Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
209 views
1
\documentclass{article}
2
3
% set font encoding for PDFLaTeX or XeLaTeX
4
\usepackage{ifxetex}
5
\ifxetex
6
\usepackage{fontspec}
7
\else
8
\usepackage[T1]{fontenc}
9
\usepackage[utf8]{inputenc}
10
\usepackage{lmodern}
11
\fi
12
13
\usepackage[english]{babel}
14
\usepackage[utf8]{inputenc}
15
\usepackage{amsmath}
16
\usepackage{graphicx}
17
\usepackage{amssymb}
18
\usepackage{amsthm}
19
\usepackage{tikz-cd}
20
\usepackage{mathrsfs}
21
\usepackage[colorinlistoftodos]{todonotes}
22
\usepackage{enumitem}
23
\usepackage{yfonts}
24
\usepackage{cancel}
25
26
27
% used in maketitle
28
\title{Title of Document}
29
\author{Name of Author}
30
31
% Enable SageTeX to run SageMath code right inside this LaTeX file.
32
% documentation: http://mirrors.ctan.org/macros/latex/contrib/sagetex/sagetexpackage.pdf
33
% \usepackage{sagetex}
34
35
\newcommand{\R}{\mathbb{R}}
36
37
\begin{document}
38
\maketitle
39
As an introduction to Gr\"obner basis, we first shall find the points lying on the surface defined by $S = g^{-1}(0)$ where $g(x,y,z) = x^4 + y^2 + z^2$; which are closest to $(1,1,1)$. In other words, this problem is about minimising the distance function (which we shall denote by $f$), and to do so, we shall make use of Lagrange multipliers method. This method states that this critical points $(x_0,y_0,z_0)$, can be found by means of the following equation
40
$$\nabla f(x_0,y_0,z_0) = \lambda\nabla g(x_0,y_0,z_0)$$
41
42
For our function, f(x,y,z) = $\sqrt{(x-1)^2 + (y-1)^2 + (z-1)^2}$, note that this function is non-degenerate and definite positive in $\R^3$ and therefore its critical points will be minimum points. Furthermore, the minimum points of $f$ will be the same as the ones for $f^2$. Since it is easier to work with $f^2$, we will henceforth denote by $f$, $f^2$. Then the system the equations that yields
43
44
$$\left\lbrace\begin{array}{l} 2(x-1) - 4\lambda x^3 = 0 \\
45
2(y-1) - 2\lambda y =0 \\ 2(z-1) - 2\lambda z = 0\\ x^4 + y^2 + z^2 -1 = 0\end{array}\right.$$
46
\end{document}
47
48