Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

πŸ“š The CoCalc Library - books, templates and other resources

132928 views
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section20.4Exercises

ΒΆ
1

If FF is a field, show that F[x]F[x] is a vector space over F,F\text{,} where the vectors in F[x]F[x] are polynomials. Vector addition is polynomial addition, and scalar multiplication is defined by αp(x)\alpha p(x) for α∈F.\alpha \in F\text{.}

2

Prove that Q(2 ){\mathbb Q }( \sqrt{2}\, ) is a vector space.

3

Let Q(2,3 ){\mathbb Q }( \sqrt{2}, \sqrt{3}\, ) be the field generated by elements of the form a+b2+c3+d6,a + b \sqrt{2} + c \sqrt{3} + d \sqrt{6}\text{,} where a,b,c,da, b, c, d are in Q.{\mathbb Q}\text{.} Prove that Q(2,3 ){\mathbb Q }( \sqrt{2}, \sqrt{3}\, ) is a vector space of dimension 4 over Q.{\mathbb Q}\text{.} Find a basis for Q(2,3 ).{\mathbb Q }( \sqrt{2}, \sqrt{3}\, )\text{.}

Hint

Q(2,3 ){\mathbb Q}(\sqrt{2}, \sqrt{3}\, ) has basis {1,2,3,6 }\{ 1, \sqrt{2}, \sqrt{3}, \sqrt{6}\, \} over Q.{\mathbb Q}\text{.}

4

Prove that the complex numbers are a vector space of dimension 2 over R.{\mathbb R}\text{.}

5

Prove that the set PnP_n of all polynomials of degree less than nn form a subspace of the vector space F[x].F[x]\text{.} Find a basis for PnP_n and compute the dimension of Pn.P_n\text{.}

Hint

The set {1,x,x2,…,xnβˆ’1}\{ 1, x, x^2, \ldots, x^{n-1} \} is a basis for Pn.P_n\text{.}

6

Let FF be a field and denote the set of nn-tuples of FF by Fn.F^n\text{.} Given vectors u=(u1,…,un)u = (u_1, \ldots, u_n) and v=(v1,…,vn)v = (v_1, \ldots, v_n) in FnF^n and Ξ±\alpha in F,F\text{,} define vector addition by

u+v=(u1,…,un)+(v1,…,vn)=(u1+v1,…,un+vn)\begin{equation*} u + v = (u_1, \ldots, u_n) + (v_1, \ldots, v_n) = (u_1 + v_1, \ldots, u_n + v_n) \end{equation*}

and scalar multiplication by

Ξ±u=Ξ±(u1,…,un)=(Ξ±u1,…,Ξ±un).\begin{equation*} \alpha u = \alpha(u_1, \ldots, u_n)= (\alpha u_1, \ldots, \alpha u_n). \end{equation*}

Prove that FnF^n is a vector space of dimension nn under these operations.

7

Which of the following sets are subspaces of R3?{\mathbb R}^3\text{?} If the set is indeed a subspace, find a basis for the subspace and compute its dimension.

  1. {(x1,x2,x3):3x1βˆ’2x2+x3=0}\{ (x_1, x_2, x_3) : 3 x_1 - 2 x_2 + x_3 = 0 \}

  2. {(x1,x2,x3):3x1+4x3=0,2x1βˆ’x2+x3=0}\{ (x_1, x_2, x_3) : 3 x_1 + 4 x_3 = 0, 2 x_1 - x_2 + x_3 = 0 \}

  3. {(x1,x2,x3):x1βˆ’2x2+2x3=2}\{ (x_1, x_2, x_3) : x_1 - 2 x_2 + 2 x_3 = 2 \}

  4. {(x1,x2,x3):3x1βˆ’2x22=0}\{ (x_1, x_2, x_3) : 3 x_1 - 2 x_2^2 = 0 \}

Hint

(a) Subspace of dimension 2 with basis {(1,0,βˆ’3),(0,1,2)};\{(1, 0, -3), (0, 1, 2) \}\text{;} (d) not a subspace

8

Show that the set of all possible solutions (x,y,z)∈R3(x, y, z) \in {\mathbb R}^3 of the equations

Ax+By+Cz=0Dx+Ey+Cz=0\begin{align*} Ax + B y + C z & = 0\\ D x + E y + C z & = 0 \end{align*}

form a subspace of R3.{\mathbb R}^3\text{.}

9

Let WW be the subset of continuous functions on [0,1][0, 1] such that f(0)=0.f(0) = 0\text{.} Prove that WW is a subspace of C[0,1].C[0, 1]\text{.}

10

Let VV be a vector space over F.F\text{.} Prove that βˆ’(Ξ±v)=(βˆ’Ξ±)v=Ξ±(βˆ’v)-(\alpha v) = (-\alpha)v = \alpha(-v) for all α∈F\alpha \in F and all v∈V.v \in V\text{.}

Hint

Since 0=Ξ±0=Ξ±(βˆ’v+v)=Ξ±(βˆ’v)+Ξ±v,0 = \alpha 0 = \alpha(-v + v) = \alpha(-v) + \alpha v\text{,} it follows that βˆ’Ξ±v=Ξ±(βˆ’v).- \alpha v = \alpha(-v)\text{.}

11

Let VV be a vector space of dimension n.n\text{.} Prove each of the following statements.

