jupyter nbconvert --to=python 'leaf_enbalance_eqs.ipynb'
Exporting specified worksheet to .py file...
nbconvert returned 0
Checking if specified ipynb file was run with sage kernel...
Renaming .py file to .sage if notebook kernel was sage (to avoid exponent error)
created file temp/leaf_enbalance_eqs
44100.0000000000kilogram*meter^2/(mole*second^2)
meter/second == meter/second
mole/meter^3 == mole/meter^3
mole/(meter^2*second) == mole/(meter^2*second)
mole/(meter^2*second) == mole/(meter^2*second)
mole/(meter^2*second) == mole/(meter^2*second)
mole/meter^3 == mole/meter^3
kilogram/(kelvin*second^3) == kilogram/(kelvin*second^3)
1 == 1
1 == 1
kilogram/meter^3 == kilogram/meter^3
kilogram/(meter*second^2) == kilogram/(meter*second^2)
kilogram/(meter*second^2) == kilogram/(meter*second^2)
(1.13400000000000e-7)*T_l^4 - 900.306522304087
C_wa 1.29441408346663
C_wl 1.91570361006325
D_va 0.0000248765000000000
E_l 185.424519010311
E_lmol 0.00420463761928142
H_l 325.157459266011
L_l 0.0300000000000000
Le 0.888469037042992
M_N2 0.0280000000000000
M_O2 0.0320000000000000
M_w 0.0180000000000000
Nu 26.1863624980041
P_a 101325
P_wa 3212.56734153661
P_wl 4868.42309771766
Pr 0.710000000000000
R_ll 89.4180217236781
R_mol 8.31447200000000
R_s 600
Re 1927.40122068744
Re_c 3000
T_a 298.500000000000
T_l 305.650648423
T_w 298.500000000000
a_s 1.00000000000000
a_sh 2
alpha_a 0.0000221020000000000
c_pa 1010
epsilon_l 1
g 9.81000000000000
g_bw 0.0209367439791524
g_sw 0.0100000000000000
g_tw 0.00676759777734245
h_c 22.7362219510171
k_a 0.0260474000000000
lambda_E 2.45000000000000e6
nu_a 0.0000155650000000000
rho_a 1.16339248053449
sigm 5.67000000000000e-8
v_w 1
jupyter nbconvert --to=python 'leaf_enbalance_eqs.ipynb'
Exporting specified worksheet to .py file...
nbconvert returned 0
Checking if specified ipynb file was run with sage kernel...
Renaming .py file to .sage if notebook kernel was sage (to avoid exponent error)
imported file temp/leaf_enbalance_eqs
jupyter nbconvert --to=python 'E_PM_eqs.ipynb'
Exporting specified worksheet to .py file...
nbconvert returned 0
Checking if specified ipynb file was run with sage kernel...
Renaming .py file to .sage if notebook kernel was sage (to avoid exponent error)
created file temp/E_PM_eqs
[
[P_wl == (Delta_eTa*P_wa*f_u + P_was*f_u*gamma_v - Delta_eTa*R_ll + Delta_eTa*R_s)/(Delta_eTa*f_u + f_u*gamma_v), E_w == -((P_wa - P_was)*f_u*gamma_v + Delta_eTa*R_ll - Delta_eTa*R_s)/(Delta_eTa + gamma_v), beta_B == -((P_wa - P_was)*f_u - R_ll + R_s)*gamma_v/((P_wa - P_was)*f_u*gamma_v + Delta_eTa*R_ll - Delta_eTa*R_s)]
]
kelvin == kelvin
kilogram/second^3 == kilogram/second^3
kilogram/second^3 == kilogram/second^3
kilogram/(meter*second^2) == kilogram/(meter*second^2)
kilogram/second^3 == kilogram/second^3
kilogram/second^3 == kilogram/second^3
kilogram/second^3 == kilogram/second^3
kilogram/second^3 == kilogram/second^3
kilogram/second^3 == kilogram/second^3
kilogram/(meter*second^2) == kilogram/(meter*second^2)
kelvin == kelvin
meter/second == meter/second
