
1667
1668
for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
1669
int j;
1670
short *p = (short *)&c->vCCoeffsBank[i];
1671
for (j = 0; j < 8; j++)
1672
p[j] = c->vChrFilter[i];
1673
}
1674
#endif
1675
}
1676
1677
// calculate buffer sizes so that they won't run out while handling these damn slices
1678
c->vLumBufSize = c->vLumFilterSize;
1679
c->vChrBufSize = c->vChrFilterSize;
1680
for (i = 0; i < dstH; i++) {
1681
int chrI = (int64_t)i * c->chrDstH / dstH;
1682
int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
1683
((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
1684
<< c->chrSrcVSubSample));
1685
1686
nextSlice >>= c->chrSrcVSubSample;
1687
nextSlice <<= c->chrSrcVSubSample;
1688
if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
1689
c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
1690
if (c->vChrFilterPos[chrI] + c->vChrBufSize <
1691
(nextSlice >> c->chrSrcVSubSample))
1692
c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
1693
c->vChrFilterPos[chrI];
1694
}
1695
1696
for (i = 0; i < 4; i++)
1697
FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
1698
1699
/* Allocate pixbufs (we use dynamic allocation because otherwise we would
1700
* need to allocate several megabytes to handle all possible cases) */
1701
FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
1702
FF_ALLOCZ_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
1703
FF_ALLOCZ_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
1704
if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
1705
FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
1706
/* Note we need at least one pixel more at the end because of the MMX code
1707
* (just in case someone wants to replace the 4000/8000). */
1708
/* align at 16 bytes for AltiVec */
1709
for (i = 0; i < c->vLumBufSize; i++) {
1710
FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
1711
dst_stride + 16, fail);
1712
c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
1713
}
1714
// 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
1715
c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
1716
c->uv_offx2 = dst_stride + 16;
1717
for (i = 0; i < c->vChrBufSize; i++) {
1718
FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
1719
dst_stride * 2 + 32, fail);
1720
c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
1721
c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
1722
= c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
1723
}
1724
if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
1725
for (i = 0; i < c->vLumBufSize; i++) {
1726
FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
1727
dst_stride + 16, fail);
1728
c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
1729
}
1730
1731
// try to avoid drawing green stuff between the right end and the stride end
1732
for (i = 0; i < c->vChrBufSize; i++)
1733
if(desc_dst->comp[0].depth == 16){
1734
av_assert0(c->dstBpc > 14);
1735
for(j=0; j<dst_stride/2+1; j++)
1736
((int32_t*)(c->chrUPixBuf[i]))[j] = 1<<18;
1737
} else
1738
for(j=0; j<dst_stride+1; j++)
1739
((int16_t*)(c->chrUPixBuf[i]))[j] = 1<<14;
1740
1741
av_assert0(c->chrDstH <= dstH);
1742
1743
if (flags & SWS_PRINT_INFO) {
1744
const char *scaler = NULL, *cpucaps;
1745
1746
for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
1747
if (flags & scale_algorithms[i].flag) {
1748
scaler = scale_algorithms[i].description;
1749
break;
1750
}
1751
}
1752
if (!scaler)
1753
scaler = "ehh flags invalid?!";
1754
av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
1755
scaler,
1756
av_get_pix_fmt_name(srcFormat),
1757
#ifdef DITHER1XBPP
1758
dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
1759
dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
1760
dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
1761
"dithered " : "",
1762
#else
1763
"",
1764
#endif
1765
av_get_pix_fmt_name(dstFormat));
1766
1767
if (INLINE_MMXEXT(cpu_flags))
1768
cpucaps = "MMXEXT";
1769
else if (INLINE_AMD3DNOW(cpu_flags))
1770
cpucaps = "3DNOW";
1771
else if (INLINE_MMX(cpu_flags))
1772
cpucaps = "MMX";
1773