  1. If S={v1,…,vn}S = \{v_1, \ldots, v_n \} is a set of linearly independent vectors for V,V\text{,} then SS is a basis for V.V\text{.}

  2. If S={v1,…,vn}S = \{v_1, \ldots, v_n \} spans V,V\text{,} then SS is a basis for V.V\text{.}

  3. If S={v1,…,vk}S = \{v_1, \ldots, v_k \} is a set of linearly independent vectors for VV with k<n,k \lt n\text{,} then there exist vectors vk+1,…,vnv_{k + 1}, \ldots, v_n such that

    {v1,…,vk,vk+1,…,vn}\begin{equation*} \{v_1, \ldots, v_k, v_{k + 1}, \ldots, v_n \} \end{equation*}

    is a basis for V.V\text{.}

12

Prove that any set of vectors containing 0{\mathbf 0} is linearly dependent.

Hint

Let v0=0,v1,…,vn∈Vv_0 = 0, v_1, \ldots, v_n \in V and Ξ±0β‰ 0,Ξ±1,…,Ξ±n∈F.\alpha_0 \neq 0, \alpha_1, \ldots, \alpha_n \in F\text{.} Then Ξ±0v0+β‹―+Ξ±nvn=0.\alpha_0 v_0 + \cdots + \alpha_n v_n = 0\text{.}

13

Let VV be a vector space. Show that {0}\{ {\mathbf 0} \} is a subspace of VV of dimension zero.

14

If a vector space VV is spanned by nn vectors, show that any set of mm vectors in VV must be linearly dependent for m>n.m \gt n\text{.}

15Linear Transformations

Let VV and WW be vector spaces over a field F,F\text{,} of dimensions mm and n,n\text{,} respectively. If T:V→WT: V \rightarrow W is a map satisfying

T(u+v)=T(u)+T(v)T(Ξ±v)=Ξ±T(v)\begin{align*} T( u+ v ) & = T(u ) + T(v)\\ T( \alpha v ) & = \alpha T(v) \end{align*}

for all α∈F\alpha \in F and all u,v∈V,u, v \in V\text{,} then TT is called a from VV into W.W\text{.}

  1. Prove that the of T,T\text{,} ker⁑(T)={v∈V:T(v)=0},\ker(T) = \{ v \in V : T(v) = {\mathbf 0} \}\text{,} is a subspace of V.V\text{.} The kernel of TT is sometimes called the of T.T\text{.}

  2. Prove that the or of T,T\text{,} R(V)={w∈W:T(v)=w for some v∈V},R(V) = \{ w \in W : T(v) = w \text{ for some } v \in V \}\text{,} is a subspace of W.W\text{.}

  3. Show that T:Vβ†’WT : V \rightarrow W is injective if and only if ker⁑(T)={0}.\ker(T) = \{ \mathbf 0 \}\text{.}

  4. Let {v1,…,vk}\{ v_1, \ldots, v_k \} be a basis for the null space of T.T\text{.} We can extend this basis to be a basis {v1,…,vk,vk+1,…,vm}\{ v_1, \ldots, v_k, v_{k + 1}, \ldots, v_m\} of V.V\text{.} Why? Prove that {T(vk+1),…,T(vm)}\{ T(v_{k + 1}), \ldots, T(v_m) \} is a basis for the range of T.T\text{.} Conclude that the range of TT has dimension mβˆ’k.m-k\text{.}

  5. Let dim⁑V=dim⁑W.\dim V = \dim W\text{.} Show that a linear transformation T:Vβ†’WT : V \rightarrow W is injective if and only if it is surjective.

