Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132928 views
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section5.3Exercises

1

Write the following permutations in cycle notation.

  1. (1234524153)\begin{equation*} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 5 & 3 \end{pmatrix} \end{equation*}
  2. (1234542513)\begin{equation*} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 1 & 3 \end{pmatrix} \end{equation*}
  3. (1234535142)\begin{equation*} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix} \end{equation*}
  4. (1234514325)\begin{equation*} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 2 & 5 \end{pmatrix} \end{equation*}
Hint

(a) (12453);(12453)\text{;} (c) (13)(25).(13)(25)\text{.}

2

Compute each of the following.

  1. (1345)(234)(1345)(234)

  2. (12)(1253)(12)(1253)

  3. (143)(23)(24)(143)(23)(24)

  4. (1423)(34)(56)(1324)(1423)(34)(56)(1324)

  5. (1254)(13)(25)(1254)(13)(25)

  6. (1254)(13)(25)2(1254) (13)(25)^2

  7. (1254)1(123)(45)(1254)(1254)^{-1} (123)(45) (1254)

  8. (1254)2(123)(45)(1254)^2 (123)(45)

  9. (123)(45)(1254)2(123)(45) (1254)^{-2}

  10. (1254)100(1254)^{100}

  11. (1254)|(1254)|

  12. (1254)2|(1254)^2|

  13. (12)1(12)^{-1}

  14. (12537)1(12537)^{-1}

  15. [(12)(34)(12)(47)]1[(12)(34)(12)(47)]^{-1}

  16. [(1235)(467)]1[(1235)(467)]^{-1}

Hint

(a) (135)(24);(135)(24)\text{;} (c) (14)(23);(14)(23)\text{;} (e) (1324);(1324)\text{;} (g) (134)(25);(134)(25)\text{;} (n) (17352).(17352)\text{.}

3

Express the following permutations as products of transpositions and identify them as even or odd.

  1. (14356)(14356)

  2. (156)(234)(156)(234)

  3. (1426)(142)(1426)(142)

  4. (17254)(1423)(154632)(17254)(1423)(154632)

  5. (142637)(142637)

Hint

(a) (16)(15)(13)(14);(16)(15)(13)(14)\text{;} (c) (16)(14)(12).(16)(14)(12)\text{.}

4

Find (a1,a2,,an)1.(a_1, a_2, \ldots, a_n)^{-1}\text{.}

Hint

(a1,a2,,an)1=(a1,an,an1,,a2)(a_1, a_2, \ldots, a_n)^{-1} = (a_1, a_{n}, a_{n-1}, \ldots, a_2)

5

List all of the subgroups of S4.S_4\text{.} Find each of the following sets.

  1. {σS4:σ(1)=3}\{ \sigma \in S_4 : \sigma(1) = 3 \}

  2. {σS4:σ(2)=2}\{ \sigma \in S_4 : \sigma(2) = 2 \}

  3. {σS4:σ(1)=3\{ \sigma \in S_4 : \sigma(1) = 3 and σ(2)=2}\sigma(2) = 2 \}

Are any of these sets subgroups of S4?S_4\text{?}

Hint

(a) {(13),(13)(24),(132),(134),(1324),(1342)}\{ (13), (13)(24), (132), (134), (1324), (1342) \} is not a subgroup.

6

Find all of the subgroups in A4.A_4\text{.} What is the order of each subgroup?

7

Find all possible orders of elements in S7S_7 and A7.A_7\text{.}

8

Show that A10A_{10} contains an element of order 15.

Hint

(12345)(678).(12345)(678)\text{.}

9

Does A8A_8 contain an element of order 26?

10

Find an element of largest order in SnS_n for n=3,,10.n = 3, \ldots, 10\text{.}

11

What are the possible cycle structures of elements of A5?A_5\text{?} What about A6?A_6\text{?}

Hint

Permutations of the form

(1),(a1,a2)(a3,a4),(a1,a2,a3),(a1,a2,a3,a4,a5)\begin{equation*} (1), (a_1, a_2)(a_3, a_4), (a_1, a_2, a_3), (a_1, a_2, a_3, a_4, a_5) \end{equation*}

are possible for A5.A_5\text{.}

12

Let σSn\sigma \in S_n have order n.n\text{.} Show that for all integers ii and j,j\text{,} σi=σj\sigma^i = \sigma^j if and only if ij(modn).i \equiv j \pmod{n}\text{.}

13

Let σ=σ1σmSn\sigma = \sigma_1 \cdots \sigma_m \in S_n be the product of disjoint cycles. Prove that the order of σ\sigma is the least common multiple of the lengths of the cycles σ1,,σm.\sigma_1, \ldots, \sigma_m\text{.}

14

Using cycle notation, list the elements in D5.D_5\text{.} What are rr and s?s\text{?} Write every element as a product of rr and s.s\text{.}

15

If the diagonals of a cube are labeled as Figure 5.26, to which motion of the cube does the permutation (12)(34)(12)(34) correspond? What about the other permutations of the diagonals?

16

Find the group of rigid motions of a tetrahedron. Show that this is the same group as A4.A_4\text{.}

17

Prove that SnS_n is nonabelian for n3.n \geq 3\text{.}

Hint

Calculate (123)(12)(123)(12) and (12)(123).(12)(123)\text{.}

18

Show that AnA_n is nonabelian for n4.n \geq 4\text{.}

19

Prove that DnD_n is nonabelian for n3.n \geq 3\text{.}

20

Let σSn\sigma \in S_n be a cycle. Prove that σ\sigma can be written as the product of at most n1n-1 transpositions.

