Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

πŸ“š The CoCalc Library - books, templates and other resources

132928 views
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section11.4Additional Exercises: Automorphisms

ΒΆ
1

Let Aut⁑(G)\aut(G) be the set of all automorphisms of G;G\text{;} that is, isomorphisms from GG to itself. Prove this set forms a group and is a subgroup of the group of permutations of G;G\text{;} that is, Aut⁑(G)≀SG.\aut(G) \leq S_G\text{.}

2

An of G,G\text{,}

ig:G→G,\begin{equation*} i_g : G \rightarrow G, \end{equation*}

is defined by the map

ig(x)=gxgβˆ’1,\begin{equation*} i_g(x) = g x g^{-1}, \end{equation*}

for g∈G.g \in G\text{.} Show that ig∈Aut⁑(G).i_g \in \aut(G)\text{.}

3

The set of all inner automorphisms is denoted by Inn⁑(G).\inn(G)\text{.} Show that Inn⁑(G)\inn(G) is a subgroup of Aut⁑(G).\aut(G)\text{.}

4

Find an automorphism of a group GG that is not an inner automorphism.

5

Let GG be a group and igi_g be an inner automorphism of G,G\text{,} and define a map

Gβ†’Aut⁑(G)\begin{equation*} G \rightarrow \aut(G) \end{equation*}

by

g↦ig.\begin{equation*} g \mapsto i_g. \end{equation*}

Prove that this map is a homomorphism with image Inn⁑(G)\inn(G) and kernel Z(G).Z(G)\text{.} Use this result to conclude that

G/Z(G)β‰…Inn⁑(G).\begin{equation*} G/Z(G) \cong \inn(G). \end{equation*}
6

Compute Aut⁑(S3)\aut(S_3) and Inn⁑(S3).\inn(S_3)\text{.} Do the same thing for D4.D_4\text{.}

7

Find all of the homomorphisms Ο•:Zβ†’Z.\phi : {\mathbb Z} \rightarrow {\mathbb Z}\text{.} What is Aut⁑(Z)?\aut({\mathbb Z})\text{?}

8

Find all of the automorphisms of Z8.{\mathbb Z}_8\text{.} Prove that Aut⁑(Z8)β‰…U(8).\aut({\mathbb Z}_8) \cong U(8)\text{.}

9

For k∈Zn,k \in {\mathbb Z}_n\text{,} define a map Ο•k:Znβ†’Zn\phi_k : {\mathbb Z}_n \rightarrow {\mathbb Z}_n by a↦ka.a \mapsto ka\text{.} Prove that Ο•k\phi_k is a homomorphism.

10

Prove that Ο•k\phi_k is an isomorphism if and only if kk is a generator of Zn.{\mathbb Z}_n\text{.}

11

Show that every automorphism of Zn{\mathbb Z}_n is of the form Ο•k,\phi_k\text{,} where kk is a generator of Zn.{\mathbb Z}_n\text{.}

12

Prove that ψ:U(n)β†’Aut⁑(Zn)\psi : U(n) \rightarrow \aut({\mathbb Z}_n) is an isomorphism, where ψ:k↦ϕk.\psi : k \mapsto \phi_k\text{.}