Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132923 views
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section19.2Boolean Algebras

¶

Let us investigate the example of the power set, P(X),{\mathcal P}(X)\text{,} of a set XX more closely. The power set is a lattice that is ordered by inclusion. By the definition of the power set, the largest element in P(X){\mathcal P}(X) is XX itself and the smallest element is ∅,\emptyset\text{,} the empty set. For any set AA in P(X),{\mathcal P}(X)\text{,} we know that A∩X=AA \cap X = A and A∪∅=A.A \cup \emptyset = A\text{.} This suggests the following definition for lattices. An element II in a poset XX is a if a⪯Ia \preceq I for all a∈X.a \in X\text{.} An element OO is a of XX if O⪯aO \preceq a for all a∈X.a \in X\text{.}

Let AA be in P(X).{\mathcal P}(X)\text{.} Recall that the complement of AA is

A′=X∖A={x:x∈X and x∉A}.\begin{equation*} A' = X \setminus A = \{ x : x \in X \text{ and } x \notin A \}. \end{equation*}

We know that A∪A′=XA \cup A' = X and A∩A′=∅.A \cap A' = \emptyset\text{.} We can generalize this example for lattices. A lattice LL with a largest element II and a smallest element OO is if for each a∈L,a \in L\text{,} there exists an a′a' such that a∨a′=Ia \vee a' = I and a∧a′=O.a \wedge a' = O\text{.}

In a lattice L,L\text{,} the binary operations ∨\vee and ∧\wedge satisfy commutative and associative laws; however, they need not satisfy the distributive law

a∧(b∨c)=(a∧b)∨(a∧c);\begin{equation*} a \wedge ( b \vee c ) = (a \wedge b ) \vee ( a \wedge c ); \end{equation*}

however, in P(X){\mathcal P}(X) the distributive law is satisfied since

A∩(B∪C)=(A∩B)∪(A∩C)\begin{equation*} A \cap ( B \cup C ) = (A \cap B ) \cup ( A \cap C ) \end{equation*}

for A,B,C∈P(X).A, B, C \in {\mathcal P}(X)\text{.} We will say that a lattice LL is if the following distributive law holds:

a∧(b∨c)=(a∧b)∨(a∧c)\begin{equation*} a \wedge ( b \vee c ) = (a \wedge b ) \vee ( a \wedge c ) \end{equation*}

for all a,b,c∈L.a, b, c \in L\text{.}

Theorem19.15

A lattice LL is distributive if and only if

a∨(b∧c)=(a∨b)∧(a∨c)\begin{equation*} a \vee ( b \wedge c ) = ( a \vee b ) \wedge ( a \vee c ) \end{equation*}

for all a,b,c∈L.a, b, c \in L\text{.}

Proof

Let us assume that LL is a distributive lattice.

a∨(b∧c)=[a∨(a∧c)]∨(b∧c)=a∨[(a∧c)∨(b∧c)]=a∨[(c∧a)∨(c∧b)]=a∨[c∧(a∨b)]=a∨[(a∨b)∧c]=[(a∨b)∧a]∨[(a∨b)∧c]=(a∨b)∧(a∨c).\begin{align*} a \vee ( b \wedge c ) & = [a \vee (a \wedge c) ] \vee ( b \wedge c )\\ & = a \vee [(a \wedge c) \vee ( b \wedge c )]\\ & = a \vee [(c \wedge a) \vee ( c \wedge b )]\\ & = a \vee [c \wedge ( a \vee b )]\\ & = a \vee [( a \vee b ) \wedge c ]\\ & = [( a \vee b ) \wedge a ] \vee [(a \vee b) \wedge c ]\\ & = ( a \vee b ) \wedge ( a \vee c ). \end{align*}

The converse follows directly from the Duality Principle.

A is a lattice BB with a greatest element II and a smallest element OO such that BB is both distributive and complemented. The power set of X,X\text{,} P(X),{\mathcal P}(X)\text{,} is our prototype for a Boolean algebra. As it turns out, it is also one of the most important Boolean algebras. The following theorem allows us to characterize Boolean algebras in terms of the binary relations ∨\vee and ∧\wedge without mention of the fact that a Boolean algebra is a poset.

Theorem19.16

A set BB is a Boolean algebra if and only if there exist binary operations ∨\vee and ∧\wedge on BB satisfying the following axioms.

  1. a∨b=b∨aa \vee b = b \vee a and a∧b=b∧aa \wedge b = b \wedge a for a,b∈B.a, b \in B\text{.}

  2. a∨(b∨c)=(a∨b)∨ca \vee ( b \vee c) = (a \vee b) \vee c and a∧(b∧c)=(a∧b)∧ca \wedge ( b \wedge c) = (a \wedge b) \wedge c for a,b,c∈B.a, b, c \in B\text{.}

  3. a∧(b∨c)=(a∧b)∨(a∧c)a \wedge ( b \vee c ) = (a \wedge b ) \vee ( a \wedge c ) and a∨(b∧c)=(a∨b)∧(a∨c)a \vee ( b \wedge c ) = (a \vee b ) \wedge ( a \vee c ) for a,b,c∈B.a, b, c \in B\text{.}