21

Let σSn.\sigma \in S_n\text{.} If σ\sigma is not a cycle, prove that σ\sigma can be written as the product of at most n2n-2 transpositions.

22

If σ\sigma can be expressed as an odd number of transpositions, show that any other product of transpositions equaling σ\sigma must also be odd.

23

If σ\sigma is a cycle of odd length, prove that σ2\sigma^2 is also a cycle.

24

Show that a 3-cycle is an even permutation.

25

Prove that in AnA_n with n3,n \geq 3\text{,} any permutation is a product of cycles of length 3.

Hint

Consider the cases (ab)(bc)(ab)(bc) and (ab)(cd).(ab)(cd)\text{.}

26

Prove that any element in SnS_n can be written as a finite product of the following permutations.

  1. (12),(13),,(1n)(1 2), (13), \ldots, (1n)

  2. (12),(23),,(n1,n)(1 2), (23), \ldots, (n- 1,n)

  3. (12),(12n)(12), (1 2 \ldots n )

27

Let GG be a group and define a map λg:GG\lambda_g : G \rightarrow G by λg(a)=ga.\lambda_g(a) = g a\text{.} Prove that λg\lambda_g is a permutation of G.G\text{.}

28

Prove that there exist n!n! permutations of a set containing nn elements.

29

Recall that the of a group GG is

Z(G)={gG:gx=xg for all xG}.\begin{equation*} Z(G) = \{ g \in G : gx = xg \text{ for all } x \in G \}. \end{equation*}

Find the center of D8.D_8\text{.} What about the center of D10?D_{10}\text{?} What is the center of Dn?D_n\text{?}

30

Let τ=(a1,a2,,ak)\tau = (a_1, a_2, \ldots, a_k) be a cycle of length k.k\text{.}

  1. Prove that if σ\sigma is any permutation, then

    στσ1=(σ(a1),σ(a2),,σ(ak))\begin{equation*} \sigma \tau \sigma^{-1 } = ( \sigma(a_1), \sigma(a_2), \ldots, \sigma(a_k)) \end{equation*}

    is a cycle of length k.k\text{.}

  2. Let μ\mu be a cycle of length k.k\text{.} Prove that there is a permutation σ\sigma such that στσ1=μ.\sigma \tau \sigma^{-1 } = \mu\text{.}

Hint

For (a), show that στσ1(σ(ai))=σ(ai+1).\sigma \tau \sigma^{-1 }(\sigma(a_i)) = \sigma(a_{i + 1})\text{.}

31

For α\alpha and β\beta in Sn,S_n\text{,} define αβ\alpha \sim \beta if there exists an σSn\sigma \in S_n such that σασ1=β.\sigma \alpha \sigma^{-1} = \beta\text{.} Show that \sim is an equivalence relation on Sn.S_n\text{.}

32

Let σSX.\sigma \in S_X\text{.} If σn(x)=y,\sigma^n(x) = y\text{,} we will say that xy.x \sim y\text{.}

  1. Show that \sim is an equivalence relation on X.X\text{.}

  2. If σAn\sigma \in A_n and τSn,\tau \in S_n\text{,} show that τ1στAn.\tau^{-1} \sigma \tau \in A_n\text{.}

  3. Define the of xXx \in X under σSX\sigma \in S_X to be the set

    Ox,σ={y:xy}.\begin{equation*} {\mathcal O}_{x, \sigma} = \{ y : x \sim y \}. \end{equation*}

    Compute the orbits of each of the following elements in S5:S_5\text{:}

    α=(1254)β=(123)(45)γ=(13)(25).\begin{align*} \alpha & = (1254)\\ \beta & = (123)(45)\\ \gamma & = (13)(25). \end{align*}
  4. If Ox,σOy,σ,{\mathcal O}_{x, \sigma} \cap {\mathcal O}_{y, \sigma} \neq \emptyset\text{,} prove that Ox,σ=Oy,σ.{\mathcal O}_{x, \sigma} = {\mathcal O}_{y, \sigma}\text{.} The orbits under a permutation σ\sigma are the equivalence classes corresponding to the equivalence relation .\sim\text{.}

  5. A subgroup HH of SXS_X is if for every x,yX,x, y \in X\text{,} there exists a σH\sigma \in H such that σ(x)=y.\sigma(x) = y\text{.} Prove that σ\langle \sigma \rangle is transitive if and only if Ox,σ=X{\mathcal O}_{x, \sigma} = X for some xX.x \in X\text{.}

33

Let αSn\alpha \in S_n for n3.n \geq 3\text{.} If αβ=βα\alpha \beta = \beta \alpha for all βSn,\beta \in S_n\text{,} prove that α\alpha must be the identity permutation; hence, the center of SnS_n is the trivial subgroup.

34

If α\alpha is even, prove that α1\alpha^{-1} is also even. Does a corresponding result hold if α\alpha is odd?

35

Show that α1β1αβ\alpha^{-1} \beta^{-1} \alpha \beta is even for α,βSn.\alpha, \beta \in S_n\text{.}

36

Let rr and ss be the elements in DnD_n described in Theorem 5.23

  1. Show that srs=r1.srs = r^{-1}\text{.}

  2. Show that rks=srkr^k s = s r^{-k} in Dn.D_n\text{.}

  3. Prove that the order of rkDnr^k \in D_n is n/gcd(k,n).n / \gcd(k,n)\text{.}