$ g $ $ v_{w} $ $ {P_{wa}} $ $ {a_{sh}} $ $ M_{O_{2}} $ $ T_{a} $ $ {R_{mol}} $ $ T_{w} $ $ R_{s} $ $ {c_{pa}} $ $ M_{N_{2}} $ $ \epsilon_{l} $ $ {\sigma} $ $ a_{s} $ $ P_{a} $ $ {N_{Pr}} $ $ {N_{Re_c}} $ $ M_{w} $ $ \lambda_{E} $ $ \epsilon $ $ {g_{sw}} $ $ L_{l} $
$ g $ $ v_{w} $ $ {P_{wa}} $ $ {a_{sh}} $ $ M_{O_{2}} $ $ T_{a} $ $ {R_{mol}} $ $ T_{w} $ $ R_{s} $ $ {c_{pa}} $ $ M_{N_{2}} $ $ \epsilon_{l} $ $ {\sigma} $ $ a_{s} $ $ P_{a} $ $ {N_{Pr}} $ $ {N_{Re_c}} $ $ M_{w} $ $ \lambda_{E} $ $ \epsilon $ $ {g_{sw}} $ $ L_{l} $
T_l = 305.650648423
E_l = 185.424519010311
H_l = 325.157459266011
R_ll = 89.4180217236781
Direct estimates:
E_l == 201.520517691209
H_l == 398.479482308791
T_l == 307.263098002106
P_wl == 4888.37878666472
Using estimated T_l:
5332.58270455183
E_l == 254.937149826832
H_l == 398.479482308791
0 == 110.468903558398
Using estimated T_l only to calculate R_ll:
E_l == 164.417599968095
H_l == 325.113496473507
307.263098002106 == 305.649681621994
Using 1 iteration to get T_l:
T_l(R_ll=0): 307.263098002106
R_ll(T_l) = 110.468903558398
T_l = 305.649681621994
E_l == 199.088662380171
H_l == 325.113496473508
185.424519010311 == 199.120796183645
185.424519010311 == 185.424519010311
T_l = 305.650648423
E_l = 185.424519010311
H_l = 325.157459266011
R_ll = 89.4180217236781
Direct estimates:
E_l == 201.520517691209
H_l == 398.479482308791
T_l == 307.263098002106
Using estimated T_l:
E_l == 236.648612148471
H_l == 398.479482308791
0 == 110.468903558398
Using estimated T_l only to calculate R_ll:
E_l == 156.390826464557
H_l == 333.140269977045
307.263098002106 == 305.826201131718
Using 1 iteration to get T_l:
T_l(R_ll=0): 307.479451379050
R_ll(T_l) = 113.318783813752
T_l = 305.783550529736
E_l == 189.502633426895
H_l == 331.200842871040
kilogram/second^3 == kilogram/second^3
kilogram/second^3 == kilogram/second^3
kilogram/second^3 == kilogram/second^3
E_{l} = -\frac{{\left({P_{wa}} - {P_{was}}\right)} c_{E} c_{H} + {\left({\Delta_{eTa}} {R_{ll}} - {\Delta_{eTa}} R_{s}\right)} c_{E}}{{\Delta_{eTa}} c_{E} + c_{H}}
kilogram/second^3 == kilogram/second^3
H_{l} = \frac{{\left({\left({P_{wa}} - {P_{was}}\right)} c_{E} - {R_{ll}} + R_{s}\right)} c_{H}}{{\Delta_{eTa}} c_{E} + c_{H}}
kelvin == kelvin
T_{l} = \frac{{\left({\Delta_{eTa}} T_{a} + {P_{wa}} - {P_{was}}\right)} c_{E} + T_{a} c_{H} - {R_{ll}} + R_{s}}{{\Delta_{eTa}} c_{E} + c_{H}}
0 == 0
0 == 0
0 == 0
[
[E_l == -(Delta_eTa*(R_ll - R_s)*c_E + (P_wa*c_E - P_was*c_E)*c_H)/(Delta_eTa*c_E + c_H), H_l == (P_wa*c_E - P_was*c_E - R_ll + R_s)*c_H/(Delta_eTa*c_E + c_H), P_wl == ((P_wa*c_E - R_ll + R_s)*Delta_eTa + P_was*c_H)/(Delta_eTa*c_E + c_H), T_l == (Delta_eTa*T_a*c_E + P_wa*c_E - P_was*c_E + T_a*c_H - R_ll + R_s)/(Delta_eTa*c_E + c_H)]
]
kilogram/second^3 == kilogram/second^3
E_{l} = -\frac{{\Delta_{eTa}} {\left({R_{ll}} - R_{s}\right)} c_{E} + {\left({P_{wa}} c_{E} - {P_{was}} c_{E}\right)} c_{H}}{{\Delta_{eTa}} c_{E} + c_{H}}
kilogram/second^3 == kilogram/second^3
H_{l} = \frac{{\left({P_{wa}} c_{E} - {P_{was}} c_{E} - {R_{ll}} + R_{s}\right)} c_{H}}{{\Delta_{eTa}} c_{E} + c_{H}}
kilogram/(meter*second^2) == kilogram/(meter*second^2)
