Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
52867 views
1
/*****************************************************************************
2
* common.h: misc common functions
3
*****************************************************************************
4
* Copyright (C) 2003-2016 x264 project
5
*
6
* Authors: Laurent Aimar <[email protected]>
7
* Loren Merritt <[email protected]>
8
*
9
* This program is free software; you can redistribute it and/or modify
10
* it under the terms of the GNU General Public License as published by
11
* the Free Software Foundation; either version 2 of the License, or
12
* (at your option) any later version.
13
*
14
* This program is distributed in the hope that it will be useful,
15
* but WITHOUT ANY WARRANTY; without even the implied warranty of
16
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17
* GNU General Public License for more details.
18
*
19
* You should have received a copy of the GNU General Public License
20
* along with this program; if not, write to the Free Software
21
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
22
*
23
* This program is also available under a commercial proprietary license.
24
* For more information, contact us at [email protected].
25
*****************************************************************************/
26
27
#ifndef X264_COMMON_H
28
#define X264_COMMON_H
29
30
/****************************************************************************
31
* Macros
32
****************************************************************************/
33
#define X264_MIN(a,b) ( (a)<(b) ? (a) : (b) )
34
#define X264_MAX(a,b) ( (a)>(b) ? (a) : (b) )
35
#define X264_MIN3(a,b,c) X264_MIN((a),X264_MIN((b),(c)))
36
#define X264_MAX3(a,b,c) X264_MAX((a),X264_MAX((b),(c)))
37
#define X264_MIN4(a,b,c,d) X264_MIN((a),X264_MIN3((b),(c),(d)))
38
#define X264_MAX4(a,b,c,d) X264_MAX((a),X264_MAX3((b),(c),(d)))
39
#define XCHG(type,a,b) do{ type t = a; a = b; b = t; } while(0)
40
#define IS_DISPOSABLE(type) ( type == X264_TYPE_B )
41
#define FIX8(f) ((int)(f*(1<<8)+.5))
42
#define ALIGN(x,a) (((x)+((a)-1))&~((a)-1))
43
#define ARRAY_ELEMS(a) ((sizeof(a))/(sizeof(a[0])))
44
45
#define CHECKED_MALLOC( var, size )\
46
do {\
47
var = x264_malloc( size );\
48
if( !var )\
49
goto fail;\
50
} while( 0 )
51
#define CHECKED_MALLOCZERO( var, size )\
52
do {\
53
CHECKED_MALLOC( var, size );\
54
memset( var, 0, size );\
55
} while( 0 )
56
57
/* Macros for merging multiple allocations into a single large malloc, for improved
58
* use with huge pages. */
59
60
/* Needs to be enough to contain any set of buffers that use combined allocations */
61
#define PREALLOC_BUF_SIZE 1024
62
63
#define PREALLOC_INIT\
64
int prealloc_idx = 0;\
65
size_t prealloc_size = 0;\
66
uint8_t **preallocs[PREALLOC_BUF_SIZE];
67
68
#define PREALLOC( var, size )\
69
do {\
70
var = (void*)prealloc_size;\
71
preallocs[prealloc_idx++] = (uint8_t**)&var;\
72
prealloc_size += ALIGN(size, NATIVE_ALIGN);\
73
} while(0)
74
75
#define PREALLOC_END( ptr )\
76
do {\
77
CHECKED_MALLOC( ptr, prealloc_size );\
78
while( prealloc_idx-- )\
79
*preallocs[prealloc_idx] += (intptr_t)ptr;\
80
} while(0)
81
82
#define ARRAY_SIZE(array) (sizeof(array)/sizeof(array[0]))
83
84
#define X264_BFRAME_MAX 16
85
#define X264_REF_MAX 16
86
#define X264_THREAD_MAX 128
87
#define X264_LOOKAHEAD_THREAD_MAX 16
88
#define X264_PCM_COST (FRAME_SIZE(256*BIT_DEPTH)+16)
89
#define X264_LOOKAHEAD_MAX 250
90
#define QP_BD_OFFSET (6*(BIT_DEPTH-8))
91
#define QP_MAX_SPEC (51+QP_BD_OFFSET)
92
#define QP_MAX (QP_MAX_SPEC+18)
93
#define QP_MAX_MAX (51+2*6+18)
94
#define PIXEL_MAX ((1 << BIT_DEPTH)-1)
95
// arbitrary, but low because SATD scores are 1/4 normal
96
#define X264_LOOKAHEAD_QP (12+QP_BD_OFFSET)
97
#define SPEC_QP(x) X264_MIN((x), QP_MAX_SPEC)
98
99
// number of pixels (per thread) in progress at any given time.
