Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132928 views
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section17.5Additional Exercises: Solving the Cubic and Quartic Equations

¶
1

Solve the general quadratic equation

ax2+bx+c=0\begin{equation*} ax^2 + bx + c = 0 \end{equation*}

to obtain

x=−b±b2−4ac2a.\begin{equation*} x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. \end{equation*}

The of the quadratic equation Δ=b2−4ac\Delta = b^2 - 4ac determines the nature of the solutions of the equation. If Δ>0,\Delta \gt 0\text{,} the equation has two distinct real solutions. If Δ=0,\Delta = 0\text{,} the equation has a single repeated real root. If Δ<0,\Delta \lt 0\text{,} there are two distinct imaginary solutions.

2

Show that any cubic equation of the form

x3+bx2+cx+d=0\begin{equation*} x^3 + bx^2 + cx + d = 0 \end{equation*}

can be reduced to the form y3+py+q=0y^3 + py + q = 0 by making the substitution x=y−b/3.x = y - b/3\text{.}

3

Prove that the cube roots of 1 are given by

ω=−1+i32ω2=−1−i32ω3=1.\begin{align*} \omega & = \frac{-1+ i \sqrt{3}}{2}\\ \omega^2 & = \frac{-1- i \sqrt{3}}{2}\\ \omega^3 & = 1. \end{align*}
4

Make the substitution

y=z−p3z\begin{equation*} y = z - \frac{p}{3 z} \end{equation*}

for yy in the equation y3+py+q=0y^3 + py + q = 0 and obtain two solutions AA and BB for z3.z^3\text{.}

5

Show that the product of the solutions obtained in (4) is −p3/27,-p^3/27\text{,} deducing that AB3=−p/3.\sqrt[3]{A B} = -p/3\text{.}

6

Prove that the possible solutions for zz in (4) are given by

A3,ωA3,ω2A3,B3,ωB3,ω2B3\begin{equation*} \sqrt[3]{A}, \quad \omega \sqrt[3]{A}, \quad \omega^2 \sqrt[3]{A}, \quad \sqrt[3]{B}, \quad \omega \sqrt[3]{B}, \quad \omega^2 \sqrt[3]{B} \end{equation*}

and use this result to show that the three possible solutions for yy are

ωi−q2+ p327+q243+ω2i−q2− p327+q243,\begin{equation*} \omega^i \sqrt[3]{-\frac{q}{2}+ \sqrt{\ \frac{p^3}{27} + \frac{q^2}{4}} } + \omega^{2i} \sqrt[3]{-\frac{q}{2}- \sqrt{\ \frac{p^3}{27} + \frac{q^2}{4}} }, \end{equation*}

where i=0,1,2.i = 0, 1, 2\text{.}

7

The of the cubic equation is

Δ=p327+q24.\begin{equation*} \Delta = \frac{p^3}{27} + \frac{q^2}{4}. \end{equation*}

Show that y3+py+q=0y^3 + py + q=0

  1. has three real roots, at least two of which are equal, if Δ=0.\Delta = 0\text{.}

  2. has one real root and two conjugate imaginary roots if Δ>0.\Delta \gt 0\text{.}

  3. has three distinct real roots if Δ<0.\Delta \lt 0\text{.}

8

Solve the following cubic equations.

  1. x3−4x2+11x+30=0x^3 - 4x^2 + 11 x + 30 = 0

  2. x3−3x+5=0x^3 - 3x +5 = 0

  3. x3−3x+2=0x^3 - 3x +2 = 0

  4. x3+x+3=0x^3 + x + 3 = 0

9

Show that the general quartic equation

x4+ax3+bx2+cx+d=0\begin{equation*} x^4 + ax^3 + bx^2 + cx + d = 0 \end{equation*}

can be reduced to

y4+py2+qy+r=0\begin{equation*} y^4 + py^2 + qy + r = 0 \end{equation*}

by using the substitution x=y−a/4.x = y - a/4\text{.}

10

Show that

(y2+12z)2=(z−p)y2−qy+(14z2−r).\begin{equation*} \left( y^2 + \frac{1}{2} z \right)^2 = (z - p)y^2 - qy + \left( \frac{1}{4} z^2 - r \right). \end{equation*}
11

Show that the right-hand side of Exercise 17.5.10 can be put in the form (my+k)2(my + k)^2 if and only if

q2−4(z−p)(14z2−r)=0.\begin{equation*} q^2 - 4(z - p)\left( \frac{1}{4} z^2 - r \right) = 0. \end{equation*}
12

From Exercise 17.5.11 obtain the

z3−pz2−4rz+(4pr−q2)=0.\begin{equation*} z^3 - pz^2 - 4rz + (4pr - q^2) = 0. \end{equation*}

Solving the resolvent cubic equation, put the equation found in Exercise 17.5.10 in the form

(y2+12z)2=(my+k)2\begin{equation*} \left( y^2 + \frac{1}{2} z \right)^2 = (my + k)^2 \end{equation*}

to obtain the solution of the quartic equation.

13

Use this method to solve the following quartic equations.

  1. x4−x2−3x+2=0x^4 - x^2 - 3x + 2 = 0

  2. x4+x3−7x2−x+6=0x^4 + x^3 - 7 x^2 - x + 6 = 0

  3. x4−2x2+4x−3=0x^4 -2 x^2 + 4 x -3 = 0

  4. x4−4x3+3x2−5x+2=0x^4 - 4 x^3 + 3x^2 - 5x +2 = 0