Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: ellminimaltwist
Section: elliptic_curves
C-Name: ellminimaltwist0
Prototype: GD0,L,
Help: ellminimaltwist(E, {flag=0}): E being an elliptic curve defined over Q,
return a discriminant D such that the twist of E by D is minimal among all
possible quadratic twists, i.e., if flag=0, its minimal model has minimal
discriminant, or if flag=1, it has minimal conductor.
Doc: Let $E$ be an elliptic curve defined over $\Q$, return
a discriminant $D$ such that the twist of $E$ by $D$ is minimal among all
possible quadratic twists, i.e. if $\fl=0$, its minimal model has minimal
discriminant, or if $\fl=1$, it has minimal conductor.
In the example below, we find a curve with $j$-invariant $3$ and minimal
conductor.
\bprog
? E = ellminimalmodel(ellinit(ellfromj(3)));
? ellglobalred(E)[1]
%2 = 357075
? D = ellminimaltwist(E,1)
%3 = -15
? E2 = ellminimalmodel(elltwist(E,D));
? ellglobalred(E2)[1]
%5 = 14283
@eprog
In the example below, $\fl=0$ and $\fl=1$ give different results.
\bprog
? E = ellinit([1,0]);
? D0 = ellminimaltwist(E,0)
%7 = 1
? D1 = ellminimaltwist(E,1)
%8 = 8
? E0 = ellminimalmodel(elltwist(E,D0));
? [E0.disc, ellglobalred(E0)[1]]
%10 = [-64, 64]
? E1 = ellminimalmodel(elltwist(E,D1));
? [E1.disc, ellglobalred(E1)[1]]
%12 = [-4096, 32]
@eprog
Variant: Also available are
\fun{GEN}{ellminimaltwist}{E} for $\fl=0$, and
\fun{GEN}{ellminimaltwistcond}{E} for $\fl=1$.