100
// 16 for the macroblock in progress + 3 for deblocking + 3 for motion compensation filter + 2 for extra safety
101
#define X264_THREAD_HEIGHT 24
102
103
/* WEIGHTP_FAKE is set when mb_tree & psy are enabled, but normal weightp is disabled
104
* (such as in baseline). It checks for fades in lookahead and adjusts qp accordingly
105
* to increase quality. Defined as (-1) so that if(i_weighted_pred > 0) is true only when
106
* real weights are being used. */
107
108
#define X264_WEIGHTP_FAKE (-1)
109
110
#define NALU_OVERHEAD 5 // startcode + NAL type costs 5 bytes per frame
111
#define FILLER_OVERHEAD (NALU_OVERHEAD+1)
112
#define SEI_OVERHEAD (NALU_OVERHEAD - (h->param.b_annexb && !h->param.i_avcintra_class && (h->out.i_nal-1)))
113
114
/****************************************************************************
115
* Includes
116
****************************************************************************/
117
#include "osdep.h"
118
#include <stdarg.h>
119
#include <stddef.h>
120
#include <stdlib.h>
121
#include <string.h>
122
#include <assert.h>
123
#include <limits.h>
124
125
#if HAVE_INTERLACED
126
# define MB_INTERLACED h->mb.b_interlaced
127
# define SLICE_MBAFF h->sh.b_mbaff
128
# define PARAM_INTERLACED h->param.b_interlaced
129
#else
130
# define MB_INTERLACED 0
131
# define SLICE_MBAFF 0
132
# define PARAM_INTERLACED 0
133
#endif
134
135
#ifdef CHROMA_FORMAT
136
# define CHROMA_H_SHIFT (CHROMA_FORMAT == CHROMA_420 || CHROMA_FORMAT == CHROMA_422)
137
# define CHROMA_V_SHIFT (CHROMA_FORMAT == CHROMA_420)
138
#else
139
# define CHROMA_FORMAT h->sps->i_chroma_format_idc
140
# define CHROMA_H_SHIFT h->mb.chroma_h_shift
141
# define CHROMA_V_SHIFT h->mb.chroma_v_shift
142
#endif
143
144
#define CHROMA_SIZE(s) ((s)>>(CHROMA_H_SHIFT+CHROMA_V_SHIFT))
145
#define FRAME_SIZE(s) ((s)+2*CHROMA_SIZE(s))
146
#define CHROMA444 (CHROMA_FORMAT == CHROMA_444)
147
148
/* Unions for type-punning.
149
* Mn: load or store n bits, aligned, native-endian
150
* CPn: copy n bits, aligned, native-endian
151
* we don't use memcpy for CPn because memcpy's args aren't assumed to be aligned */
152
typedef union { uint16_t i; uint8_t c[2]; } MAY_ALIAS x264_union16_t;
153
typedef union { uint32_t i; uint16_t b[2]; uint8_t c[4]; } MAY_ALIAS x264_union32_t;
154
typedef union { uint64_t i; uint32_t a[2]; uint16_t b[4]; uint8_t c[8]; } MAY_ALIAS x264_union64_t;
155
typedef struct { uint64_t i[2]; } x264_uint128_t;
156
typedef union { x264_uint128_t i; uint64_t a[2]; uint32_t b[4]; uint16_t c[8]; uint8_t d[16]; } MAY_ALIAS x264_union128_t;
157
#define M16(src) (((x264_union16_t*)(src))->i)
158
#define M32(src) (((x264_union32_t*)(src))->i)
159
#define M64(src) (((x264_union64_t*)(src))->i)
160
#define M128(src) (((x264_union128_t*)(src))->i)
161
#define M128_ZERO ((x264_uint128_t){{0,0}})
162
#define CP16(dst,src) M16(dst) = M16(src)
163
#define CP32(dst,src) M32(dst) = M32(src)
164
#define CP64(dst,src) M64(dst) = M64(src)
165
#define CP128(dst,src) M128(dst) = M128(src)
166
167
#if HIGH_BIT_DEPTH
168
typedef uint16_t pixel;
169
typedef uint64_t pixel4;
170
typedef int32_t dctcoef;
171
typedef uint32_t udctcoef;
172
173
# define PIXEL_SPLAT_X4(x) ((x)*0x0001000100010001ULL)
174
# define MPIXEL_X4(src) M64(src)
175
#else
176
typedef uint8_t pixel;
177
typedef uint32_t pixel4;
178
typedef int16_t dctcoef;
179
typedef uint16_t udctcoef;
180
181
# define PIXEL_SPLAT_X4(x) ((x)*0x01010101U)
182
# define MPIXEL_X4(src) M32(src)
183
#endif
184
185
#define BIT_DEPTH X264_BIT_DEPTH
186
187
#define CPPIXEL_X4(dst,src) MPIXEL_X4(dst) = MPIXEL_X4(src)
188
189
#define X264_SCAN8_LUMA_SIZE (5*8)
190
#define X264_SCAN8_SIZE (X264_SCAN8_LUMA_SIZE*3)
191
#define X264_SCAN8_0 (4+1*8)
192
193
/* Scan8 organization:
194
* 0 1 2 3 4 5 6 7
195
* 0 DY y y y y y
196
* 1 y Y Y Y Y
197
* 2 y Y Y Y Y
198
* 3 y Y Y Y Y
199
* 4 y Y Y Y Y
200
* 5 DU u u u u u
201
* 6 u U U U U
202
* 7 u U U U U
203
* 8 u U U U U
204
* 9 u U U U U
205
* 10 DV v v v v v
206
* 11 v V V V V
207
* 12 v V V V V
208
* 13 v V V V V
209
* 14 v V V V V
210
* DY/DU/DV are for luma/chroma DC.
