Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: mfbasis
Section: modular_forms
C-Name: mfbasis
Prototype: GD4,L,
Help: mfbasis(NK,{space=4}): If NK=[N,k,CHI] as in mfinit, gives a basis of
the corresponding subspace of M_k(G_0(N),CHI). NK can also be the output of
mfinit, in which case space is ignored. To obtain the eigenforms use
mfeigenbasis.
Doc: If $NK=[N,k,\var{CHI}]$ as in \kbd{mfinit}, gives a basis of the
corresponding subspace of $M_k(\Gamma_0(N),\chi)$. $NK$ can also be the
output of \kbd{mfinit}, in which case \kbd{space} can be omitted.
To obtain the eigenforms, use \kbd{mfeigenbasis}.
If \kbd{space} is a full space $M_k$, the output is the union of first, a
basis of the space of Eisenstein series, and second, a basis of the cuspidal
space.
\bprog
? see(L) = apply(f->mfcoefs(f,3), L);
? mf = mfinit([35,2],0);
? see( mfbasis(mf) )
%2 = [[0, 3, -1, 0], [0, -1, 9, -8], [0, 0, -8, 10]]
? see( mfeigenbasis(mf) )
%3 = [[0, 1, 0, 1], [Mod(0, z^2 - z - 4), Mod(1, z^2 - z - 4), \
Mod(-z, z^2 - z - 4), Mod(z - 1, z^2 - z - 4)]]
? mf = mfinit([35,2]);
? see( mfbasis(mf) )
%5 = [[1/6, 1, 3, 4], [1/4, 1, 3, 4], [17/12, 1, 3, 4], \
[0, 3, -1, 0], [0, -1, 9, -8], [0, 0, -8, 10]]
? see( mfbasis([48,4],0) )
%6 = [[0, 3, 0, -3], [0, -3, 0, 27], [0, 2, 0, 30]]
@eprog