Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

πŸ“š The CoCalc Library - books, templates and other resources

132924 views
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Permutation groups are central to the study of geometric symmetries and to Galois theory, the study of finding solutions of polynomial equations. They also provide abundant examples of nonabelian groups.

Let us recall for a moment the symmetries of the equilateral triangle △ABC\bigtriangleup ABC from Chapter 3. The symmetries actually consist of permutations of the three vertices, where a of the set S={A,B,C}S = \{ A, B, C \} is a one-to-one and onto map π:S→S.\pi :S \rightarrow S\text{.} The three vertices have the following six permutations.

(ABCABC)(ABCCAB)(ABCBCA)(ABCACB)(ABCCBA)(ABCBAC)\begin{align*} \begin{pmatrix} A & B & C \\ A & B & C \end{pmatrix} \qquad \begin{pmatrix} A & B & C \\ C & A & B \end{pmatrix} \qquad \begin{pmatrix} A & B & C \\ B & C & A \end{pmatrix}\\ \begin{pmatrix} A & B & C \\ A & C & B \end{pmatrix} \qquad \begin{pmatrix} A & B & C \\ C & B & A \end{pmatrix} \qquad \begin{pmatrix} A & B & C \\ B & A & C \end{pmatrix} \end{align*}

We have used the array

(ABCBCA)\begin{equation*} \begin{pmatrix} A & B & C \\ B & C & A \end{pmatrix} \end{equation*}

to denote the permutation that sends AA to B,B\text{,} BB to C,C\text{,} and CC to A.A\text{.} That is,

A↦BB↦CC↦A.\begin{align*} A & \mapsto B\\ B & \mapsto C\\ C & \mapsto A. \end{align*}

The symmetries of a triangle form a group. In this chapter we will study groups of this type.