/* OpenCL lowres subpel Refine */
/* Each thread performs 8x8 SAD. 4 threads per MB, so the 4 DIA HPEL offsets are
* calculated simultaneously */
int sad_8x8_ii_hpel( read_only image2d_t fenc, int2 fencpos, read_only image2d_t fref_planes, int2 qpos )
{
int2 frefpos = qpos >> 2
int hpel_idx = ((qpos.x & 2) >> 1) + (qpos.y & 2)
uint mask_shift = 8 * hpel_idx
uint4 cost4 = 0
for( int y = 0
{
uint4 enc, val4
enc = read_imageui( fenc, sampler, fencpos + (int2)(0, y))
val4.s0 = (read_imageui( fref_planes, sampler, frefpos + (int2)(0, y)).s0 >> mask_shift) & 0xFF
val4.s1 = (read_imageui( fref_planes, sampler, frefpos + (int2)(1, y)).s0 >> mask_shift) & 0xFF
val4.s2 = (read_imageui( fref_planes, sampler, frefpos + (int2)(2, y)).s0 >> mask_shift) & 0xFF
val4.s3 = (read_imageui( fref_planes, sampler, frefpos + (int2)(3, y)).s0 >> mask_shift) & 0xFF
cost4 += abs_diff( enc, val4 )
enc = read_imageui( fenc, sampler, fencpos + (int2)(4, y))
val4.s0 = (read_imageui( fref_planes, sampler, frefpos + (int2)(4, y)).s0 >> mask_shift) & 0xFF
val4.s1 = (read_imageui( fref_planes, sampler, frefpos + (int2)(5, y)).s0 >> mask_shift) & 0xFF
val4.s2 = (read_imageui( fref_planes, sampler, frefpos + (int2)(6, y)).s0 >> mask_shift) & 0xFF
val4.s3 = (read_imageui( fref_planes, sampler, frefpos + (int2)(7, y)).s0 >> mask_shift) & 0xFF
cost4 += abs_diff( enc, val4 )
}
return cost4.s0 + cost4.s1 + cost4.s2 + cost4.s3
}
/* One thread measures 8x8 SAD cost at a QPEL offset into an HPEL plane */
int sad_8x8_ii_qpel( read_only image2d_t fenc, int2 fencpos, read_only image2d_t fref_planes, int2 qpos )
{
int2 frefApos = qpos >> 2
int hpelA = ((qpos.x & 2) >> 1) + (qpos.y & 2)
int2 qposB = qpos + ((qpos & 1) << 1)
int2 frefBpos = qposB >> 2
int hpelB = ((qposB.x & 2) >> 1) + (qposB.y & 2)
uint mask_shift0 = 8 * hpelA, mask_shift1 = 8 * hpelB
int cost = 0
for( int y = 0
{
for( int x = 0
{
uint enc = read_imageui( fenc, sampler, fencpos + (int2)(x, y)).s0
uint vA = (read_imageui( fref_planes, sampler, frefApos + (int2)(x, y)).s0 >> mask_shift0) & 0xFF
uint vB = (read_imageui( fref_planes, sampler, frefBpos + (int2)(x, y)).s0 >> mask_shift1) & 0xFF
cost += abs_diff( enc, rhadd( vA, vB ) )
}
}
return cost
}
/* Four threads measure 8x8 SATD cost at a QPEL offset into an HPEL plane
*
* Each thread collects 1/4 of the rows of diffs and processes one quarter of
* the transforms
*/
int satd_8x8_ii_qpel_coop4( read_only image2d_t fenc,
int2 fencpos,
read_only image2d_t fref_planes,
int2 qpos,
local sum2_t *tmpp,
int idx )
{
volatile local sum2_t( *tmp )[4] = (volatile local sum2_t( * )[4])tmpp
sum2_t b0, b1, b2, b3
// fencpos is full-pel position of original MB
// qpos is qpel position within reference frame
int2 frefApos = qpos >> 2
int hpelA = ((qpos.x&2)>>1) + (qpos.y&2)
int2 qposB = qpos + (int2)(((qpos.x&1)<<1), ((qpos.y&1)<<1))
int2 frefBpos = qposB >> 2
int hpelB = ((qposB.x&2)>>1) + (qposB.y&2)
uint mask_shift0 = 8 * hpelA, mask_shift1 = 8 * hpelB
uint vA, vB
uint a0, a1
uint enc
sum2_t sum = 0
#define READ_DIFF( OUT, X )\
enc = read_imageui( fenc, sampler, fencpos + (int2)(X, idx) ).s0
vA = (read_imageui( fref_planes, sampler, frefApos + (int2)(X, idx) ).s0 >> mask_shift0) & 0xFF
vB = (read_imageui( fref_planes, sampler, frefBpos + (int2)(X, idx) ).s0 >> mask_shift1) & 0xFF
OUT = enc - rhadd( vA, vB )
#define READ_DIFF_EX( OUT, a, b )\
{\
READ_DIFF( a0, a )
READ_DIFF( a1, b )
OUT = a0 + (a1<<BITS_PER_SUM)
}
#define ROW_8x4_SATD( a, b )\
{\
fencpos.y += a
frefApos.y += b
frefBpos.y += b
READ_DIFF_EX( b0, 0, 4 )
READ_DIFF_EX( b1, 1, 5 )
READ_DIFF_EX( b2, 2, 6 )
READ_DIFF_EX( b3, 3, 7 )
HADAMARD4( tmp[idx][0], tmp[idx][1], tmp[idx][2], tmp[idx][3], b0, b1, b2, b3 )
HADAMARD4( b0, b1, b2, b3, tmp[0][idx], tmp[1][idx], tmp[2][idx], tmp[3][idx] )
sum += abs2( b0 ) + abs2( b1 ) + abs2( b2 ) + abs2( b3 )
}
ROW_8x4_SATD( 0, 0 )
ROW_8x4_SATD( 4, 4 )
#undef READ_DIFF
#undef READ_DIFF_EX
#undef ROW_8x4_SATD
return (((sum_t)sum) + (sum>>BITS_PER_SUM)) >> 1
}
constant int2 hpoffs[4] =
{
{0, -2}, {-2, 0}, {2, 0}, {0, 2}
}
/* sub pixel refinement of motion vectors, output MVs and costs are moved from
* temporary buffers into final per-frame buffer
*
* global launch dimensions: [mb_width * 4, mb_height]
*
* With X being the source 16x16 pixels, F is the lowres pixel used by the
* motion search. We will now utilize the H V and C pixels (stored in separate
* planes) to search at half-pel increments.
