Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

πŸ“š The CoCalc Library - books, templates and other resources

132922 views
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section23.4Exercises

ΒΆ
1

Compute each of the following Galois groups. Which of these field extensions are normal field extensions? If the extension is not normal, find a normal extension of Q{\mathbb Q} in which the extension field is contained.

  1. G(Q(30 )/Q)G({\mathbb Q}(\sqrt{30}\, ) / {\mathbb Q})

  2. G(Q(54 )/Q)G({\mathbb Q}(\sqrt[4]{5}\, ) / {\mathbb Q})

  3. G(Q(2,3,5 )/Q)G( {\mathbb Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}\, )/ {\mathbb Q} )

  4. G(Q(2,23,i)/Q)G({\mathbb Q}(\sqrt{2}, \sqrt[3]{2}, i) / {\mathbb Q})

  5. G(Q(6,i)/Q)G({\mathbb Q}(\sqrt{6}, i) / {\mathbb Q})

Hint

(a) Z2;{\mathbb Z}_2\text{;} (c) Z2Γ—Z2Γ—Z2.{\mathbb Z}_2 \times {\mathbb Z}_2 \times {\mathbb Z}_2\text{.}

2

Determine the separability of each of the following polynomials.

  1. x3+2x2βˆ’xβˆ’2x^3 + 2 x^2 - x - 2 over Q{\mathbb Q}

  2. x4+2x2+1x^4 + 2 x^2 + 1 over Q{\mathbb Q}

  3. x4+x2+1x^4 + x^2 + 1 over Z3{\mathbb Z}_3

  4. x3+x2+1x^3 +x^2 + 1 over Z2{\mathbb Z}_2

Hint

(a) Separable over Q\mathbb Q since x3+2x2βˆ’xβˆ’2=(xβˆ’1)(x+1)(x+2);x^3 + 2 x^2 - x - 2 = (x - 1)(x + 1)(x + 2)\text{;} (c) not separable over Z3\mathbb Z_3 since x4+x2+1=(x+1)2(x+2)2.x^4 + x^2 + 1 = (x + 1)^2 (x + 2)^2 \text{.}

3

Give the order and describe a generator of the Galois group of GF⁑(729)\gf(729) over GF⁑(9).\gf(9)\text{.}

Hint

If

[GF⁑(729):GF⁑(9)]=[GF⁑(729):GF⁑(3)]/[GF⁑(9):GF⁑(3)]=6/2=3,\begin{equation*} [\gf(729): \gf(9)] = [\gf(729): \gf(3)] /[\gf(9): \gf(3)] = 6/2 = 3, \end{equation*}

then G(GF⁑(729)/GF⁑(9))β‰…Z3.G(\gf(729)/ \gf(9)) \cong {\mathbb Z}_3\text{.} A generator for G(GF⁑(729)/GF⁑(9))G(\gf(729)/ \gf(9)) is Οƒ,\sigma\text{,} where Οƒ36(Ξ±)=Ξ±36=Ξ±729\sigma_{3^6}( \alpha) = \alpha^{3^6} = \alpha^{729} for α∈GF⁑(729).\alpha \in \gf(729)\text{.}

4

Determine the Galois groups of each of the following polynomials in Q[x];{\mathbb Q}[x]\text{;} hence, determine the solvability by radicals of each of the polynomials.

  1. x5βˆ’12x2+2x^5 - 12 x^2 + 2

  2. x5βˆ’4x4+2x+2x^5 - 4 x^4 + 2 x + 2

  3. x3βˆ’5x^3 - 5

  4. x4βˆ’x2βˆ’6x^4 - x^2 - 6

  5. x5+1x^5 + 1

  6. (x2βˆ’2)(x2+2)(x^2 - 2)(x^2 + 2)

  7. x8βˆ’1x^8 - 1

  8. x8+1x^8 + 1

  9. x4βˆ’3x2βˆ’10x^4 - 3 x^2 -10

Hint

(a) S5;S_5\text{;} (c) S3;S_3\text{;} (g) see ExampleΒ 23.10.