211
*/
212
213
#define LUMA_DC 48
214
#define CHROMA_DC 49
215
216
static const uint8_t x264_scan8[16*3 + 3] =
217
{
218
4+ 1*8, 5+ 1*8, 4+ 2*8, 5+ 2*8,
219
6+ 1*8, 7+ 1*8, 6+ 2*8, 7+ 2*8,
220
4+ 3*8, 5+ 3*8, 4+ 4*8, 5+ 4*8,
221
6+ 3*8, 7+ 3*8, 6+ 4*8, 7+ 4*8,
222
4+ 6*8, 5+ 6*8, 4+ 7*8, 5+ 7*8,
223
6+ 6*8, 7+ 6*8, 6+ 7*8, 7+ 7*8,
224
4+ 8*8, 5+ 8*8, 4+ 9*8, 5+ 9*8,
225
6+ 8*8, 7+ 8*8, 6+ 9*8, 7+ 9*8,
226
4+11*8, 5+11*8, 4+12*8, 5+12*8,
227
6+11*8, 7+11*8, 6+12*8, 7+12*8,
228
4+13*8, 5+13*8, 4+14*8, 5+14*8,
229
6+13*8, 7+13*8, 6+14*8, 7+14*8,
230
0+ 0*8, 0+ 5*8, 0+10*8
231
};
232
233
#include "x264.h"
234
#if HAVE_OPENCL
235
#include "opencl.h"
236
#endif
237
#include "cabac.h"
238
#include "bitstream.h"
239
#include "set.h"
240
#include "predict.h"
241
#include "pixel.h"
242
#include "mc.h"
243
#include "frame.h"
244
#include "dct.h"
245
#include "quant.h"
246
#include "cpu.h"
247
#include "threadpool.h"
248
249
/****************************************************************************
250
* General functions
251
****************************************************************************/
252
/* x264_malloc : will do or emulate a memalign
253
* you have to use x264_free for buffers allocated with x264_malloc */
254
void *x264_malloc( int );
255
void x264_free( void * );
256
257
/* x264_slurp_file: malloc space for the whole file and read it */
258
char *x264_slurp_file( const char *filename );
259
260
/* mdate: return the current date in microsecond */
261
int64_t x264_mdate( void );
262
263
/* x264_param2string: return a (malloced) string containing most of
264
* the encoding options */
265
char *x264_param2string( x264_param_t *p, int b_res );
266
267
/* log */
268
void x264_log( x264_t *h, int i_level, const char *psz_fmt, ... );
269
270
void x264_reduce_fraction( uint32_t *n, uint32_t *d );
271
void x264_reduce_fraction64( uint64_t *n, uint64_t *d );
272
void x264_cavlc_init( x264_t *h );
273
void x264_cabac_init( x264_t *h );
274
275
static ALWAYS_INLINE pixel x264_clip_pixel( int x )
276
{
277
return ( (x & ~PIXEL_MAX) ? (-x)>>31 & PIXEL_MAX : x );
278
}
279
280
static ALWAYS_INLINE int x264_clip3( int v, int i_min, int i_max )
281
{
282
return ( (v < i_min) ? i_min : (v > i_max) ? i_max : v );
283
}
284
285
static ALWAYS_INLINE double x264_clip3f( double v, double f_min, double f_max )
286
{
287
return ( (v < f_min) ? f_min : (v > f_max) ? f_max : v );
288
}
289
290
static ALWAYS_INLINE int x264_median( int a, int b, int c )
291
{
292
int t = (a-b)&((a-b)>>31);
293
a -= t;
294
b += t;
295
b -= (b-c)&((b-c)>>31);
296
b += (a-b)&((a-b)>>31);
297
return b;
298
}
299
300
static ALWAYS_INLINE void x264_median_mv( int16_t *dst, int16_t *a, int16_t *b, int16_t *c )
301
{
302
dst[0] = x264_median( a[0], b[0], c[0] );
303
dst[1] = x264_median( a[1], b[1], c[1] );
304
}
305
306
static ALWAYS_INLINE int x264_predictor_difference( int16_t (*mvc)[2], intptr_t i_mvc )
307
{
308
int sum = 0;
309
for( int i = 0; i < i_mvc-1; i++ )
310
{
311
sum += abs( mvc[i][0] - mvc[i+1][0] )
312
+ abs( mvc[i][1] - mvc[i+1][1] );
313
}
314
return sum;
315
}
316
317
static ALWAYS_INLINE uint16_t x264_cabac_mvd_sum( uint8_t *mvdleft, uint8_t *mvdtop )
318
{
319
int amvd0 = mvdleft[0] + mvdtop[0];
320
int amvd1 = mvdleft[1] + mvdtop[1];
321
amvd0 = (amvd0 > 2) + (amvd0 > 32);
322
amvd1 = (amvd1 > 2) + (amvd1 > 32);
323
return amvd0 + (amvd1<<8);
324
}
325
326
extern const uint8_t x264_exp2_lut[64];
327
extern const float x264_log2_lut[128];
328
extern const float x264_log2_lz_lut[32];
329
330
/* Not a general-purpose function; multiplies input by -1/6 to convert
331
* qp to qscale. */
332
static ALWAYS_INLINE int x264_exp2fix8( float x )
333
{
334
int i = x*(-64.f/6.f) + 512.5f;
335
if( i < 0 ) return 0;
336
if( i > 1023 ) return 0xffff;
337
return (x264_exp2_lut[i&63]+256) << (i>>6) >> 8;
338
}
339
340
static ALWAYS_INLINE float x264_log2( uint32_t x )
341
{
342
int lz = x264_clz( x );
343
return x264_log2_lut[(x<<lz>>24)&0x7f] + x264_log2_lz_lut[lz];
344
}
345
346
/****************************************************************************
347
*
348
