Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: mspadicinit
Section: modular_symbols
C-Name: mspadicinit
Prototype: GLLD-1,L,
Help: mspadicinit(M, p, n, {flag}): M being a full modular symbol space,
as given by msinit and a prime p, initialize
technical data needed to compute with overconvergent modular symbols
(modulo p^n). If flag is unset, allow all symbols; if flag = 0, restrict
to ordinary symbols; else initialize for symbols phi such that
Tp(phi) = a_p * phi, with v_p(a_p) >= flag.
Doc: $M$ being a full modular symbol space, as given by \kbd{msinit}, and $p$
a prime, initialize technical data needed to compute with overconvergent
modular symbols, modulo $p^n$. If $\fl$ is unset, allow
all symbols; else initialize only for a restricted range of symbols
depending on $\fl$: if $\fl = 0$ restrict to ordinary symbols, else
restrict to symbols $\phi$ such that $T_p(\phi) = a_p \phi$,
with $v_p(a_p) \geq \fl$, which is faster as $\fl$ increases.
(The fastest initialization is obtained for $\fl = 0$ where we only allow
ordinary symbols.) For supersingular eigensymbols, such that $p\mid a_p$, we
must further assume that $p$ does not divide the level.
\bprog
? E = ellinit("11a1");
? [M,phi] = msfromell(E,1);
? ellap(E,3)
%3 = -1
? Mp = mspadicinit(M, 3, 10, 0); \\ commit to ordinary symbols
? PHI = mstooms(Mp,phi);
@eprog
If we restrict the range of allowed symbols with \fl (for faster
initialization), exceptions will occur if $v_p(a_p)$ violates this bound:
\bprog
? E = ellinit("15a1");
? [M,phi] = msfromell(E,1);
? ellap(E,7)
%3 = 0
? Mp = mspadicinit(M,7,5,0); \\ restrict to ordinary symbols
? PHI = mstooms(Mp,phi)
*** at top-level: PHI=mstooms(Mp,phi)
*** ^---------------
*** mstooms: incorrect type in mstooms [v_p(ap) > mspadicinit flag] (t_VEC).
? Mp = mspadicinit(M,7,5); \\ no restriction
? PHI = mstooms(Mp,phi);
@eprog\noindent This function uses $O(N^2(n+k)^2p)$ memory, where $N$ is the
level of $M$.