Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

πŸ“š The CoCalc Library - books, templates and other resources

132928 views
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section17.4Exercises

ΒΆ
1

List all of the polynomials of degree 3 or less in Z2[x].{\mathbb Z}_2[x]\text{.}

2

Compute each of the following.

  1. (5x2+3xβˆ’4)+(4x2βˆ’x+9)(5x^2 + 3x - 4) + (4x^2 - x + 9) in Z12{\mathbb Z}_{12}

  2. (5x2+3xβˆ’4)(4x2βˆ’x+9)(5x^2 + 3x - 4) (4x^2 - x + 9) in Z12{\mathbb Z}_{12}

  3. (7x3+3x2βˆ’x)+(6x2βˆ’8x+4)(7x^3 + 3x^2 - x) + (6x^2 - 8x + 4) in Z9{\mathbb Z}_9

  4. (3x2+2xβˆ’4)+(4x2+2)(3x^2 + 2x - 4) + (4x^2 + 2) in Z5{\mathbb Z}_5

  5. (3x2+2xβˆ’4)(4x2+2)(3x^2 + 2x - 4) (4x^2 + 2) in Z5{\mathbb Z}_5

  6. (5x2+3xβˆ’2)2(5x^2 + 3x - 2)^2 in Z12{\mathbb Z}_{12}

Hint

(a) 9x2+2x+5;9x^2 + 2x + 5\text{;} (b) 8x4+7x3+2x2+7x.8x^4 + 7x^3 + 2x^2 + 7x\text{.}

3

Use the division algorithm to find q(x)q(x) and r(x)r(x) such that a(x)=q(x)b(x)+r(x)a(x) = q(x) b(x) + r(x) with deg⁑r(x)<deg⁑b(x)\deg r(x) \lt \deg b(x) for each of the following pairs of polynomials.

  1. a(x)=5x3+6x2βˆ’3x+4a(x) = 5 x^3 + 6x^2 - 3 x + 4 and b(x)=xβˆ’2b(x) = x - 2 in Z7[x]{\mathbb Z}_7[x]

  2. a(x)=6x4βˆ’2x3+x2βˆ’3x+1a(x) = 6 x^4 - 2 x^3 + x^2 - 3 x + 1 and b(x)=x2+xβˆ’2b(x) = x^2 + x - 2 in Z7[x]{\mathbb Z}_7[x]

  3. a(x)=4x5βˆ’x3+x2+4a(x) = 4 x^5 - x^3 + x^2 + 4 and b(x)=x3βˆ’2b(x) = x^3 - 2 in Z5[x]{\mathbb Z}_5[x]

  4. a(x)=x5+x3βˆ’x2βˆ’xa(x) = x^5 + x^3 -x^2 - x and b(x)=x3+xb(x) = x^3 + x in Z2[x]{\mathbb Z}_2[x]

Hint

(a) 5x3+6x2βˆ’3x+4=(5x2+2x+1)(xβˆ’2)+6;5 x^3 + 6 x^2 - 3 x + 4 = (5 x^2 + 2x + 1)(x -2) + 6\text{;} (c) 4x5βˆ’x3+x2+4=(4x2+4)(x3+3)+4x2+2.4x^5 - x^3 + x^2 + 4 = (4x^2 + 4)(x^3 + 3) + 4x^2 + 2\text{.}

4

Find the greatest common divisor of each of the following pairs p(x)p(x) and q(x)q(x) of polynomials. If d(x)=gcd⁑(p(x),q(x)),d(x) = \gcd( p(x), q(x) )\text{,} find two polynomials a(x)a(x) and b(x)b(x) such that a(x)p(x)+b(x)q(x)=d(x).a(x) p(x) + b(x) q(x) = d(x)\text{.}

  1. p(x)=x3βˆ’6x2+14xβˆ’15p(x) = x^3 - 6x^2 + 14x - 15 and q(x)=x3βˆ’8x2+21xβˆ’18,q(x) = x^3 - 8x^2 + 21x - 18\text{,} where p(x),q(x)∈Q[x]p(x), q(x) \in {\mathbb Q}[x]

  2. p(x)=x3+x2βˆ’x+1p(x) = x^3 + x^2 - x + 1 and q(x)=x3+xβˆ’1,q(x) = x^3 + x - 1\text{,} where p(x),q(x)∈Z2[x]p(x), q(x) \in {\mathbb Z}_2[x]

  3. p(x)=x3+x2βˆ’4x+4p(x) = x^3 + x^2 - 4x + 4 and q(x)=x3+3xβˆ’2,q(x) = x^3 + 3 x -2\text{,} where p(x),q(x)∈Z5[x]p(x), q(x) \in {\mathbb Z}_5[x]

  4. p(x)=x3βˆ’2x+4p(x) = x^3 - 2 x + 4 and q(x)=4x3+x+3,q(x) = 4 x^3 + x + 3\text{,} where p(x),q(x)∈Q[x]p(x), q(x) \in {\mathbb Q}[x]

5

Find all of the zeros for each of the following polynomials.