5

Find a primitive element in the splitting field of each of the following polynomials in Q[x].{\mathbb Q}[x]\text{.}

  1. x4βˆ’1x^4 - 1

  2. x4βˆ’8x2+15x^4 - 8 x^2 + 15

  3. x4βˆ’2x2βˆ’15x^4 - 2 x^2 - 15

  4. x3βˆ’2x^3 - 2

Hint

(a) Q(i){\mathbb Q}(i)

6

Prove that the Galois group of an irreducible quadratic polynomial is isomorphic to Z2.{\mathbb Z}_2\text{.}

7

Prove that the Galois group of an irreducible cubic polynomial is isomorphic to S3S_3 or Z3.{\mathbb Z}_3\text{.}

Hint

Let EE be the splitting field of a cubic polynomial in F[x].F[x]\text{.} Show that [E:F][E:F] is less than or equal to 6 and is divisible by 3. Since G(E/F)G(E/F) is a subgroup of S3S_3 whose order is divisible by 3, conclude that this group must be isomorphic to Z3{\mathbb Z}_3 or S3.S_3\text{.}

8

Let FβŠ‚KβŠ‚EF \subset K \subset E be fields. If E is a normal extension of F,F\text{,} show that EE must also be a normal extension of K.K\text{.}

9

Let GG be the Galois group of a polynomial of degree n.n\text{.} Prove that ∣G∣|G| divides n!.n!\text{.}

Hint

GG is a subgroup of Sn.S_n\text{.}

10

Let FβŠ‚E.F \subset E\text{.} If f(x)f(x) is solvable over F,F\text{,} show that f(x)f(x) is also solvable over E.E\text{.}

11

Construct a polynomial f(x)f(x) in Q[x]{\mathbb Q}[x] of degree 7 that is not solvable by radicals.

12

Let pp be prime. Prove that there exists a polynomial f(x)∈Q[x]f(x) \in{\mathbb Q}[x] of degree pp with Galois group isomorphic to Sp.S_p\text{.} Conclude that for each prime pp with pβ‰₯5p \geq 5 there exists a polynomial of degree pp that is not solvable by radicals.

13

Let pp be a prime and Zp(t){\mathbb Z}_p(t) be the field of rational functions over Zp.{\mathbb Z}_p\text{.} Prove that f(x)=xpβˆ’tf(x) = x^p - t is an irreducible polynomial in Zp(t)[x].{\mathbb Z}_p(t)[x]\text{.} Show that f(x)f(x) is not separable.

14

Let EE be an extension field of F.F\text{.} Suppose that KK and LL are two intermediate fields. If there exists an element ΟƒβˆˆG(E/F)\sigma \in G(E/F) such that Οƒ(K)=L,\sigma(K) = L\text{,} then KK and LL are said to be Prove that KK and LL are conjugate if and only if G(E/K)G(E/K) and G(E/L)G(E/L) are conjugate subgroups of G(E/F).G(E/F)\text{.}

15

Let ΟƒβˆˆAut⁑(R).\sigma \in \aut( {\mathbb R} )\text{.} If aa is a positive real number, show that Οƒ(a)>0.\sigma( a) > 0\text{.}

16

Let KK be the splitting field of x3+x2+1∈Z2[x].x^3 + x^2 + 1 \in {\mathbb Z}_2[x]\text{.} Prove or disprove that KK is an extension by radicals.

Hint

True.

17

Let FF be a field such that char Fβ‰ 2.{\rm char}\, F \neq 2\text{.} Prove that the splitting field of f(x)=ax2+bx+cf(x) = a x^2 + b x + c is F(α ),F( \sqrt{\alpha}\, )\text{,} where Ξ±=b2βˆ’4ac.\alpha = b^2 - 4ac\text{.}

18

Prove or disprove: Two different subgroups of a Galois group will have different fixed fields.

19

Let KK be the splitting field of a polynomial over F.F\text{.} If EE is a field extension of FF contained in KK and [E:F]=2,[E:F] = 2\text{,} then EE is the splitting field of some polynomial in F[x].F[x]\text{.}

20

We know that the cyclotomic polynomial

Ξ¦p(x)=xpβˆ’1xβˆ’1=xpβˆ’1+xpβˆ’2+β‹―+x+1\begin{equation*} \Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p - 1} + x^{p - 2} + \cdots + x + 1 \end{equation*}

is irreducible over Q{\mathbb Q} for every prime p.p\text{.} Let Ο‰\omega be a zero of Ξ¦p(x),\Phi_p(x)\text{,} and consider the field Q(Ο‰).{\mathbb Q}(\omega)\text{.}

  1. Show that Ο‰,Ο‰2,…,Ο‰pβˆ’1\omega, \omega^2, \ldots, \omega^{p-1} are distinct zeros of Ξ¦p(x),\Phi_p(x)\text{,} and conclude that they are all the zeros of Ξ¦p(x).\Phi_p(x)\text{.}