else if (PPC_ALTIVEC(cpu_flags))
1774
cpucaps = "AltiVec";
1775
else
1776
cpucaps = "C";
1777
1778
av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
1779
1780
av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
1781
av_log(c, AV_LOG_DEBUG,
1782
"lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1783
c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
1784
av_log(c, AV_LOG_DEBUG,
1785
"chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1786
c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
1787
c->chrXInc, c->chrYInc);
1788
}
1789
1790
/* alpha blend special case, note this has been split via cascaded contexts if its scaled */
1791
if (unscaled && !usesHFilter && !usesVFilter &&
1792
c->alphablend != SWS_ALPHA_BLEND_NONE &&
1793
isALPHA(srcFormat) &&
1794
(c->srcRange == c->dstRange || isAnyRGB(dstFormat)) &&
1795
alphaless_fmt(srcFormat) == dstFormat
1796
) {
1797
c->swscale = ff_sws_alphablendaway;
1798
1799
if (flags & SWS_PRINT_INFO)
1800
av_log(c, AV_LOG_INFO,
1801
"using alpha blendaway %s -> %s special converter\n",
1802
av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1803
return 0;
1804
}
1805
1806
/* unscaled special cases */
1807
if (unscaled && !usesHFilter && !usesVFilter &&
1808
(c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
1809
ff_get_unscaled_swscale(c);
1810
1811
if (c->swscale) {
1812
if (flags & SWS_PRINT_INFO)
1813
av_log(c, AV_LOG_INFO,
1814
"using unscaled %s -> %s special converter\n",
1815
av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1816
return 0;
1817
}
1818
}
1819
1820
c->swscale = ff_getSwsFunc(c);
1821
return ff_init_filters(c);
1822
fail: // FIXME replace things by appropriate error codes
1823
if (ret == RETCODE_USE_CASCADE) {
1824
int tmpW = sqrt(srcW * (int64_t)dstW);
1825
int tmpH = sqrt(srcH * (int64_t)dstH);
1826
enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
1827
1828
if (isALPHA(srcFormat))
1829
tmpFormat = AV_PIX_FMT_YUVA420P;
1830
1831
if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
1832
return AVERROR(EINVAL);
1833
1834
ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
1835
tmpW, tmpH, tmpFormat, 64);
1836
if (ret < 0)
1837
return ret;
1838
1839
c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1840
tmpW, tmpH, tmpFormat,
1841
flags, srcFilter, NULL, c->param);
1842
if (!c->cascaded_context[0])
1843
return -1;
1844
1845
c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
1846
dstW, dstH, dstFormat,
1847
flags, NULL, dstFilter, c->param);
1848
if (!c->cascaded_context[1])
1849
return -1;
1850
return 0;
1851
}
1852
return -1;
1853
}
1854
1855
SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
1856
int dstW, int dstH, enum AVPixelFormat dstFormat,
1857
int flags, const double *param)
1858
{
1859
SwsContext *c;
1860
1861
if (!(c = sws_alloc_context()))
1862
return NULL;
1863
1864
c->flags = flags;
1865
c->srcW = srcW;
1866
c->srcH = srcH;
1867
c->dstW = dstW;
1868
c->dstH = dstH;
1869
c->srcFormat = srcFormat;
1870
c->dstFormat = dstFormat;
1871
1872
if (param) {
1873
c->param[0] = param[0];
1874
c->param[1] = param[1];
1875
}
1876
1877
return c;
1878
}
1879
1880
SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
1881
int dstW, int dstH, enum AVPixelFormat dstFormat,
1882
int flags, SwsFilter *srcFilter,
1883
SwsFilter *dstFilter, const double *param)
1884
{
1885
SwsContext *c;
1886
1887
c = sws_alloc_set_opts(srcW, srcH, srcFormat,
1888
dstW, dstH, dstFormat,
1889
flags, param);
1890
if (!c)
1891
return NULL;
1892
1893
if (sws_init_context(c, srcFilter, dstFilter) < 0) {
1894
sws_freeContext(c);
1895
return NULL;
1896
}
1897
1898
return c;
1899
}
1900
1901
static int isnan_vec(SwsVector *a)
1902
{
1903
int i;
1904
for (i=0; i<a->length; i++)
1905
if (isnan(a->coeff[i]))
1906
return 1;
1907
return 0;
1908
}
1909
1910
static void makenan_vec(SwsVector *a)
1911
{
1912
int i;
1913
for (i=0; i<a->length; i++)
1914
a->coeff[i] = NAN;
1915
}
1916
1917
SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
1918
float lumaSharpen, float chromaSharpen,
1919
float chromaHShift, float chromaVShift,
1920
int verbose)
