Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

πŸ“š The CoCalc Library - books, templates and other resources

132928 views
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section10.3Exercises

ΒΆ
1

For each of the following groups G,G\text{,} determine whether HH is a normal subgroup of G.G\text{.} If HH is a normal subgroup, write out a Cayley table for the factor group G/H.G/H\text{.}

  1. G=S4G = S_4 and H=A4H = A_4

  2. G=A5G = A_5 and H={(1),(123),(132)}H = \{ (1), (123), (132) \}

  3. G=S4G = S_4 and H=D4H = D_4

  4. G=Q8G = Q_8 and H={1,βˆ’1,I,βˆ’I}H = \{ 1, -1, I, -I \}

  5. G=ZG = {\mathbb Z} and H=5ZH = 5 {\mathbb Z}

Hint

(a)

A4(12)A4A4A4(12)A4(12)A4(12)A4A4\begin{equation*} \begin{array}{c|cc} & A_4 & (12)A_4 \\ \hline A_4 & A_4 & (12) A_4 \\ (12) A_4 & (12) A_4 & A_4 \end{array} \end{equation*}

(c) D4D_4 is not normal in S4.S_4\text{.}

2

Find all the subgroups of D4.D_4\text{.} Which subgroups are normal? What are all the factor groups of D4D_4 up to isomorphism?

3

Find all the subgroups of the quaternion group, Q8.Q_8\text{.} Which subgroups are normal? What are all the factor groups of Q8Q_8 up to isomorphism?

4

Let TT be the group of nonsingular upper triangular 2Γ—22 \times 2 matrices with entries in R;{\mathbb R}\text{;} that is, matrices of the form

(ab0c),\begin{equation*} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}, \end{equation*}

where a,a\text{,} b,b\text{,} c∈Rc \in {\mathbb R} and acβ‰ 0.ac \neq 0\text{.} Let UU consist of matrices of the form

(1x01),\begin{equation*} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \end{equation*}

where x∈R.x \in {\mathbb R}\text{.}

  1. Show that UU is a subgroup of T.T\text{.}

  2. Prove that UU is abelian.

  3. Prove that UU is normal in T.T\text{.}

  4. Show that T/UT/U is abelian.

  5. Is TT normal in GL2(R)?GL_2( {\mathbb R})\text{?}

5

Show that the intersection of two normal subgroups is a normal subgroup.

6

If GG is abelian, prove that G/HG/H must also be abelian.

7

Prove or disprove: If HH is a normal subgroup of GG such that HH and G/HG/H are abelian, then GG is abelian.

8

If GG is cyclic, prove that G/HG/H must also be cyclic.

Hint

If a∈Ga \in G is a generator for G,G\text{,} then aHaH is a generator for G/H.G/H\text{.}

9

Prove or disprove: If HH and G/HG/H are cyclic, then GG is cyclic.

10

Let HH be a subgroup of index 2 of a group G.G\text{.} Prove that HH must be a normal subgroup of G.G\text{.} Conclude that SnS_n is not simple for nβ‰₯3.n \geq 3\text{.}

11

If a group GG has exactly one subgroup HH of order k,k\text{,} prove that HH is normal in G.G\text{.}

Hint

For any g∈G,g \in G\text{,} show that the map ig:Gβ†’Gi_g : G \to G defined by ig:x↦gxgβˆ’1i_g : x \mapsto gxg^{-1} is an isomorphism of GG with itself. Then consider ig(H).i_g(H)\text{.}

12

Define the of an element gg in a group GG to be the set

C(g)={x∈G:xg=gx}.\begin{equation*} C(g) = \{ x \in G : xg = gx \}. \end{equation*}

Show that C(g)C(g) is a subgroup of G.G\text{.} If gg generates a normal subgroup of G,G\text{,} prove that C(g)C(g) is normal in G.G\text{.}

Hint

Suppose that ⟨g⟩\langle g \rangle is normal in GG and let yy be an arbitrary element of G.G\text{.} If x∈C(g),x \in C(g)\text{,} we must show that yxyβˆ’1y x y^{-1} is also in C(g).C(g)\text{.} Show that (yxyβˆ’1)g=g(yxyβˆ’1).(y x y^{-1}) g = g (y x y^{-1})\text{.}

13

Recall that the of a group GG is the set

Z(G)={x∈G:xg=gx for all g∈G}.\begin{equation*} Z(G) = \{ x \in G : xg = gx \text{ for all } g \in G \}. \end{equation*}
  1. Calculate the center of S3.S_3\text{.}

  2. Calculate the center of GL2(R).GL_2 ( {\mathbb R} )\text{.}

  3. Show that the center of any group GG is a normal subgroup of G.G\text{.}

  4. If G/Z(G)G / Z(G) is cyclic, show that GG is abelian.

14

Let GG be a group and let Gβ€²=⟨abaβˆ’1bβˆ’1⟩;G' = \langle aba^{- 1} b^{-1} \rangle\text{;} that is, Gβ€²G' is the subgroup of all finite products of elements in GG of the form abaβˆ’1bβˆ’1.aba^{-1}b^{-1}\text{.} The subgroup Gβ€²G' is called the of G.G\text{.}

  1. Show that Gβ€²G' is a normal subgroup of G.G\text{.}

  2. Let NN be a normal subgroup of G.G\text{.} Prove that G/NG/N is abelian if and only if NN contains the commutator subgroup of G.G\text{.}

Hint

(a) Let g∈Gg \in G and h∈Gβ€².h \in G'\text{.} If h=abaβˆ’1bβˆ’1,h = aba^{-1}b^{-1}\text{,} then

ghgβˆ’1=gabaβˆ’1bβˆ’1gβˆ’1=(gagβˆ’1)(gbgβˆ’1)(gaβˆ’1gβˆ’1)(gbβˆ’1gβˆ’1)=(gagβˆ’1)(gbgβˆ’1)(gagβˆ’1)βˆ’1(gbgβˆ’1)βˆ’1.\begin{align*} ghg^{-1} & = gaba^{-1}b^{-1}g^{-1}\\ & = (gag^{-1})(gbg^{-1})(ga^{-1}g^{-1})(gb^{-1}g^{-1})\\ & = (gag^{-1})(gbg^{-1})(gag^{-1})^{-1}(gbg^{-1})^{-1}. \end{align*}

We also need to show that if h=h1β‹―hnh = h_1 \cdots h_n with hi=aibiaiβˆ’1biβˆ’1,h_i = a_i b_i a_i^{-1} b_i^{-1}\text{,} then ghgβˆ’1ghg^{-1} is a product of elements of the same type. However, ghgβˆ’1=gh1β‹―hngβˆ’1=(gh1gβˆ’1)(gh2gβˆ’1)β‹―(ghngβˆ’1).ghg^{-1} = g h_1 \cdots h_n g^{-1} = (gh_1g^{-1})(gh_2g^{-1}) \cdots (gh_ng^{-1})\text{.}