Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: mffrometaquo
Section: modular_forms
C-Name: mffrometaquo
Prototype: GD0,L,
Help: mffrometaquo(eta,{flag=0}): modular form corresponding to the eta
quotient matrix eta. If the valuation v at infinity is fractional, return 0.
If the eta quotient is not holomorphic but simply meromorphic, return 0 if
flag=0; return the eta quotient (divided by q to the power -v if v < 0, i.e.,
with valuation 0) if flag is set.
Doc: modular form corresponding to the eta quotient matrix \kbd{eta}.
If the valuation $v$ at infinity is fractional, return $0$. If the eta
quotient is not holomorphic but simply meromorphic, return $0$ if
\kbd{flag=0}; return the eta quotient (divided by $q$ to the power $-v$ if
$v < 0$, i.e., with valuation $0$) if flag is set.
\bprog
? mffrometaquo(Mat([1,1]),1)
%1 = 0
? mfcoefs(mffrometaquo(Mat([1,24])),6)
%2 = [0, 1, -24, 252, -1472, 4830, -6048]
? mfcoefs(mffrometaquo([1,1;23,1]),10)
%3 = [0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0]
? F = mffrometaquo([1,2;2,-1]); mfparams(F)
%4 = [16, 1/2, 1, y, t - 1]
? mfcoefs(F,10)
%5 = [1, -2, 0, 0, 2, 0, 0, 0, 0, -2, 0]
? mffrometaquo(Mat([1,-24]))
%6 = 0
? f = mffrometaquo(Mat([1,-24]),1); mfcoefs(f,6)
%7 = [1, 24, 324, 3200, 25650, 176256, 1073720]
@eprog\noindent For convenience, a \typ{VEC} is also accepted instead of
a factorization matrix with a single row:
\bprog
? f = mffrometaquo([1,24]); \\ also valid
@eprog