1921
{
1922
SwsFilter *filter = av_malloc(sizeof(SwsFilter));
1923
if (!filter)
1924
return NULL;
1925
1926
if (lumaGBlur != 0.0) {
1927
filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
1928
filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
1929
} else {
1930
filter->lumH = sws_getIdentityVec();
1931
filter->lumV = sws_getIdentityVec();
1932
}
1933
1934
if (chromaGBlur != 0.0) {
1935
filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
1936
filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
1937
} else {
1938
filter->chrH = sws_getIdentityVec();
1939
filter->chrV = sws_getIdentityVec();
1940
}
1941
1942
if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
1943
goto fail;
1944
1945
if (chromaSharpen != 0.0) {
1946
SwsVector *id = sws_getIdentityVec();
1947
if (!id)
1948
goto fail;
1949
sws_scaleVec(filter->chrH, -chromaSharpen);
1950
sws_scaleVec(filter->chrV, -chromaSharpen);
1951
sws_addVec(filter->chrH, id);
1952
sws_addVec(filter->chrV, id);
1953
sws_freeVec(id);
1954
}
1955
1956
if (lumaSharpen != 0.0) {
1957
SwsVector *id = sws_getIdentityVec();
1958
if (!id)
1959
goto fail;
1960
sws_scaleVec(filter->lumH, -lumaSharpen);
1961
sws_scaleVec(filter->lumV, -lumaSharpen);
1962
sws_addVec(filter->lumH, id);
1963
sws_addVec(filter->lumV, id);
1964
sws_freeVec(id);
1965
}
1966
1967
if (chromaHShift != 0.0)
1968
sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
1969
1970
if (chromaVShift != 0.0)
1971
sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
1972
1973
sws_normalizeVec(filter->chrH, 1.0);
1974
sws_normalizeVec(filter->chrV, 1.0);
1975
sws_normalizeVec(filter->lumH, 1.0);
1976
sws_normalizeVec(filter->lumV, 1.0);
1977
1978
if (isnan_vec(filter->chrH) ||
1979
isnan_vec(filter->chrV) ||
1980
isnan_vec(filter->lumH) ||
1981
isnan_vec(filter->lumV))
1982
goto fail;
1983
1984
if (verbose)
1985
sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
1986
if (verbose)
1987
sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
1988
1989
return filter;
1990
1991
fail:
1992
sws_freeVec(filter->lumH);
1993
sws_freeVec(filter->lumV);
1994
sws_freeVec(filter->chrH);
1995
sws_freeVec(filter->chrV);
1996
av_freep(&filter);
1997
return NULL;
1998
}
1999
2000
SwsVector *sws_allocVec(int length)
2001
{
2002
SwsVector *vec;
2003
2004
if(length <= 0 || length > INT_MAX/ sizeof(double))
2005
return NULL;
2006
2007
vec = av_malloc(sizeof(SwsVector));
2008
if (!vec)
2009
return NULL;
2010
vec->length = length;
2011
vec->coeff = av_malloc(sizeof(double) * length);
2012
if (!vec->coeff)
2013
av_freep(&vec);
2014
return vec;
2015
}
2016
2017
SwsVector *sws_getGaussianVec(double variance, double quality)
2018
{
2019
const int length = (int)(variance * quality + 0.5) | 1;
2020
int i;
2021
double middle = (length - 1) * 0.5;
2022
SwsVector *vec;
2023
2024
if(variance < 0 || quality < 0)
2025
return NULL;
2026
2027
vec = sws_allocVec(length);
2028
2029
if (!vec)
2030
return NULL;
2031
2032
for (i = 0; i < length; i++) {
2033
double dist = i - middle;
2034
vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
2035
sqrt(2 * variance * M_PI);
2036
}
2037
2038
sws_normalizeVec(vec, 1.0);
2039
2040
return vec;
2041
}
2042
2043
SwsVector *sws_getConstVec(double c, int length)
2044
{
2045
int i;
2046
SwsVector *vec = sws_allocVec(length);
2047
2048
if (!vec)
2049
return NULL;
2050
2051
for (i = 0; i < length; i++)
2052
vec->coeff[i] = c;
2053
2054
return vec;
2055
}
2056
2057
SwsVector *sws_getIdentityVec(void)
2058
{
2059
return sws_getConstVec(1.0, 1);
2060
}
2061
2062
static double sws_dcVec(SwsVector *a)
2063
{
2064
int i;
2065
double sum = 0;
2066
2067
for (i = 0; i < a->length; i++)
2068
sum += a->coeff[i];
2069
2070
return sum;
2071
}
2072
2073
void sws_scaleVec(SwsVector *a, double scalar)
2074
{
2075
int i;
2076
2077
for (i = 0; i < a->length; i++)
2078
a->coeff[i] *= scalar;
2079
}
2080
2081
void sws_normalizeVec(SwsVector *a, double height)
2082
{
2083
sws_scaleVec(a, height / sws_dcVec(a));
2084
}
2085
2086
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
2087
{
2088