****************************************************************************/
349
enum slice_type_e
350
{
351
SLICE_TYPE_P = 0,
352
SLICE_TYPE_B = 1,
353
SLICE_TYPE_I = 2,
354
};
355
356
static const char slice_type_to_char[] = { 'P', 'B', 'I' };
357
358
enum sei_payload_type_e
359
{
360
SEI_BUFFERING_PERIOD = 0,
361
SEI_PIC_TIMING = 1,
362
SEI_PAN_SCAN_RECT = 2,
363
SEI_FILLER = 3,
364
SEI_USER_DATA_REGISTERED = 4,
365
SEI_USER_DATA_UNREGISTERED = 5,
366
SEI_RECOVERY_POINT = 6,
367
SEI_DEC_REF_PIC_MARKING = 7,
368
SEI_FRAME_PACKING = 45,
369
};
370
371
typedef struct
372
{
373
x264_sps_t *sps;
374
x264_pps_t *pps;
375
376
int i_type;
377
int i_first_mb;
378
int i_last_mb;
379
380
int i_pps_id;
381
382
int i_frame_num;
383
384
int b_mbaff;
385
int b_field_pic;
386
int b_bottom_field;
387
388
int i_idr_pic_id; /* -1 if nal_type != 5 */
389
390
int i_poc;
391
int i_delta_poc_bottom;
392
393
int i_delta_poc[2];
394
int i_redundant_pic_cnt;
395
396
int b_direct_spatial_mv_pred;
397
398
int b_num_ref_idx_override;
399
int i_num_ref_idx_l0_active;
400
int i_num_ref_idx_l1_active;
401
402
int b_ref_pic_list_reordering[2];
403
struct
404
{
405
int idc;
406
int arg;
407
} ref_pic_list_order[2][X264_REF_MAX];
408
409
/* P-frame weighting */
410
int b_weighted_pred;
411
x264_weight_t weight[X264_REF_MAX*2][3];
412
413
int i_mmco_remove_from_end;
414
int i_mmco_command_count;
415
struct /* struct for future expansion */
416
{
417
int i_difference_of_pic_nums;
418
int i_poc;
419
} mmco[X264_REF_MAX];
420
421
int i_cabac_init_idc;
422
423
int i_qp;
424
int i_qp_delta;
425
int b_sp_for_swidth;
426
int i_qs_delta;
427
428
/* deblocking filter */
429
int i_disable_deblocking_filter_idc;
430
int i_alpha_c0_offset;
431
int i_beta_offset;
432
433
} x264_slice_header_t;
434
435
typedef struct x264_lookahead_t
436
{
437
volatile uint8_t b_exit_thread;
438
uint8_t b_thread_active;
439
uint8_t b_analyse_keyframe;
440
int i_last_keyframe;
441
int i_slicetype_length;
442
x264_frame_t *last_nonb;
443
x264_pthread_t thread_handle;
444
x264_sync_frame_list_t ifbuf;
445
x264_sync_frame_list_t next;
446
x264_sync_frame_list_t ofbuf;
447
} x264_lookahead_t;
448
449
typedef struct x264_ratecontrol_t x264_ratecontrol_t;
450
451
typedef struct x264_left_table_t
452
{
453
uint8_t intra[4];
454
uint8_t nnz[4];
455
uint8_t nnz_chroma[4];
456
uint8_t mv[4];
457
uint8_t ref[4];
458
} x264_left_table_t;
459
460
/* Current frame stats */
461
typedef struct
462
{
463
/* MV bits (MV+Ref+Block Type) */
464
int i_mv_bits;
465
/* Texture bits (DCT coefs) */
466
int i_tex_bits;
467
/* ? */
468
int i_misc_bits;
469
/* MB type counts */
470
int i_mb_count[19];
471
int i_mb_count_i;
472
int i_mb_count_p;
473
int i_mb_count_skip;
474
int i_mb_count_8x8dct[2];
475
int i_mb_count_ref[2][X264_REF_MAX*2];
476
int i_mb_partition[17];
477
int i_mb_cbp[6];
478
int i_mb_pred_mode[4][13];
479
int i_mb_field[3];
480
/* Adaptive direct mv pred */
481
int i_direct_score[2];
482
/* Metrics */
483
int64_t i_ssd[3];
484
double f_ssim;
485
int i_ssim_cnt;
486
} x264_frame_stat_t;
487
488
struct x264_t
489
{
490
/* encoder parameters */
491
x264_param_t param;
492
493
x264_t *thread[X264_THREAD_MAX+1];
494
x264_t *lookahead_thread[X264_LOOKAHEAD_THREAD_MAX];
495
int b_thread_active;
496
int i_thread_phase; /* which thread to use for the next frame */
497
int i_thread_idx; /* which thread this is */
498
int i_threadslice_start; /* first row in this thread slice */
499
int i_threadslice_end; /* row after the end of this thread slice */
500
int i_threadslice_pass; /* which pass of encoding we are on */
501
x264_threadpool_t *threadpool;
502
x264_threadpool_t *lookaheadpool;
503
x264_pthread_mutex_t mutex;
504
x264_pthread_cond_t cv;
505
506
/* bitstream output */
507
struct
508
{
509
int i_nal;
510
int i_nals_allocated;
511
x264_nal_t *nal;
512
int i_bitstream; /* size of p_bitstream */
513
uint8_t *p_bitstream; /* will hold data for all nal */
514
bs_t bs;
515
} out;
516
517
uint8_t *nal_buffer;
518
int nal_buffer_size;
519
520
x264_t *reconfig_h;
521
int reconfig;
522
523
/**** thread synchronization starts here ****/
