p= 7 max s= 3 N(Fp^s)= [6, 60, 321]
Group of Dirichlet characters of modulus 7 over Cyclotomic Field of order 6 and degree 2
Dirichlet character modulo 7 of conductor 7 mapping 3 |--> zeta6
Dirichlet character modulo 7 of conductor 7 mapping 3 |--> zeta6 - 1
Order: 3
-3*zeta6 + 2
A= 1
Weil zeros: w1= 3*zeta6 - 2 w2= -3*zeta6 + 1
s= 1 N(s)= 6
s= 2 N(s)= 60
s= 3 N(s)= 321
Univariate Polynomial Ring in t over Cyclotomic Field of order 6 and degree 2
7*t^2 + t + 1
7*t^2 - 8*t + 1
Zeta function= (7*t^2 + t + 1)/(7*t^2 - 8*t + 1)