int length = a->length + b->length - 1;
2089
int i, j;
2090
SwsVector *vec = sws_getConstVec(0.0, length);
2091
2092
if (!vec)
2093
return NULL;
2094
2095
for (i = 0; i < a->length; i++) {
2096
for (j = 0; j < b->length; j++) {
2097
vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
2098
}
2099
}
2100
2101
return vec;
2102
}
2103
2104
static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
2105
{
2106
int length = FFMAX(a->length, b->length);
2107
int i;
2108
SwsVector *vec = sws_getConstVec(0.0, length);
2109
2110
if (!vec)
2111
return NULL;
2112
2113
for (i = 0; i < a->length; i++)
2114
vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
2115
for (i = 0; i < b->length; i++)
2116
vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
2117
2118
return vec;
2119
}
2120
2121
static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
2122
{
2123
int length = FFMAX(a->length, b->length);
2124
int i;
2125
SwsVector *vec = sws_getConstVec(0.0, length);
2126
2127
if (!vec)
2128
return NULL;
2129
2130
for (i = 0; i < a->length; i++)
2131
vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
2132
for (i = 0; i < b->length; i++)
2133
vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
2134
2135
return vec;
2136
}
2137
2138
/* shift left / or right if "shift" is negative */
2139
static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
2140
{
2141
int length = a->length + FFABS(shift) * 2;
2142
int i;
2143
SwsVector *vec = sws_getConstVec(0.0, length);
2144
2145
if (!vec)
2146
return NULL;
2147
2148
for (i = 0; i < a->length; i++) {
2149
vec->coeff[i + (length - 1) / 2 -
2150
(a->length - 1) / 2 - shift] = a->coeff[i];
2151
}
2152
2153
return vec;
2154
}
2155
2156
void sws_shiftVec(SwsVector *a, int shift)
2157
{
2158
SwsVector *shifted = sws_getShiftedVec(a, shift);
2159
if (!shifted) {
2160
makenan_vec(a);
2161
return;
2162
}
2163
av_free(a->coeff);
2164
a->coeff = shifted->coeff;
2165
a->length = shifted->length;
2166
av_free(shifted);
2167
}
2168
2169
void sws_addVec(SwsVector *a, SwsVector *b)
2170
{
2171
SwsVector *sum = sws_sumVec(a, b);
2172
if (!sum) {
2173
makenan_vec(a);
2174
return;
2175
}
2176
av_free(a->coeff);
2177
a->coeff = sum->coeff;
2178
a->length = sum->length;
2179
av_free(sum);
2180
}
2181
2182
void sws_subVec(SwsVector *a, SwsVector *b)
2183
{
2184
SwsVector *diff = sws_diffVec(a, b);
2185
if (!diff) {
2186
makenan_vec(a);
2187
return;
2188
}
2189
av_free(a->coeff);
2190
a->coeff = diff->coeff;
2191
a->length = diff->length;
2192
av_free(diff);
2193
}
2194
2195
void sws_convVec(SwsVector *a, SwsVector *b)
2196
{
2197
SwsVector *conv = sws_getConvVec(a, b);
2198
if (!conv) {
2199
makenan_vec(a);
2200
return;
2201
}
2202
av_free(a->coeff);
2203
a->coeff = conv->coeff;
2204
a->length = conv->length;
2205
av_free(conv);
2206
}
2207
2208
SwsVector *sws_cloneVec(SwsVector *a)
2209
{
2210
SwsVector *vec = sws_allocVec(a->length);
2211
2212
if (!vec)
2213
return NULL;
2214
2215
memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
2216
2217
return vec;
2218
}
2219
2220
void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
2221
{
2222
int i;
2223
double max = 0;
2224
double min = 0;
2225
double range;
2226
2227
for (i = 0; i < a->length; i++)
2228
if (a->coeff[i] > max)
2229
max = a->coeff[i];
2230
2231
for (i = 0; i < a->length; i++)
2232
if (a->coeff[i] < min)
2233
min = a->coeff[i];
2234
2235
range = max - min;
2236
2237
for (i = 0; i < a->length; i++) {
2238
int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
2239
av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
2240
for (; x > 0; x--)
2241
av_log(log_ctx, log_level, " ");
2242
av_log(log_ctx, log_level, "|\n");
2243
}
2244
}
2245
2246
void sws_freeVec(SwsVector *a)
2247
{
2248
if (!a)
2249
return;
2250
av_freep(&a->coeff);
2251
a->length = 0;
2252
av_free(a);
2253
}
2254
2255
void sws_freeFilter(SwsFilter *filter)
2256
{
2257
if (!filter)
2258
return;
2259
2260
sws_freeVec(filter->lumH);
2261
sws_freeVec(filter->lumV);
2262
sws_freeVec(filter->chrH);
2263
sws_freeVec(filter->chrV);
2264
av_free(filter);
2265
}
2266
2267