524
525
/* frame number/poc */
526
int i_frame;
527
int i_frame_num;
528
529
int i_thread_frames; /* Number of different frames being encoded by threads;
530
* 1 when sliced-threads is on. */
531
int i_nal_type;
532
int i_nal_ref_idc;
533
534
int64_t i_disp_fields; /* Number of displayed fields (both coded and implied via pic_struct) */
535
int i_disp_fields_last_frame;
536
int64_t i_prev_duration; /* Duration of previous frame */
537
int64_t i_coded_fields; /* Number of coded fields (both coded and implied via pic_struct) */
538
int64_t i_cpb_delay; /* Equal to number of fields preceding this field
539
* since last buffering_period SEI */
540
int64_t i_coded_fields_lookahead; /* Use separate counters for lookahead */
541
int64_t i_cpb_delay_lookahead;
542
543
int64_t i_cpb_delay_pir_offset;
544
int64_t i_cpb_delay_pir_offset_next;
545
546
int b_queued_intra_refresh;
547
int64_t i_last_idr_pts;
548
549
int i_idr_pic_id;
550
551
/* quantization matrix for decoding, [cqm][qp%6][coef] */
552
int (*dequant4_mf[4])[16]; /* [4][6][16] */
553
int (*dequant8_mf[4])[64]; /* [4][6][64] */
554
/* quantization matrix for trellis, [cqm][qp][coef] */
555
int (*unquant4_mf[4])[16]; /* [4][QP_MAX_SPEC+1][16] */
556
int (*unquant8_mf[4])[64]; /* [4][QP_MAX_SPEC+1][64] */
557
/* quantization matrix for deadzone */
558
udctcoef (*quant4_mf[4])[16]; /* [4][QP_MAX_SPEC+1][16] */
559
udctcoef (*quant8_mf[4])[64]; /* [4][QP_MAX_SPEC+1][64] */
560
udctcoef (*quant4_bias[4])[16]; /* [4][QP_MAX_SPEC+1][16] */
561
udctcoef (*quant8_bias[4])[64]; /* [4][QP_MAX_SPEC+1][64] */
562
udctcoef (*quant4_bias0[4])[16]; /* [4][QP_MAX_SPEC+1][16] */
563
udctcoef (*quant8_bias0[4])[64]; /* [4][QP_MAX_SPEC+1][64] */
564
udctcoef (*nr_offset_emergency)[4][64];
565
566
/* mv/ref cost arrays. */
567
uint16_t *cost_mv[QP_MAX+1];
568
uint16_t *cost_mv_fpel[QP_MAX+1][4];
569
570
const uint8_t *chroma_qp_table; /* includes both the nonlinear luma->chroma mapping and chroma_qp_offset */
571
572
/* Slice header */
573
x264_slice_header_t sh;
574
575
/* SPS / PPS */
576
x264_sps_t sps[1];
577
x264_pps_t pps[1];
578
579
/* Slice header backup, for SEI_DEC_REF_PIC_MARKING */
580
int b_sh_backup;
581
x264_slice_header_t sh_backup;
582
583
/* cabac context */
584
x264_cabac_t cabac;
585
586
struct
587
{
588
/* Frames to be encoded (whose types have been decided) */
589
x264_frame_t **current;
590
/* Unused frames: 0 = fenc, 1 = fdec */
591
x264_frame_t **unused[2];
592
593
/* Unused blank frames (for duplicates) */
594
x264_frame_t **blank_unused;
595
596
/* frames used for reference + sentinels */
597
x264_frame_t *reference[X264_REF_MAX+2];
598
599
int i_last_keyframe; /* Frame number of the last keyframe */
600
int i_last_idr; /* Frame number of the last IDR (not RP)*/
601
int i_poc_last_open_gop; /* Poc of the I frame of the last open-gop. The value
602
* is only assigned during the period between that
603
* I frame and the next P or I frame, else -1 */
604
605
int i_input; /* Number of input frames already accepted */
606
607
int i_max_dpb; /* Number of frames allocated in the decoded picture buffer */
608
int i_max_ref0;
609
int i_max_ref1;
610
int i_delay; /* Number of frames buffered for B reordering */
611
int i_bframe_delay;
612
int64_t i_bframe_delay_time;
613
int64_t i_first_pts;
614
int64_t i_prev_reordered_pts[2];
615
int64_t i_largest_pts;
616
int64_t i_second_largest_pts;
617
int b_have_lowres; /* Whether 1/2 resolution luma planes are being used */
618
int b_have_sub8x8_esa;
619
} frames;
620
621
/* current frame being encoded */
622
x264_frame_t *fenc;
623
624
/* frame being reconstructed */
625
x264_frame_t *fdec;
626
627
/* references lists */
628
int i_ref[2];
629
x264_frame_t *fref[2][X264_REF_MAX+3];
630
x264_frame_t *fref_nearest[2];
631
int b_ref_reorder[2];
632
633
/* hrd */
634
int initial_cpb_removal_delay;
635
int initial_cpb_removal_delay_offset;
636
int64_t i_reordered_pts_delay;
637
638
/* Current MB DCT coeffs */
639
struct
640
{
641
ALIGNED_N( dctcoef luma16x16_dc[3][16] );
642
ALIGNED_16( dctcoef chroma_dc[2][8] );
643
// FIXME share memory?