  1. 5x3+4x2βˆ’x+95x^3 + 4x^2 - x + 9 in Z12{\mathbb Z}_{12}

  2. 3x3βˆ’4x2βˆ’x+43x^3 - 4x^2 - x + 4 in Z5{\mathbb Z}_{5}

  3. 5x4+2x2βˆ’35x^4 + 2x^2 - 3 in Z7{\mathbb Z}_{7}

  4. x3+x+1x^3 + x + 1 in Z2{\mathbb Z}_2

Hint

(a) No zeros in Z12;{\mathbb Z}_{12}\text{;} (c) 3, 4.

6

Find all of the units in Z[x].{\mathbb Z}[x]\text{.}

7

Find a unit p(x)p(x) in Z4[x]{\mathbb Z}_4[x] such that deg⁑p(x)>1.\deg p(x) \gt 1\text{.}

Hint

Look at (2x+1).(2x + 1)\text{.}

8

Which of the following polynomials are irreducible over Q[x]?{\mathbb Q}[x]\text{?}

  1. x4βˆ’2x3+2x2+x+4x^4 - 2x^3 + 2x^2 + x + 4

  2. x4βˆ’5x3+3xβˆ’2x^4 - 5x^3 + 3x - 2

  3. 3x5βˆ’4x3βˆ’6x2+63x^5 - 4x^3 - 6x^2 + 6

  4. 5x5βˆ’6x4βˆ’3x2+9xβˆ’155x^5 - 6x^4 - 3x^2 + 9 x - 15

Hint

(a) Reducible; (c) irreducible.

9

Find all of the irreducible polynomials of degrees 2 and 3 in Z2[x].{\mathbb Z}_2[x]\text{.}

10

Give two different factorizations of x2+x+8x^2 + x + 8 in Z10[x].{\mathbb Z}_{10}[x]\text{.}

Hint

One factorization is x2+x+8=(x+2)(x+9).x^2 + x + 8 = (x + 2)(x + 9)\text{.}

11

Prove or disprove: There exists a polynomial p(x)p(x) in Z6[x]{\mathbb Z}_6[x] of degree nn with more than nn distinct zeros.

12

If FF is a field, show that F[x1,…,xn]F[x_1, \ldots, x_n] is an integral domain.

13

Show that the division algorithm does not hold for Z[x].{\mathbb Z}[x]\text{.} Why does it fail?

Hint

The integers Z\mathbb Z do not form a field.

14

Prove or disprove: xp+ax^p + a is irreducible for any a∈Zp,a \in {\mathbb Z}_p\text{,} where pp is prime.

Hint

False.

15

Let f(x)f(x) be irreducible in F[x],F[x]\text{,} where FF is a field. If f(x)∣p(x)q(x),f(x) \mid p(x)q(x)\text{,} prove that either f(x)∣p(x)f(x) \mid p(x) or f(x)∣q(x).f(x) \mid q(x)\text{.}

16

Suppose that RR and SS are isomorphic rings. Prove that R[x]β‰…S[x].R[x] \cong S[x]\text{.}

Hint

Let ϕ:R→S\phi : R \rightarrow S be an isomorphism. Define ϕ‾:R[x]→S[x]\overline{\phi} : R[x] \rightarrow S[x] by ϕ‾(a0+a1x+⋯+anxn)=ϕ(a0)+ϕ(a1)x+⋯+ϕ(an)xn.\overline{\phi}(a_0 + a_1 x + \cdots + a_n x^n) = \phi(a_0) + \phi(a_1) x + \cdots + \phi(a_n) x^n\text{.}

17

Let FF be a field and a∈F.a \in F\text{.} If p(x)∈F[x],p(x) \in F[x]\text{,} show that p(a)p(a) is the remainder obtained when p(x)p(x) is divided by xβˆ’a.x - a\text{.}

18The Rational Root Theorem

Let

p(x)=anxn+anβˆ’1xnβˆ’1+β‹―+a0∈Z[x],\begin{equation*} p(x) = a_n x^n + a_{n - 1}x^{n - 1} + \cdots + a_0 \in \mathbb Z[x], \end{equation*}

where anβ‰ 0.a_n \neq 0\text{.} Prove that if p(r/s)=0,p(r/s) = 0\text{,} where gcd⁑(r,s)=1,\gcd(r, s) = 1\text{,} then r∣a0r \mid a_0 and s∣an.s \mid a_n\text{.}