void sws_freeContext(SwsContext *c)
2268
{
2269
int i;
2270
if (!c)
2271
return;
2272
2273
if (c->lumPixBuf) {
2274
for (i = 0; i < c->vLumBufSize; i++)
2275
av_freep(&c->lumPixBuf[i]);
2276
av_freep(&c->lumPixBuf);
2277
}
2278
2279
if (c->chrUPixBuf) {
2280
for (i = 0; i < c->vChrBufSize; i++)
2281
av_freep(&c->chrUPixBuf[i]);
2282
av_freep(&c->chrUPixBuf);
2283
av_freep(&c->chrVPixBuf);
2284
}
2285
2286
if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
2287
for (i = 0; i < c->vLumBufSize; i++)
2288
av_freep(&c->alpPixBuf[i]);
2289
av_freep(&c->alpPixBuf);
2290
}
2291
2292
for (i = 0; i < 4; i++)
2293
av_freep(&c->dither_error[i]);
2294
2295
av_freep(&c->vLumFilter);
2296
av_freep(&c->vChrFilter);
2297
av_freep(&c->hLumFilter);
2298
av_freep(&c->hChrFilter);
2299
#if HAVE_ALTIVEC
2300
av_freep(&c->vYCoeffsBank);
2301
av_freep(&c->vCCoeffsBank);
2302
#endif
2303
2304
av_freep(&c->vLumFilterPos);
2305
av_freep(&c->vChrFilterPos);
2306
av_freep(&c->hLumFilterPos);
2307
av_freep(&c->hChrFilterPos);
2308
2309
#if HAVE_MMX_INLINE
2310
#if USE_MMAP
2311
if (c->lumMmxextFilterCode)
2312
munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
2313
if (c->chrMmxextFilterCode)
2314
munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
2315
#elif HAVE_VIRTUALALLOC
2316
if (c->lumMmxextFilterCode)
2317
VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
2318
if (c->chrMmxextFilterCode)
2319
VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
2320
#else
2321
av_free(c->lumMmxextFilterCode);
2322
av_free(c->chrMmxextFilterCode);
2323
#endif
2324
c->lumMmxextFilterCode = NULL;
2325
c->chrMmxextFilterCode = NULL;
2326
#endif /* HAVE_MMX_INLINE */
2327
2328
av_freep(&c->yuvTable);
2329
av_freep(&c->formatConvBuffer);
2330
2331
sws_freeContext(c->cascaded_context[0]);
2332
sws_freeContext(c->cascaded_context[1]);
2333
sws_freeContext(c->cascaded_context[2]);
2334
memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
2335
av_freep(&c->cascaded_tmp[0]);
2336
av_freep(&c->cascaded1_tmp[0]);
2337
2338
av_freep(&c->gamma);
2339
av_freep(&c->inv_gamma);
2340
2341
ff_free_filters(c);
2342
2343
av_free(c);
2344
}
2345
2346
struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
2347
int srcH, enum AVPixelFormat srcFormat,
2348
int dstW, int dstH,
2349
enum AVPixelFormat dstFormat, int flags,
2350
SwsFilter *srcFilter,
2351
SwsFilter *dstFilter,
2352
const double *param)
2353
{
2354
static const double default_param[2] = { SWS_PARAM_DEFAULT,
2355
SWS_PARAM_DEFAULT };
2356
int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
2357
src_v_chr_pos = -513, dst_v_chr_pos = -513;
2358
2359
if (!param)
2360
param = default_param;
2361
2362
if (context &&
2363
(context->srcW != srcW ||
2364
context->srcH != srcH ||
2365
context->srcFormat != srcFormat ||
2366
context->dstW != dstW ||
2367
context->dstH != dstH ||
2368
context->dstFormat != dstFormat ||
2369
context->flags != flags ||
2370
context->param[0] != param[0] ||
2371
context->param[1] != param[1])) {
2372
2373
av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
2374
av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
2375
av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
2376
av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
2377
sws_freeContext(context);
2378
context = NULL;
2379
}
2380
2381
if (!context) {
2382
if (!(context = sws_alloc_context()))
2383
return NULL;
2384
context->srcW = srcW;
2385
context->srcH = srcH;
2386
context->srcFormat = srcFormat;
2387
context->dstW = dstW;
2388
context->dstH = dstH;
2389
context->dstFormat = dstFormat;
2390
context->flags = flags;
2391
context->param[0] = param[0];
2392
context->param[1] = param[1];
2393
2394
av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
2395
av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
2396
av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
2397
av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
2398
2399
if (sws_init_context(context, srcFilter, dstFilter) < 0) {
2400
sws_freeContext(context);
2401
return NULL;
2402
}
2403
}
2404
return context;
2405
}
2406
2407