644
ALIGNED_N( dctcoef luma8x8[12][64] );
645
ALIGNED_N( dctcoef luma4x4[16*3][16] );
646
} dct;
647
648
/* MB table and cache for current frame/mb */
649
struct
650
{
651
int i_mb_width;
652
int i_mb_height;
653
int i_mb_count; /* number of mbs in a frame */
654
655
/* Chroma subsampling */
656
int chroma_h_shift;
657
int chroma_v_shift;
658
659
/* Strides */
660
int i_mb_stride;
661
int i_b8_stride;
662
int i_b4_stride;
663
int left_b8[2];
664
int left_b4[2];
665
666
/* Current index */
667
int i_mb_x;
668
int i_mb_y;
669
int i_mb_xy;
670
int i_b8_xy;
671
int i_b4_xy;
672
673
/* Search parameters */
674
int i_me_method;
675
int i_subpel_refine;
676
int b_chroma_me;
677
int b_trellis;
678
int b_noise_reduction;
679
int b_dct_decimate;
680
int i_psy_rd; /* Psy RD strength--fixed point value*/
681
int i_psy_trellis; /* Psy trellis strength--fixed point value*/
682
683
int b_interlaced;
684
int b_adaptive_mbaff; /* MBAFF+subme 0 requires non-adaptive MBAFF i.e. all field mbs */
685
686
/* Allowed qpel MV range to stay within the picture + emulated edge pixels */
687
int mv_min[2];
688
int mv_max[2];
689
int mv_miny_row[3]; /* 0 == top progressive, 1 == bot progressive, 2 == interlaced */
690
int mv_maxy_row[3];
691
/* Subpel MV range for motion search.
692
* same mv_min/max but includes levels' i_mv_range. */
693
int mv_min_spel[2];
694
int mv_max_spel[2];
695
int mv_miny_spel_row[3];
696
int mv_maxy_spel_row[3];
697
/* Fullpel MV range for motion search */
698
ALIGNED_8( int16_t mv_limit_fpel[2][2] ); /* min_x, min_y, max_x, max_y */
699
int mv_miny_fpel_row[3];
700
int mv_maxy_fpel_row[3];
701
702
/* neighboring MBs */
703
unsigned int i_neighbour;
704
unsigned int i_neighbour8[4]; /* neighbours of each 8x8 or 4x4 block that are available */
705
unsigned int i_neighbour4[16]; /* at the time the block is coded */
706
unsigned int i_neighbour_intra; /* for constrained intra pred */
707
unsigned int i_neighbour_frame; /* ignoring slice boundaries */
708
int i_mb_type_top;
709
int i_mb_type_left[2];
710
int i_mb_type_topleft;
711
int i_mb_type_topright;
712
int i_mb_prev_xy;
713
int i_mb_left_xy[2];
714
int i_mb_top_xy;
715
int i_mb_topleft_xy;
716
int i_mb_topright_xy;
717
int i_mb_top_y;
718
int i_mb_topleft_y;
719
int i_mb_topright_y;
720
const x264_left_table_t *left_index_table;
721
int i_mb_top_mbpair_xy;
722
int topleft_partition;
723
int b_allow_skip;
724
int field_decoding_flag;
725
726
/**** thread synchronization ends here ****/
727
/* subsequent variables are either thread-local or constant,
728
* and won't be copied from one thread to another */
729
730
/* mb table */
731
uint8_t *base; /* base pointer for all malloced data in this mb */
732
int8_t *type; /* mb type */
733
uint8_t *partition; /* mb partition */
734
int8_t *qp; /* mb qp */
735
int16_t *cbp; /* mb cbp: 0x0?: luma, 0x?0: chroma, 0x100: luma dc, 0x0200 and 0x0400: chroma dc (all set for PCM)*/
736
int8_t (*intra4x4_pred_mode)[8]; /* intra4x4 pred mode. for non I4x4 set to I_PRED_4x4_DC(2) */
737
/* actually has only 7 entries; set to 8 for write-combining optimizations */
738
uint8_t (*non_zero_count)[16*3]; /* nzc. for I_PCM set to 16 */
739
int8_t *chroma_pred_mode; /* chroma_pred_mode. cabac only. for non intra I_PRED_CHROMA_DC(0) */
740
int16_t (*mv[2])[2]; /* mb mv. set to 0 for intra mb */
741
uint8_t (*mvd[2])[8][2]; /* absolute value of mb mv difference with predict, clipped to [0,33]. set to 0 if intra. cabac only */
742
int8_t *ref[2]; /* mb ref. set to -1 if non used (intra or Lx only) */
743
int16_t (*mvr[2][X264_REF_MAX*2])[2];/* 16x16 mv for each possible ref */
744
int8_t *skipbp; /* block pattern for SKIP or DIRECT (sub)mbs. B-frames + cabac only */
745
int8_t *mb_transform_size; /* transform_size_8x8_flag of each mb */
746
uint16_t *slice_table; /* sh->first_mb of the slice that the indexed mb is part of
747
* NOTE: this will fail on resolutions above 2^16 MBs... */
748
uint8_t *field;
749
750
/* buffer for weighted versions of the reference frames */
751
pixel *p_weight_buf[X264_REF_MAX];
752
753
/* current value */
754
int i_type;
755
int i_partition;
756
ALIGNED_4( uint8_t i_sub_partition[4] );
757
int b_transform_8x8;
758
759
int i_cbp_luma;
760
int i_cbp_chroma;
761
762
int i_intra16x16_pred_mode;
763
int i_chroma_pred_mode;
764
765
/* skip flags for i4x4 and i8x8
766
* 0 = encode as normal.
767
* 1 (non-RD only) = the DCT is still in h->dct, restore fdec and skip reconstruction.