Hint

(a) Let u,v∈ker⁑(T)u, v \in \ker(T) and α∈F.\alpha \in F\text{.} Then

T(u+v)=T(u)+T(v)=0T(Ξ±v)=Ξ±T(v)=Ξ±0=0.\begin{gather*} T(u +v) = T(u) + T(v) = 0\\ T(\alpha v) = \alpha T(v) = \alpha 0 = 0. \end{gather*}

Hence, u+v,αv∈ker⁑(T),u + v, \alpha v \in \ker(T)\text{,} and ker⁑(T)\ker(T) is a subspace of V.V\text{.}

(c) The statement that T(u)=T(v)T(u) = T(v) is equivalent to T(uβˆ’v)=T(u)βˆ’T(v)=0,T(u-v) = T(u) - T(v) = 0\text{,} which is true if and only if uβˆ’v=0u-v = 0 or u=v.u = v\text{.}

16

Let VV and WW be finite dimensional vector spaces of dimension nn over a field F.F\text{.} Suppose that T:Vβ†’WT: V \rightarrow W is a vector space isomorphism. If {v1,…,vn}\{ v_1, \ldots, v_n \} is a basis of V,V\text{,} show that {T(v1),…,T(vn)}\{ T(v_1), \ldots, T(v_n) \} is a basis of W.W\text{.} Conclude that any vector space over a field FF of dimension nn is isomorphic to Fn.F^n\text{.}

17Direct Sums

Let UU and VV be subspaces of a vector space W.W\text{.} The sum of UU and V,V\text{,} denoted U+V,U + V\text{,} is defined to be the set of all vectors of the form u+v,u + v\text{,} where u∈Uu \in U and v∈V.v \in V\text{.}

  1. Prove that U+VU + V and U∩VU \cap V are subspaces of W.W\text{.}

  2. If U+V=WU + V = W and U∩V=0,U \cap V = {\mathbf 0}\text{,} then WW is said to be the In this case, we write W=UβŠ•V.W = U \oplus V\text{.} Show that every element w∈Ww \in W can be written uniquely as w=u+v,w = u + v\text{,} where u∈Uu \in U and v∈V.v \in V\text{.}

  3. Let UU be a subspace of dimension kk of a vector space WW of dimension n.n\text{.} Prove that there exists a subspace VV of dimension nβˆ’kn-k such that W=UβŠ•V.W = U \oplus V\text{.} Is the subspace VV unique?

  4. If UU and VV are arbitrary subspaces of a vector space W,W\text{,} show that

    dim⁑(U+V)=dim⁑U+dim⁑Vβˆ’dim⁑(U∩V).\begin{equation*} \dim( U + V) = \dim U + \dim V - \dim( U \cap V). \end{equation*}
Hint

(a) Let u,uβ€²βˆˆUu, u' \in U and v,vβ€²βˆˆV.v, v' \in V\text{.} Then

(u+v)+(uβ€²+vβ€²)=(u+uβ€²)+(v+vβ€²)∈U+VΞ±(u+v)=Ξ±u+Ξ±v∈U+V.\begin{align*} (u + v) + (u' + v') & = (u + u') + (v + v') \in U + V\\ \alpha(u + v) & = \alpha u + \alpha v \in U + V. \end{align*}
18Dual Spaces

Let VV and WW be finite dimensional vector spaces over a field F.F\text{.}

  1. Show that the set of all linear transformations from VV into W,W\text{,} denoted by Hom⁑(V,W),\Hom(V, W)\text{,} is a vector space over F,F\text{,} where we define vector addition as follows:

    (S+T)(v)=S(v)+T(v)(Ξ±S)(v)=Ξ±S(v),\begin{align*} (S + T)(v) & = S(v) +T(v)\\ (\alpha S)(v) & = \alpha S(v), \end{align*}

    where S,T∈Hom⁑(V,W),S, T \in \Hom(V, W)\text{,} α∈F,\alpha \in F\text{,} and v∈V.v \in V\text{.}

  2. Let VV be an FF-vector space. Define the of VV to be Vβˆ—=Hom⁑(V,F).V^* = \Hom(V, F)\text{.} Elements in the dual space of VV are called Let v1,…,vnv_1, \ldots, v_n be an ordered basis for V.V\text{.} If v=Ξ±1v1+β‹―+Ξ±nvnv = \alpha_1 v_1 + \cdots + \alpha_n v_n is any vector in V,V\text{,} define a linear functional Ο•i:Vβ†’F\phi_i : V \rightarrow F by Ο•i(v)=Ξ±i.\phi_i (v) = \alpha_i\text{.} Show that the Ο•i\phi_i's form a basis for Vβˆ—.V^*\text{.} This basis is called the of v1,…,vnv_1, \ldots, v_n (or simply the dual basis if the context makes the meaning clear).

  3. Consider the basis {(3,1),(2,βˆ’2)}\{ (3, 1), (2, -2) \} for R2.{\mathbb R}^2\text{.} What is the dual basis for (R2)βˆ—?({\mathbb R}^2)^*\text{?}

  4. Let VV be a vector space of dimension nn over a field FF and let Vβˆ—βˆ—V^{* *} be the dual space of Vβˆ—.V^*\text{.} Show that each element v∈Vv \in V gives rise to an element Ξ»v\lambda_v in Vβˆ—βˆ—V^{**} and that the map v↦λvv \mapsto \lambda_v is an isomorphism of VV with Vβˆ—βˆ—.V^{**}\text{.}