  2. Show that G(Q(Ο‰)/Q)G( {\mathbb Q}( \omega ) / {\mathbb Q} ) is abelian of order pβˆ’1.p - 1\text{.}

  3. Show that the fixed field of G(Q(Ο‰)/Q)G( {\mathbb Q}( \omega ) / {\mathbb Q} ) is Q.{\mathbb Q}\text{.}

Hint
  1. Clearly Ο‰,Ο‰2,…,Ο‰pβˆ’1\omega, \omega^2, \ldots, \omega^{p - 1} are distinct since Ο‰β‰ 1\omega \neq 1 or 0. To show that Ο‰i\omega^i is a zero of Ξ¦p,\Phi_p\text{,} calculate Ξ¦p(Ο‰i).\Phi_p( \omega^i)\text{.}

  2. The conjugates of Ο‰\omega are Ο‰,Ο‰2,…,Ο‰pβˆ’1.\omega, \omega^2, \ldots, \omega^{p - 1}\text{.} Define a map Ο•i:Q(Ο‰)β†’Q(Ο‰i)\phi_i: {\mathbb Q}(\omega) \rightarrow {\mathbb Q}(\omega^i) by

    Ο•i(a0+a1Ο‰+β‹―+apβˆ’2Ο‰pβˆ’2)=a0+a1Ο‰i+β‹―+cpβˆ’2(Ο‰i)pβˆ’2,\begin{equation*} \phi_i(a_0 + a_1 \omega + \cdots + a_{p - 2} \omega^{p - 2}) = a_0 + a_1 \omega^i + \cdots + c_{p - 2} (\omega^i)^{p - 2}, \end{equation*}

    where ai∈Q.a_i \in {\mathbb Q}\text{.} Prove that Ο•i\phi_i is an isomorphism of fields. Show that Ο•2\phi_2 generates G(Q(Ο‰)/Q).G({\mathbb Q}(\omega)/{\mathbb Q})\text{.}

  3. Show that {Ο‰,Ο‰2,…,Ο‰pβˆ’1}\{ \omega, \omega^2, \ldots, \omega^{p - 1} \} is a basis for Q(Ο‰){\mathbb Q}( \omega ) over Q,{\mathbb Q}\text{,} and consider which linear combinations of Ο‰,Ο‰2,…,Ο‰pβˆ’1\omega, \omega^2, \ldots, \omega^{p - 1} are left fixed by all elements of G(Q(Ο‰)/Q).G( {\mathbb Q}( \omega ) / {\mathbb Q})\text{.}

21

Let FF be a finite field or a field of characteristic zero. Let EE be a finite normal extension of FF with Galois group G(E/F).G(E/F)\text{.} Prove that FβŠ‚KβŠ‚LβŠ‚EF \subset K \subset L \subset E if and only if {id}βŠ‚G(E/L)βŠ‚G(E/K)βŠ‚G(E/F).\{ \identity \} \subset G(E/L) \subset G(E/K) \subset G(E/F)\text{.}

22

Let FF be a field of characteristic zero and let f(x)∈F[x]f(x) \in F[x] be a separable polynomial of degree n.n\text{.} If EE is the splitting field of f(x),f(x)\text{,} let Ξ±1,…,Ξ±n\alpha_1, \ldots, \alpha_n be the roots of f(x)f(x) in E.E\text{.} Let Ξ”=∏i<j(Ξ±iβˆ’Ξ±j).\Delta = \prod_{i \lt j} (\alpha_i - \alpha_j)\text{.} We define the of f(x)f(x) to be Ξ”2.\Delta^2\text{.}

  1. If f(x)=x2+bx+c,f(x) = x^2 + b x + c\text{,} show that Ξ”2=b2βˆ’4c.\Delta^2 = b^2 - 4c\text{.}

  2. If f(x)=x3+px+q,f(x) = x^3 + p x + q\text{,} show that Ξ”2=βˆ’4p3βˆ’27q2.\Delta^2 = - 4p^3 - 27q^2\text{.}

  3. Prove that Ξ”2\Delta^2 is in F.F\text{.}

  4. If ΟƒβˆˆG(E/F)\sigma \in G(E/F) is a transposition of two roots of f(x),f(x)\text{,} show that Οƒ(Ξ”)=βˆ’Ξ”.\sigma( \Delta ) = -\Delta\text{.}

  5. If ΟƒβˆˆG(E/F)\sigma \in G(E/F) is an even permutation of the roots of f(x),f(x)\text{,} show that Οƒ(Ξ”)=Ξ”.\sigma( \Delta ) = \Delta\text{.}

  6. Prove that G(E/F)G(E/F) is isomorphic to a subgroup of AnA_n if and only if Ξ”βˆˆF.\Delta \in F\text{.}

  7. Determine the Galois groups of x3+2xβˆ’4x^3 + 2 x - 4 and x3+xβˆ’3.x^3 + x -3\text{.}