Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132928 views
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section12.3Exercises

1

Prove the identity

x,y=12[x+y2x2y2].\begin{equation*} \langle {\mathbf x}, {\mathbf y} \rangle = \frac{1}{2} \left[ \|{\mathbf x} + {\mathbf y}\|^2 - \|{\mathbf x}\|^2 - \| {\mathbf y}\|^2 \right]. \end{equation*}
Hint
12[x+y2+x2y2]=12[x+y,x+yx2y2]=12[x2+2x,y+y2x2y2]=x,y.\begin{align*} \frac{1}{2} \left[ \|{\mathbf x} + {\mathbf y}\|^2 + \|{\mathbf x}\|^2 - \| {\mathbf y}\|^2 \right] & = \frac{1}{2} \left[ \langle x + y, x + y \rangle - \|{\mathbf x}\|^2 - \| {\mathbf y}\|^2 \right]\\ & = \frac{1}{2} \left[ \| {\mathbf x}\|^2 + 2 \langle x, y \rangle + \| {\mathbf y}\|^2 - \|{\mathbf x}\|^2 - \| {\mathbf y}\|^2 \right]\\ & = \langle {\mathbf x}, {\mathbf y} \rangle. \end{align*}
2

Show that O(n)O(n) is a group.

3

Prove that the following matrices are orthogonal. Are any of these matrices in SO(n)?SO(n)\text{?}

  1. (1/21/21/21/2)\begin{equation*} \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \end{equation*}
  2. (1/52/52/51/5)\begin{equation*} \begin{pmatrix} 1 / \sqrt{5} & 2 / \sqrt{5} \\ - 2 /\sqrt{5} & 1/ \sqrt{5} \end{pmatrix} \end{equation*}
  3. (4/503/53/504/5010)\begin{equation*} \begin{pmatrix} 4/ \sqrt{5} & 0 & 3 / \sqrt{5} \\ -3 / \sqrt{5} & 0 & 4 / \sqrt{5} \\ 0 & -1 & 0 \end{pmatrix} \end{equation*}
  4. (1/32/32/32/32/31/32/31/32/3)\begin{equation*} \begin{pmatrix} 1/3 & 2/3 & - 2/3 \\ - 2/3 & 2/3 & 1/3 \\ -2/3 & 1/3 & 2/3 \end{pmatrix} \end{equation*}
Hint

(a) is in SO(2);SO(2)\text{;} (c) is not in O(3).O(3)\text{.}

4

Determine the symmetry group of each of the figures in Figure 12.25.

Figure12.25
5

Let x,{\mathbf x}\text{,} y,{\mathbf y}\text{,} and w{\mathbf w} be vectors in Rn{\mathbb R}^n and αR.\alpha \in {\mathbb R}\text{.} Prove each of the following properties of inner products.

  1. x,y=y,x.\langle {\mathbf x}, {\mathbf y} \rangle = \langle {\mathbf y}, {\mathbf x} \rangle\text{.}

  2. x,y+w=x,y+x,w.\langle {\mathbf x}, {\mathbf y} + {\mathbf w} \rangle = \langle {\mathbf x}, {\mathbf y} \rangle + \langle {\mathbf x}, {\mathbf w} \rangle\text{.}

  3. αx,y=x,αy=αx,y.\langle \alpha {\mathbf x}, {\mathbf y} \rangle = \langle {\mathbf x}, \alpha {\mathbf y} \rangle = \alpha \langle {\mathbf x}, {\mathbf y} \rangle\text{.}

  4. x,x0\langle {\mathbf x}, {\mathbf x} \rangle \geq 0 with equality exactly when x=0.{\mathbf x} = 0\text{.}

  5. If x,y=0\langle {\mathbf x}, {\mathbf y} \rangle = 0 for all x{\mathbf x} in Rn,{\mathbb R}^n\text{,} then y=0.{\mathbf y} = 0\text{.}

Hint

(a) x,y=y,x.\langle {\mathbf x}, {\mathbf y} \rangle = \langle {\mathbf y}, {\mathbf x} \rangle\text{.}

6

Verify that

E(n)={(A,x):AO(n) and xRn}\begin{equation*} E(n) = \{(A, {\mathbf x}) : A \in O(n) \text{ and } {\mathbf x} \in {\mathbb R}^n \} \end{equation*}

is a group.

7

Prove that {(2,1),(1,1)}\{ (2,1), (1,1) \} and {(12,5),(7,3)}\{ ( 12, 5), ( 7, 3) \} are bases for the same lattice.

Hint

Use the unimodular matrix

(5221).\begin{equation*} \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}. \end{equation*}
8

Let GG be a subgroup of E(2)E(2) and suppose that TT is the translation subgroup of G.G\text{.} Prove that the point group of GG is isomorphic to G/T.G/T\text{.}

9

Let ASL2(R)A \in SL_2({\mathbb R}) and suppose that the vectors x{\mathbf x} and y{\mathbf y} form two sides of a parallelogram in R2.{\mathbb R}^2\text{.} Prove that the area of this parallelogram is the same as the area of the parallelogram with sides AxA{\mathbf x} and Ay.A{\mathbf y}\text{.}

10

Prove that SO(n)SO(n) is a normal subgroup of O(n).O(n)\text{.}

Hint

Show that the kernel of the map det:O(n)R\det : O(n) \rightarrow {\mathbb R}^* is SO(n).SO(n)\text{.}

11

Show that any isometry ff in Rn{\mathbb R}^n is a one-to-one map.

12

Prove or disprove: an element in E(2)E(2) of the form (A,x),(A, {\mathbf x})\text{,} where x0,{\mathbf x} \neq 0\text{,} has infinite order.

13

Prove or disprove: There exists an infinite abelian subgroup of O(n).O(n)\text{.}

Hint

True.

14

Let x=(x1,x2){\mathbf x} = (x_1, x_2) be a point on the unit circle in R2;{\mathbb R}^2\text{;} that is, x12+x22=1.x_1^2 + x_2^2 = 1\text{.} If AO(2),A \in O(2)\text{,} show that AxA {\mathbf x} is also a point on the unit circle.

15

Let GG be a group with a subgroup HH (not necessarily normal) and a normal subgroup N.N\text{.} Then GG is a of NN by HH if

  • HN={id};H \cap N = \{ \identity \}\text{;}

  • HN=G.HN=G\text{.}

Show that each of the following is true.

  1. S3S_3 is the semidirect product of A3A_3 by H={(1),(12)}.H = \{(1), (12) \}\text{.}

  2. The quaternion group, Q8,Q_8\text{,} cannot be written as a semidirect product.

  3. E(2)E(2) is the semidirect product of O(2)O(2) by H,H\text{,} where HH consists of all translations in R2.{\mathbb R}^2\text{.}

16

Determine which of the 17 wallpaper groups preserves the symmetry of the pattern in Figure 12.16.

17

Determine which of the 17 wallpaper groups preserves the symmetry of the pattern in Figure 12.26.

Hint

p6mp6m

Figure12.26
18

Find the rotation group of a dodecahedron.

19

For each of the 17 wallpaper groups, draw a wallpaper pattern having that group as a symmetry group.