{P_{wl}} = \frac{{\left({P_{wa}} c_{E} - {R_{ll}} + R_{s}\right)} {\Delta_{eTa}} + {P_{was}} c_{H}}{{\Delta_{eTa}} c_{E} + c_{H}}
kelvin == kelvin
T_{l} = \frac{{\Delta_{eTa}} T_{a} c_{E} + {P_{wa}} c_{E} - {P_{was}} c_{E} + T_{a} c_{H} - {R_{ll}} + R_{s}}{{\Delta_{eTa}} c_{E} + c_{H}}
0 == 0
0 == 0
0 == 0
[
[E_l == -(Delta_eTa*(R_ll - R_s)*c_E + (P_wa*c_E - P_was*c_E)*c_H)/(Delta_eTa*c_E + c_H), H_l == (P_wa*c_E - P_was*c_E - R_ll + R_s)*c_H/(Delta_eTa*c_E + c_H), P_wl == ((P_wa*c_E - R_ll + R_s)*Delta_eTa + P_was*c_H)/(Delta_eTa*c_E + c_H), T_l == (Delta_eTa*T_a*c_E + P_wa*c_E - P_was*c_E + T_a*c_H - R_ll + R_s)/(Delta_eTa*c_E + c_H)]
]
numerical solution:
T_l = 308.321395271
E_l = 180.542235053941
H_l = 150.521099595469
R_ll = 68.9366653505872
g_bw = 0.0131620455576424
g_tw = 0.00291849206962754
Direct estimates:
E_l = 198.222104889662
H_l = 201.777895110338
T_l == 310.133484539870
T_l == 310.133484539870
T_l == 309.093414355984
400 == 400.000000000000
Using T_l from eq_Tl_Delta:
T_l = 310.133484539870
P_wl = 6256.38161942359
E_l = 216.096641092879
H_l = 201.777895110338
R_ll = 93.2413750164809
400 == 511.115911219698
Using T_l from eq_Tl_Delta only to calculate R_ll:
T_l = 310.133484539870
R_ll = 93.2413750164809
E_l = 169.892070077829
H_l = 136.866554905691
400 == 400.000000000000
Using T_l from eq_Tl_Delta2:
T_l = 309.093414355984
P_wl = 5906.50495424572
E_l = 198.222104889661
H_l = 172.358447812369
R_ll = 79.2391719599513
400 == 449.819724661981
Using T_l from eq_Tl_Delta2 only to calculate R_ll:
T_l = 309.093414355984
R_ll = 79.2391719599513
E_l = 174.146435695707
H_l = 146.614392344342
400 == 400.000000000000
T_l = 305.650648423
E_l = 185.424519010311
H_l = 325.157459266011
R_ll = 89.4180217236781
Direct estimates:
E_l == 201.520517691209
H_l == 398.479482308791
T_l == 307.263098002106
Using estimated T_l:
E_l == 254.937149826832
H_l == 398.479482308791
0 == 110.468903558398
Using estimated T_l only to calculate R_ll:
E_l == 164.417599968095
H_l == 325.113496473507
307.263098002106 == 305.649681621994
Using 1 iteration to get T_l:
T_l(R_ll=0): 307.263098002106
R_ll(T_l) = 110.468903558398
T_l = 305.649681621994
E_l == 199.088662380171
H_l == 325.113496473508
kilogram/second^3 == kilogram/second^3
kilogram/second^3 == kilogram/second^3
kilogram/second^3 == kilogram/second^3
1.08204645272521

T_l = 308.321395271
E_l = 180.542235053941
H_l = 150.521099595469
R_ll = 68.9366653505872
g_bw = 0.0131620455576424
g_tw = 0.00291849206962754
Direct estimates:
E_l = 198.222104889662
H_l = 201.777895110338
T_l == 310.133484539870
T_l == 310.133484539870
T_l == 309.093414355984
400 == 400.000000000000
Penman-stomata:
E_l = 198.222104889662
H_l = 201.777895110338
T_l = 310.133484539870
400 == 400.000000000000
PM-equation:
E_l = 241.448619283973
H_l = 158.551380716027
400 == 400.000000000000
MU-equation:
E_l = 156.668183937778
H_l = 243.331816062222
400 == 400.000000000000
Corrected MU-equation:
E_l = 195.741933442269
H_l = 204.258066557731
400 == 400.000000000000
4*T_l^3*a_sh*epsilon_l*sigm
[
Rll1 == -3*T1^4*a_sh*epsilon_l*sigm - T_w^4*a_sh*epsilon_l*sigm
]

kilogram/second^3 == kilogram/second^3
