Testing latest pari + WASM + node.js... and it works?! Wow.
License: GPL3
ubuntu2004
Function: mstooms
Section: modular_symbols
C-Name: mstooms
Prototype: GG
Help: mstooms(Mp, phi): given Mp from mspadicinit, lift the
(classical) eigen symbol phi to a distribution-valued overconvergent symbol
in the sense of Pollack and Stevens.
The resulting overconvergent eigensymbol can then be used in
mspadicmoments, then mspadicL or mspadicseries.
Doc: given \kbd{Mp} from \kbd{mspadicinit}, lift the (classical) eigen symbol
\kbd{phi} to a $p$-adic distribution-valued overconvergent symbol in the
sense of Pollack and Stevens. More precisely, let $\phi$ belong to the space
$W$ of modular symbols of level $N$, $v_p(N) \leq 1$, and weight $k$ which is
an eigenvector for the Hecke operator $T_N(p)$ for a nonzero eigenvalue
$a_p$ and let $N_0 = \text{lcm}(N,p)$.
Under the action of $T_{N_0}(p)$, $\phi$ generates a subspace $W_\phi$ of
dimension $1$ (if $p\mid N$) or $2$ (if $p$ does not divide $N$) in the
space of modular symbols of level $N_0$.
Let $V_p=[p,0;0,1]$ and $C_p=[a_p,p^{k-1};-1,0]$.
When $p$ does not divide $N$ and $a_p$ is divisible by $p$, \kbd{mstooms}
returns the lift $\Phi$ of $(\phi,\phi|_k V_p)$ such that
$$T_{N_0}(p) \Phi = C_p \Phi$$
When $p$ does not divide $N$ and $a_p$ is not divisible by $p$, \kbd{mstooms}
returns the lift $\Phi$ of $\phi - \alpha^{-1} \phi|_k V_p$
which is an eigenvector of $T_{N_0}(p)$ for the unit eigenvalue
where $\alpha^2 - a_p \alpha + p^{k-1}=0$.
The resulting overconvergent eigensymbol can then be used in
\tet{mspadicmoments}, then \tet{mspadicL} or \tet{mspadicseries}.
\bprog
? M = msinit(3,6, 1); p = 5;
? Tp = mshecke(M, p); factor(charpoly(Tp))
%2 =
[x - 3126 2]
[ x - 6 1]
? phi = matker(Tp - 6)[,1] \\ generator of p-Eigenspace, a_p = 6
%3 = [5, -3, -1]~
? Mp = mspadicinit(M, p, 10, 0); \\ restrict to ordinary symbols, mod p^10
? PHI = mstooms(Mp, phi);
? mu = mspadicmoments(Mp, PHI);
? mspadicL(mu)
%7 = 5 + 2*5^2 + 2*5^3 + ...
@eprog
A non ordinary symbol.
\bprog
? M = msinit(4,6,1); p = 3;
? Tp = mshecke(M, p); factor(charpoly(Tp))
%2 =
[x - 244 3]
[ x + 12 1]
? phi = matker(Tp + 12)[,1] \\ a_p = -12 is divisible by p = 3
%3 = [-1/32, -1/4, -1/32, 1]~
? msissymbol(M,phi)
%4 = 1
? Mp = mspadicinit(M,3,5,0);
? PHI = mstooms(Mp,phi);
*** at top-level: PHI=mstooms(Mp,phi)
*** ^---------------
*** mstooms: incorrect type in mstooms [v_p(ap) > mspadicinit flag] (t_VEC).
? Mp = mspadicinit(M,3,5,1);
? PHI = mstooms(Mp,phi);
@eprog