19

Let Qβˆ—{\mathbb Q}^* be the multiplicative group of positive rational numbers. Prove that Qβˆ—{\mathbb Q}^* is isomorphic to (Z[x],+).( {\mathbb Z}[x], +)\text{.}

20Cyclotomic Polynomials

The polynomial

Ξ¦n(x)=xnβˆ’1xβˆ’1=xnβˆ’1+xnβˆ’2+β‹―+x+1\begin{equation*} \Phi_n(x) = \frac{x^n - 1}{x - 1} = x^{n - 1} + x^{n - 2} + \cdots + x + 1 \end{equation*}

is called the Show that Ξ¦p(x)\Phi_p(x) is irreducible over Q{\mathbb Q} for any prime p.p\text{.}

Hint

The polynomial

Ξ¦n(x)=xnβˆ’1xβˆ’1=xnβˆ’1+xnβˆ’2+β‹―+x+1\begin{equation*} \Phi_n(x) = \frac{x^n - 1}{x - 1} = x^{n - 1} + x^{n - 2} + \cdots + x + 1 \end{equation*}

is called the Show that Ξ¦p(x)\Phi_p(x) is irreducible over Q{\mathbb Q} for any prime p.p\text{.}

21

If FF is a field, show that there are infinitely many irreducible polynomials in F[x].F[x]\text{.}

22

Let RR be a commutative ring with identity. Prove that multiplication is commutative in R[x].R[x]\text{.}

23

Let RR be a commutative ring with identity. Prove that multiplication is distributive in R[x].R[x]\text{.}

24

Show that xpβˆ’xx^p - x has pp distinct zeros in Zp,{\mathbb Z}_p\text{,} for any prime p.p\text{.} Conclude that

xpβˆ’x=x(xβˆ’1)(xβˆ’2)β‹―(xβˆ’(pβˆ’1)).\begin{equation*} x^p - x = x(x - 1)(x - 2) \cdots (x - (p - 1)). \end{equation*}
25

Let FF be a field and f(x)=a0+a1x+β‹―+anxnf(x) = a_0 + a_1 x + \cdots + a_n x^n be in F[x].F[x]\text{.} Define fβ€²(x)=a1+2a2x+β‹―+nanxnβˆ’1f'(x) = a_1 + 2 a_2 x + \cdots + n a_n x^{n - 1} to be the of f(x).f(x)\text{.}

  1. Prove that

    (f+g)β€²(x)=fβ€²(x)+gβ€²(x).\begin{equation*} (f + g)'(x) = f'(x) + g'(x). \end{equation*}

    Conclude that we can define a homomorphism of abelian groups D:F[x]β†’F[x]D : F[x] \rightarrow F[x] by D(f(x))=fβ€²(x).D(f(x)) = f'(x)\text{.}

  2. Calculate the kernel of DD if char⁑F=0.\chr F = 0\text{.}

  3. Calculate the kernel of DD if char⁑F=p.\chr F = p\text{.}

  4. Prove that

    (fg)β€²(x)=fβ€²(x)g(x)+f(x)gβ€²(x).\begin{equation*} (fg)'(x) = f'(x)g(x) + f(x) g'(x). \end{equation*}
  5. Suppose that we can factor a polynomial f(x)∈F[x]f(x) \in F[x] into linear factors, say

    f(x)=a(xβˆ’a1)(xβˆ’a2)β‹―(xβˆ’an).\begin{equation*} f(x) = a(x - a_1) (x - a_2) \cdots ( x - a_n). \end{equation*}

    Prove that f(x)f(x) has no repeated factors if and only if f(x)f(x) and fβ€²(x)f'(x) are relatively prime.

26

Let FF be a field. Show that F[x]F[x] is never a field.

Hint

Find a nontrivial proper ideal in F[x].F[x]\text{.}

27

Let RR be an integral domain. Prove that R[x1,…,xn]R[x_1, \ldots, x_n] is an integral domain.

28

Let RR be a commutative ring with identity. Show that R[x]R[x] has a subring Rβ€²R' isomorphic to R.R\text{.}

29

Let p(x)p(x) and q(x)q(x) be polynomials in R[x],R[x]\text{,} where RR is a commutative ring with identity. Prove that deg⁑(p(x)+q(x))≀max⁑(deg⁑p(x),deg⁑q(x)).\deg( p(x) + q(x) ) \leq \max( \deg p(x), \deg q(x) )\text{.}