768
* 2 (RD only) = the DCT has since been overwritten by RD; restore that too. */
769
int i_skip_intra;
770
/* skip flag for motion compensation */
771
/* if we've already done MC, we don't need to do it again */
772
int b_skip_mc;
773
/* set to true if we are re-encoding a macroblock. */
774
int b_reencode_mb;
775
int ip_offset; /* Used by PIR to offset the quantizer of intra-refresh blocks. */
776
int b_deblock_rdo;
777
int b_overflow; /* If CAVLC had a level code overflow during bitstream writing. */
778
779
struct
780
{
781
/* space for p_fenc and p_fdec */
782
#define FENC_STRIDE 16
783
#define FDEC_STRIDE 32
784
ALIGNED_16( pixel fenc_buf[48*FENC_STRIDE] );
785
ALIGNED_N( pixel fdec_buf[52*FDEC_STRIDE] );
786
787
/* i4x4 and i8x8 backup data, for skipping the encode stage when possible */
788
ALIGNED_16( pixel i4x4_fdec_buf[16*16] );
789
ALIGNED_16( pixel i8x8_fdec_buf[16*16] );
790
ALIGNED_16( dctcoef i8x8_dct_buf[3][64] );
791
ALIGNED_16( dctcoef i4x4_dct_buf[15][16] );
792
uint32_t i4x4_nnz_buf[4];
793
uint32_t i8x8_nnz_buf[4];
794
int i4x4_cbp;
795
int i8x8_cbp;
796
797
/* Psy trellis DCT data */
798
ALIGNED_16( dctcoef fenc_dct8[4][64] );
799
ALIGNED_16( dctcoef fenc_dct4[16][16] );
800
801
/* Psy RD SATD/SA8D scores cache */
802
ALIGNED_N( uint64_t fenc_hadamard_cache[9] );
803
ALIGNED_N( uint32_t fenc_satd_cache[32] );
804
805
/* pointer over mb of the frame to be compressed */
806
pixel *p_fenc[3]; /* y,u,v */
807
/* pointer to the actual source frame, not a block copy */
808
pixel *p_fenc_plane[3];
809
810
/* pointer over mb of the frame to be reconstructed */
811
pixel *p_fdec[3];
812
813
/* pointer over mb of the references */
814
int i_fref[2];
815
/* [12]: yN, yH, yV, yHV, (NV12 ? uv : I444 ? (uN, uH, uV, uHV, vN, ...)) */
816
pixel *p_fref[2][X264_REF_MAX*2][12];
817
pixel *p_fref_w[X264_REF_MAX*2]; /* weighted fullpel luma */
818
uint16_t *p_integral[2][X264_REF_MAX];
819
820
/* fref stride */
821
int i_stride[3];
822
} pic;
823
824
/* cache */
825
struct
826
{
827
/* real intra4x4_pred_mode if I_4X4 or I_8X8, I_PRED_4x4_DC if mb available, -1 if not */
828
ALIGNED_8( int8_t intra4x4_pred_mode[X264_SCAN8_LUMA_SIZE] );
829
830
/* i_non_zero_count if available else 0x80 */
831
ALIGNED_16( uint8_t non_zero_count[X264_SCAN8_SIZE] );
832
833
/* -1 if unused, -2 if unavailable */
834
ALIGNED_4( int8_t ref[2][X264_SCAN8_LUMA_SIZE] );
835
836
/* 0 if not available */
837
ALIGNED_16( int16_t mv[2][X264_SCAN8_LUMA_SIZE][2] );
838
ALIGNED_8( uint8_t mvd[2][X264_SCAN8_LUMA_SIZE][2] );
839
840
/* 1 if SKIP or DIRECT. set only for B-frames + CABAC */
841
ALIGNED_4( int8_t skip[X264_SCAN8_LUMA_SIZE] );
842
843
ALIGNED_4( int16_t direct_mv[2][4][2] );
844
ALIGNED_4( int8_t direct_ref[2][4] );
845
int direct_partition;
846
ALIGNED_4( int16_t pskip_mv[2] );
847
848
/* number of neighbors (top and left) that used 8x8 dct */
849
int i_neighbour_transform_size;
850
int i_neighbour_skip;
851
852
/* neighbor CBPs */
853
int i_cbp_top;
854
int i_cbp_left;
855
856
/* extra data required for mbaff in mv prediction */
857
int16_t topright_mv[2][3][2];
858
int8_t topright_ref[2][3];
859
860
/* current mb deblock strength */
861
uint8_t (*deblock_strength)[8][4];
862
} cache;
863
864
/* */
865
int i_qp; /* current qp */
866
int i_chroma_qp;
867
int i_last_qp; /* last qp */
868
int i_last_dqp; /* last delta qp */
869
int b_variable_qp; /* whether qp is allowed to vary per macroblock */
870
int b_lossless;
871
int b_direct_auto_read; /* take stats for --direct auto from the 2pass log */
872
int b_direct_auto_write; /* analyse direct modes, to use and/or save */
873
874
/* lambda values */
875
int i_trellis_lambda2[2][2]; /* [luma,chroma][inter,intra] */
876
int i_psy_rd_lambda;
877
int i_chroma_lambda2_offset;
878
879
/* B_direct and weighted prediction */
880
int16_t dist_scale_factor_buf[2][2][X264_REF_MAX*2][4];
881
int16_t (*dist_scale_factor)[4];
882
int8_t bipred_weight_buf[2][2][X264_REF_MAX*2][4];
883
int8_t (*bipred_weight)[4];
884
/* maps fref1[0]'s ref indices into the current list0 */
885
#define map_col_to_list0(col) h->mb.map_col_to_list0[(col)+2]
886
int8_t map_col_to_list0[X264_REF_MAX+2];
887