kilogram/second^3 == kilogram/second^3
kilogram/second^3 == kilogram/second^3
kilogram/second^3 == kilogram/second^3
kelvin == kelvin
T_l = 308.321395271
E_l = 180.542235053941
H_l = 150.521099595469
R_ll = 68.9366653505872
g_bw = 0.0131620455576424
g_tw = 0.00291849206962754
Direct estimates:
E_l = 177.353891811830
H_l = 153.963492920038
T_l = 308.443094724766
R_ll = 68.6826152681320
308.443094724766 == 308.443094724766
308.443094724766 == 308.443094724766
308.443094724766 == 307.807922524752
400 == 400.000000000000
Using T_l from eq_Tl_Delta_Rlllin.rhs() only to calculate R_ll:
T_l = 308.443094724766
R_ll = 70.5556017512511
E_l = 176.784812127415
H_l = 152.659586121334
400 == 400.000000000000
Penman-stomata:
E_l = 198.222104889662
H_l = 201.777895110338
T_l = 310.133484539870
400 == 400.000000000000
PM-equation:
E_l = 241.448619283973
H_l = 158.551380716027
400 == 400.000000000000
MU-equation:
E_l = 156.668183937778
H_l = 243.331816062222
400 == 400.000000000000
Corrected MU-equation:
E_l = 195.741933442269
H_l = 204.258066557731
400 == 400.000000000000
imported file temp/E_PM_eqs
jupyter nbconvert --to=python 'stomatal_cond_eqs.ipynb'
Exporting specified worksheet to .py file...
nbconvert returned 0
Checking if specified ipynb file was run with sage kernel...
Renaming .py file to .sage if notebook kernel was sage (to avoid exponent error)
created file temp/stomatal_cond_eqs
mole/(meter*second) == mole/(meter*second)
mole/(meter^2*second) == mole/(meter^2*second)
meter^2 == meter^2
meter^2*second/mole == meter^2*second/mole
meter^2*second/mole == meter^2*second/mole
imported file temp/stomatal_cond_eqs
jupyter nbconvert --to=python 'leaf_chamber_eqs.ipynb'
Exporting specified worksheet to .py file...
nbconvert returned 0
Checking if specified ipynb file was run with sage kernel...
Renaming .py file to .sage if notebook kernel was sage (to avoid exponent error)
created file temp/leaf_chamber_eqs
C_wa 0.647207041733317
C_wl 1.12479267904924
D_va 0.0000248765000000000
E_l 142.258640360008
E_lmol 0.00322581950929723
H_l -112.722448184652
L_l 0.0300000000000000
Le 0.888469037042992
M_N2 0.0280000000000000
M_O2 0.0320000000000000
M_w 0.0180000000000000
Nu 26.1863624980041
P_a 101325
P_wa 1606.28367076831
P_wl 2768.40610422238
Pr 0.710000000000000
R_ll -29.5361921753575
R_mol 8.31447200000000
R_s 0.000000000000000
Re 1927.40122068744
Re_c 3000
T_a 298.500000000000
T_l 296.021082253
T_w 298.500000000000
a_s 1.00000000000000
a_sh 2
alpha_a 0.0000221020000000000
c_pa 1010
epsilon_l 1
g 9.81000000000000
g_bw 0.0208112438130012
g_sw 0.0100000000000000
g_tw 0.00675443157676732
h_c 22.7362219510171
k_a 0.0260474000000000
lambda_E 2.45000000000000e6
nu_a 0.0000155650000000000
rho_a 1.17040820486688
sigm 5.67000000000000e-8
v_w 1
Volume = 0.310000000000000 l
min flow rate for flushing = 1.55000000000000e-11 m3/s
min flow rate for flushing = 0.930000000000000 l/min
flow rate for 1 m/s direct wind = 0.00150000000000000 m3/s
flow rate for 1 m/s direct wind = 90.0000000000000 l/m
flow rate for 5 m/s direct wind = 0.00750000000000000 m3/s
flow rate for 5 m/s direct wind = 450.000000000000 l/m