*
* X X X X X X
* F H F H F
* X X X X X X
* V C V C V
* X X X X X X
* F H F H F
* X X X X X X
*
* The YX HPEL bits of the motion vector selects the plane we search in. The
* four planes are packed in the fref_planes 2D image buffer. Each sample
* returns: s0 = F, s1 = H, s2 = V, s3 = C */
kernel void subpel_refine( read_only image2d_t fenc,
read_only image2d_t fref_planes,
const global short2 *in_mvs,
const global int16_t *in_sad_mv_costs,
local int16_t *cost_local,
local sum2_t *satd_local,
local short2 *mvc_local,
global short2 *fenc_lowres_mv,
global int16_t *fenc_lowres_mv_costs,
int mb_width,
int lambda,
int b,
int ref,
int b_islist1 )
{
int mb_x = get_global_id( 0 ) >> 2
if( mb_x >= mb_width )
return
int mb_height = get_global_size( 1 )
int mb_i = get_global_id( 0 ) & 3
int mb_y = get_global_id( 1 )
int mb_xy = mb_y * mb_width + mb_x
/* fenc_lowres_mv and fenc_lowres_mv_costs are large buffers that
* hold many frames worth of motion vectors. We must offset into the correct
* location for this frame's vectors. The kernel will be passed the correct
* directional buffer for the direction of the search: list1 or list0
*
* CPU equivalent: fenc->lowres_mvs[0][b - p0 - 1]
* GPU equivalent: fenc_lowres_mvs[(b - p0 - 1) * mb_count] */
fenc_lowres_mv += (b_islist1 ? (ref-b-1) : (b-ref-1)) * mb_width * mb_height
fenc_lowres_mv_costs += (b_islist1 ? (ref-b-1) : (b-ref-1)) * mb_width * mb_height
/* Adjust pointers into local memory buffers for this thread's data */
int mb_in_group = get_local_id( 1 ) * (get_local_size( 0 ) >> 2) + (get_local_id( 0 ) >> 2)
cost_local += mb_in_group * 4
satd_local += mb_in_group * 16
mvc_local += mb_in_group * 4
int i_mvc = 0
mvc_local[0] = mvc_local[1] = mvc_local[2] = mvc_local[3] = 0
#define MVC( DX, DY ) mvc_local[i_mvc++] = in_mvs[mb_width * (mb_y + DY) + (mb_x + DX)]
if( mb_x > 0 )
MVC( -1, 0 )
if( mb_y > 0 )
{
MVC( 0, -1 )
if( mb_x < mb_width - 1 )
MVC( 1, -1 )
if( mb_x > 0 )
MVC( -1, -1 )
}
#undef MVC
int2 mvp = (i_mvc <= 1) ? convert_int2_sat(mvc_local[0]) : x264_median_mv( mvc_local[0], mvc_local[1], mvc_local[2] )
int bcost = in_sad_mv_costs[mb_xy]
int2 coord = (int2)(mb_x, mb_y) << 3
int2 bmv = convert_int2_sat( in_mvs[mb_xy] )
/* Make mvp and bmv QPEL MV */
mvp <<= 2
#define HPEL_QPEL( ARR, FUNC )\
{\
int2 trymv = bmv + ARR[mb_i]
int2 qpos = (coord << 2) + trymv
int cost = FUNC( fenc, coord, fref_planes, qpos ) + lambda * mv_cost( abs_diff( trymv, mvp ) )
cost_local[mb_i] = (cost<<2) + mb_i
cost = min( cost_local[0], min( cost_local[1], min( cost_local[2], cost_local[3] ) ) )
if( (cost>>2) < bcost )\
{\
bmv += ARR[cost&3]
bcost = cost>>2
}\
}
HPEL_QPEL( hpoffs, sad_8x8_ii_hpel )
HPEL_QPEL( dia_offs, sad_8x8_ii_qpel )
fenc_lowres_mv[mb_xy] = convert_short2_sat( bmv )
/* remeasure cost of bmv using SATD */
int2 qpos = (coord << 2) + bmv
cost_local[mb_i] = satd_8x8_ii_qpel_coop4( fenc, coord, fref_planes, qpos, satd_local, mb_i )
bcost = cost_local[0] + cost_local[1] + cost_local[2] + cost_local[3]
bcost += lambda * mv_cost( abs_diff( bmv, mvp ) )
fenc_lowres_mv_costs[mb_xy] = min( bcost, LOWRES_COST_MASK )
}