int ref_blind_dupe; /* The index of the blind reference frame duplicate. */
888
int8_t deblock_ref_table[X264_REF_MAX*2+2];
889
#define deblock_ref_table(x) h->mb.deblock_ref_table[(x)+2]
890
} mb;
891
892
/* rate control encoding only */
893
x264_ratecontrol_t *rc;
894
895
/* stats */
896
struct
897
{
898
/* Cumulated stats */
899
900
/* per slice info */
901
int i_frame_count[3];
902
int64_t i_frame_size[3];
903
double f_frame_qp[3];
904
int i_consecutive_bframes[X264_BFRAME_MAX+1];
905
/* */
906
double f_ssd_global[3];
907
double f_psnr_average[3];
908
double f_psnr_mean_y[3];
909
double f_psnr_mean_u[3];
910
double f_psnr_mean_v[3];
911
double f_ssim_mean_y[3];
912
double f_frame_duration[3];
913
/* */
914
int64_t i_mb_count[3][19];
915
int64_t i_mb_partition[2][17];
916
int64_t i_mb_count_8x8dct[2];
917
int64_t i_mb_count_ref[2][2][X264_REF_MAX*2];
918
int64_t i_mb_cbp[6];
919
int64_t i_mb_pred_mode[4][13];
920
int64_t i_mb_field[3];
921
/* */
922
int i_direct_score[2];
923
int i_direct_frames[2];
924
/* num p-frames weighted */
925
int i_wpred[2];
926
927
/* Current frame stats */
928
x264_frame_stat_t frame;
929
} stat;
930
931
/* 0 = luma 4x4, 1 = luma 8x8, 2 = chroma 4x4, 3 = chroma 8x8 */
932
udctcoef (*nr_offset)[64];
933
uint32_t (*nr_residual_sum)[64];
934
uint32_t *nr_count;
935
936
ALIGNED_N( udctcoef nr_offset_denoise[4][64] );
937
ALIGNED_N( uint32_t nr_residual_sum_buf[2][4][64] );
938
uint32_t nr_count_buf[2][4];
939
940
uint8_t luma2chroma_pixel[7]; /* Subsampled pixel size */
941
942
/* Buffers that are allocated per-thread even in sliced threads. */
943
void *scratch_buffer; /* for any temporary storage that doesn't want repeated malloc */
944
void *scratch_buffer2; /* if the first one's already in use */
945
pixel *intra_border_backup[5][3]; /* bottom pixels of the previous mb row, used for intra prediction after the framebuffer has been deblocked */
946
/* Deblock strength values are stored for each 4x4 partition. In MBAFF
947
* there are four extra values that need to be stored, located in [4][i]. */
948
uint8_t (*deblock_strength[2])[2][8][4];
949
950
/* CPU functions dependents */
951
x264_predict_t predict_16x16[4+3];
952
x264_predict8x8_t predict_8x8[9+3];
953
x264_predict_t predict_4x4[9+3];
954
x264_predict_t predict_chroma[4+3];
955
x264_predict_t predict_8x8c[4+3];
956
x264_predict_t predict_8x16c[4+3];
957
x264_predict_8x8_filter_t predict_8x8_filter;
958
959
x264_pixel_function_t pixf;
960
x264_mc_functions_t mc;
961
x264_dct_function_t dctf;
962
x264_zigzag_function_t zigzagf;
963
x264_zigzag_function_t zigzagf_interlaced;
964
x264_zigzag_function_t zigzagf_progressive;
965
x264_quant_function_t quantf;
966
x264_deblock_function_t loopf;
967
x264_bitstream_function_t bsf;
968
969
x264_lookahead_t *lookahead;
970
971
#if HAVE_OPENCL
972
x264_opencl_t opencl;
973
#endif
974
};
975
976
// included at the end because it needs x264_t
977
#include "macroblock.h"
978
979
static int ALWAYS_INLINE x264_predictor_roundclip( int16_t (*dst)[2], int16_t (*mvc)[2], int i_mvc, int16_t mv_limit[2][2], uint32_t pmv )
980
{
981
int cnt = 0;
982
for( int i = 0; i < i_mvc; i++ )
983
{
984
int mx = (mvc[i][0] + 2) >> 2;
985
int my = (mvc[i][1] + 2) >> 2;
986
uint32_t mv = pack16to32_mask(mx, my);
987
if( !mv || mv == pmv ) continue;
988
dst[cnt][0] = x264_clip3( mx, mv_limit[0][0], mv_limit[1][0] );
989
dst[cnt][1] = x264_clip3( my, mv_limit[0][1], mv_limit[1][1] );
990
cnt++;
991
}
992
return cnt;
993
}
994
995
static int ALWAYS_INLINE x264_predictor_clip( int16_t (*dst)[2], int16_t (*mvc)[2], int i_mvc, int16_t mv_limit[2][2], uint32_t pmv )
996
{
997
int cnt = 0;
998
int qpel_limit[4] = {mv_limit[0][0] << 2, mv_limit[0][1] << 2, mv_limit[1][0] << 2, mv_limit[1][1] << 2};
999
for( int i = 0; i < i_mvc; i++ )
1000
{
1001
uint32_t mv = M32( mvc[i] );
1002
int mx = mvc[i][0];
1003
int my = mvc[i][1];
1004
if( !mv || mv == pmv ) continue;
1005
dst[cnt][0] = x264_clip3( mx, qpel_limit[0], qpel_limit[2] );
1006
dst[cnt][1] = x264_clip3( my, qpel_limit[1], qpel_limit[3] );
1007
cnt++;
1008
}
1009
return cnt;
1010
}
1011
1012
#if ARCH_X86 || ARCH_X86_64
1013
#include "x86/util.h"
1014
#endif
1015
1016
#include "rectangle.h"
1017
1018
#endif
1019
1020
1021