Volume = 0.400000000000000 l
min flow rate for flushing = 2.00000000000000e-11 m3/s
min flow rate for flushing = 1.20000000000000 l/min
flow rate for 1 m/s direct wind = 0.00150000000000000 m3/s
flow rate for 1 m/s direct wind = 90.0000000000000 l/m
[
[R_d == S_s, R_lu == -S_a + S_s, R_ld == S_b, R_u == 0]
]
B_l == 0.0106559443973775
B_l == 0.00119137080184970
meter^3 == meter^3
mole/second == mole/second
mole/second == mole/second
mole/second == mole/second
mole/second == mole/second
meter^3/second == meter^3/second
kilogram/second^3 == kilogram/second^3
[
T_out == (F_in_mola*M_air*T_in*c_pa + F_in_molw*M_w*T_in*c_pv + H_l*L_A + Q_in)/(E_lmol*L_A*M_w*c_pv + F_in_mola*M_air*c_pa + F_in_molw*M_w*c_pv)
]
T_out == (F_in_v*M_w*P_w_in*T_in*c_pv + H_l*L_A*R_mol*T_in + Q_in*R_mol*T_in + (F_in_v*M_air*P_a - F_in_v*M_air*P_w_in)*T_in*c_pa)/(E_lmol*L_A*M_w*R_mol*T_in*c_pv + F_in_v*M_w*P_w_in*c_pv + (F_in_v*M_air*P_a - F_in_v*M_air*P_w_in)*c_pa)
[
F_out_v == (E_lmol*L_A*R_mol*T_in*T_out + F_in_v*P_a*T_out)/(P_a*T_in)
]
[
T_in == (F_in_v*M_w*P_w_in*T_out*c_pv + (F_in_v*M_air*P_a - F_in_v*M_air*P_w_in)*T_out*c_pa)/(F_in_v*M_w*P_w_in*c_pv - (E_lmol*M_w*R_mol*T_out*c_pv - H_l*R_mol)*L_A + Q_in*R_mol + (F_in_v*M_air*P_a - F_in_v*M_air*P_w_in)*c_pa)
]
[
Q_in == ((E_lmol*M_w*R_mol*T_in*T_out*c_pv - H_l*R_mol*T_in)*L_A - ((F_in_v*M_air*P_a - F_in_v*M_air*P_w_in)*T_in - (F_in_v*M_air*P_a - F_in_v*M_air*P_w_in)*T_out)*c_pa - (F_in_v*M_w*P_w_in*T_in - F_in_v*M_w*P_w_in*T_out)*c_pv)/(R_mol*T_in)
]
[
H_l == (E_lmol*L_A*M_w*R_mol*T_in*T_out*c_pv - Q_in*R_mol*T_in - ((F_in_v*M_air*P_a - F_in_v*M_air*P_w_in)*T_in - (F_in_v*M_air*P_a - F_in_v*M_air*P_w_in)*T_out)*c_pa - (F_in_v*M_w*P_w_in*T_in - F_in_v*M_w*P_w_in*T_out)*c_pv)/(L_A*R_mol*T_in)
]
[
H_l == -((F_in_mola*M_air*T_in - F_in_mola*M_air*T_out)*c_pa + (F_in_molw*M_w*T_in - F_out_molw*M_w*T_out)*c_pv + Q_in)/L_A
]
[19.1756620432331, 35.0631107274011, 62.0367042507648, 106.473009443655, 177.667645607840, 288.831780737493, 458.305321164456, 710.999051614674, 1080.07052944457, 1608.82992645281, 2352.86266113812, 3382.34604242497, 4784.52773726516, 6666.32514525647, 9156.99713166349]
mole/second == mole/second
mole/second == mole/second
meter^3/second == meter^3/second
mole/second == mole/second
meter^3/second == meter^3/second
1227.86016957787
0.000166666666666667
Volumentric flow at 0 oC: 0.000168711114309656 m3/s
Volumentric flow at 25 oC: 0.000184152365848157 m3/s
25oC/0oC: 1.09152480322167
Volumentric flow at 25 oC without added vapour: 0.000181920800536946 m3/s
kilogram/(meter*second^2) == kilogram/(meter*second^2)
mole/(meter^2*second) == mole/(meter^2*second)
1227.86016957787
0.000166666666666667
Volumentric flow at 0 oC: 0.000168711114309656 m3/s
Volumentric flow at 25 oC: 0.000184152365848157 m3/s
25oC/0oC: 1.09152480322167
Volumentric flow at 25 oC without added vapour: 0.000181920800536946 m3/s
0.821854415126695
jupyter nbconvert --to=python 'leaf_chamber_eqs.ipynb'
Exporting specified worksheet to .py file...
nbconvert returned 0
Checking if specified ipynb file was run with sage kernel...
Renaming .py file to .sage if notebook kernel was sage (to avoid exponent error)
imported file temp/leaf_chamber_eqs
jupyter nbconvert --to=python 'leaf_chamber_data.ipynb'
Exporting specified worksheet to .py file...
nbconvert returned 0
Checking if specified ipynb file was run with sage kernel...
Renaming .py file to .sage if notebook kernel was sage (to avoid exponent error)
created file temp/leaf_chamber_data
E_l 180.542235053941
H_l 150.521099595469
T_l 308.321395271
kilogram/second^3 == kilogram/second^3
kilogram/second^3 == kilogram/second^3
h_c(Ball): 21.8153792127944
g_vmol(Ball): 0.110506932339455
g_vmol(SS): g_twmol == 0.117381005752392
T_l(Ball): 309.125596874492
T_l(SS): 308.321395271
T_a: 303
R_s = (0.0, 0.0) joule/(R_s*meter^2*second)
P_wa = (218.598991722, 1694.78883295) pascal/P_wa
T_a = (295.72, 295.95) kelvin/T_a
v_w = (0.9999, 1.04) meter/(second*v_w)
g_sw = (0.035, 0.035) meter/(g_sw*second)


0.0420000000000000
R_s = (0.0, 0.0) joule/(R_s*meter^2*second)
P_wa = (1187.38813505, 1278.34796382) pascal/P_wa
T_a = (295.0, 296.53) kelvin/T_a
v_w = (0.8333, 5.102) meter/(second*v_w)
g_sw = (0.042, 0.042) meter/(g_sw*second)


18
['Date', 'Time', 'Inflow rate', 'Tdew humidifier', 'Incoming2 Temp_C(5)', 'Incoming3 Temp_C(6)', 'wall inside Temp_C(3) ', 'wall outside Temp_C(4)', 'chamber air Temp_C(1) ', 'Tl1', 'Tl2', 'TlIR', 'Tlin', 'Fan power', 'FlowMeter out', 'Wind speed', 'Sensirion', 'Comment']
['', '', 'l/min', 'oC', 'oC', 'oC', 'oC', 'oC', 'oC', 'oC', 'oC', 'oC', 'oC', 'W', 'l/min', 'm/s', 'ul/min', '']
R_s = (0.0, 0.0) joule/(R_s*meter^2*second)
P_wa = (168.502255462, 1143.55502295) pascal/P_wa
T_a = (296.05, 296.71) kelvin/T_a
v_w = (0.7, 0.7) meter/(second*v_w)
g_sw = (0.0065, 0.0065) meter/(g_sw*second)



R_s = (0.0, 700.0) joule/(R_s*meter^2*second)
P_wa = (1300.96492908905, 1300.96492908905) pascal/P_wa
T_a = (295, 295) kelvin/T_a
v_w = (1.0, 1.0) meter/(second*v_w)
g_sw = (0.045, 0.045) meter/(g_sw*second)

R_s = (350.0, 350.0) joule/(R_s*meter^2*second)
P_wa = (567.937364287074, 567.937364287074) pascal/P_wa
T_a = (282.0, 298.0) kelvin/T_a
v_w = (1.0, 1.0) meter/(second*v_w)
g_sw = (0.045, 0.045) meter/(g_sw*second)

imported file temp/leaf_chamber_data
jupyter nbconvert --to=python 'Tables_of_variables.ipynb'
Exporting specified worksheet to .py file...
nbconvert returned 0
Checking if specified ipynb file was run with sage kernel...
Renaming .py file to .sage if notebook kernel was sage (to avoid exponent error)
created file temp/Tables_of_variables
Tables_of_variables.ipynb
Worksheet_update.ipynb
Worksheet_setup.ipynb
stomatal_cond_eqs.ipynb
leaf_chamber_eqs.ipynb
leaf_chamber_data.ipynb
leaf_enbalance_eqs.ipynb
E_PM_eqs.ipynb
imported file temp/Tables_of_variables