  4. There exist elements II and OO such that a∨O=aa \vee O = a and a∧I=aa \wedge I = a for all a∈B.a \in B\text{.}

  5. For every a∈Ba \in B there exists an a′∈Ba' \in B such that a∨a′=Ia \vee a' = I and a∧a′=O.a \wedge a' = O\text{.}

Proof

Let BB be a set satisfying (1)–(5) in the theorem. One of the idempotent laws is satisfied since

a=a∨O=a∨(a∧a′)=(a∨a)∧(a∨a′)=(a∨a)∧I=a∨a.\begin{align*} a & = a \vee O\\ & = a \vee (a \wedge a')\\ & = (a \vee a) \wedge (a \vee a')\\ & = (a \vee a ) \wedge I\\ & = a \vee a. \end{align*}

Observe that

I∨b=(b∨b′)∨b=(b′∨b)∨b=b′∨(b∨b)=b′∨b=I.\begin{equation*} I \vee b = (b \vee b' ) \vee b = (b' \vee b ) \vee b = b' \vee (b \vee b) = b' \vee b = I. \end{equation*}

Consequently, the first of the two absorption laws holds, since

a∨(a∧b)=(a∧I)∨(a∧b)=a∧(I∨b)=a∧I=a.\begin{align*} a \vee (a \wedge b) & = (a \wedge I) \vee (a \wedge b)\\ & = a \wedge (I \vee b)\\ & = a \wedge I\\ & = a. \end{align*}

The other idempotent and absorption laws are proven similarly. Since BB also satisfies (1)–(3), the conditions of Theorem 19.14 are met; therefore, BB must be a lattice. Condition (4) tells us that BB is a distributive lattice.

For a∈B,a \in B\text{,} O∨a=a;O \vee a = a\text{;} hence, O⪯aO \preceq a and OO is the smallest element in B.B\text{.} To show that II is the largest element in B,B\text{,} we will first show that a∨b=ba \vee b = b is equivalent to a∧b=a.a \wedge b = a\text{.} Since a∨I=aa \vee I = a for all a∈B,a \in B\text{,} using the absorption laws we can determine that

a∨I=(a∧I)∨I=I∨(I∧a)=I\begin{equation*} a \vee I =(a \wedge I) \vee I = I \vee ( I \wedge a) = I \end{equation*}

or a⪯Ia \preceq I for all aa in B.B\text{.} Finally, since we know that BB is complemented by (5), BB must be a Boolean algebra.

Conversely, suppose that BB is a Boolean algebra. Let II and OO be the greatest and least elements in B,B\text{,} respectively. If we define a∨ba \vee b and a∧ba \wedge b as least upper and greatest lower bounds of {a,b},\{ a, b\}\text{,} then BB is a Boolean algebra by Theorem 19.14, Theorem 19.15, and our hypothesis.

Many other identities hold in Boolean algebras. Some of these identities are listed in the following theorem.

Theorem19.17

Let BB be a Boolean algebra. Then

  1. a∨I=Ia \vee I = I and a∧O=Oa \wedge O = O for all a∈B.a \in B\text{.}

  2. If a∨b=a∨ca \vee b = a \vee c and a∧b=a∧ca \wedge b = a \wedge c for a,b,c∈B,a, b, c \in B\text{,} then b=c.b = c\text{.}

  3. If a∨b=Ia \vee b = I and a∧b=O,a \wedge b = O\text{,} then b=a′.b = a'\text{.}

  4. (a′)′=a(a')'=a for all a∈B.a \in B\text{.}

  5. I′=OI' = O and O′=I.O' = I\text{.}

  6. (a∨b)′=a′∧b′(a \vee b)' = a' \wedge b' and (a∧b)′=a′∨b′(a \wedge b)' = a' \vee b' (De Morgan's Laws).

Proof

We will prove only (2). The rest of the identities are left as exercises. For a∨b=a∨ca \vee b = a \vee c and a∧b=a∧c,a \wedge b = a \wedge c\text{,} we have

b=b∨(b∧a)=b∨(a∧b)=b∨(a∧c)=(b∨a)∧(b∨c)=(a∨b)∧(b∨c)=(a∨c)∧(b∨c)=(c∨a)∧(c∨b)=c∨(a∧b)=c∨(a∧c)=c∨(c∧a)=c.\begin{align*} b & = b \vee (b \wedge a) \\ & = b \vee (a \wedge b) \\ & = b \vee (a \wedge c) \\ & = ( b \vee a) \wedge ( b \vee c) \\ & = ( a \vee b) \wedge ( b \vee c) \\ & = ( a \vee c) \wedge ( b \vee c) \\ & = ( c \vee a ) \wedge ( c\vee b ) \\ & = c \vee (a \wedge b)\\ & = c \vee ( a \wedge c )\\ & = c \vee ( c \wedge a )\\ & = c. \end{align*}

SubsectionFinite Boolean Algebras

¶

A Boolean algebra is a if it contains a finite number of elements as a set. Finite Boolean algebras are particularly nice since we can classify them up to isomorphism.

Let BB and CC be Boolean algebras. A bijective map ϕ:B→C\phi : B \rightarrow C is an of Boolean algebras if

ϕ(a∨b)=ϕ(a)∨ϕ(b)ϕ(a∧b)=ϕ(a)∧ϕ(b)\begin{align*} \phi( a \vee b ) & = \phi(a) \vee \phi(b)\\ \phi( a \wedge b ) & = \phi(a) \wedge \phi(b) \end{align*}

for all aa and bb in B.B\text{.}

We will show that any finite Boolean algebra is isomorphic to the Boolean algebra obtained by taking the power set of some finite set X.X\text{.} We will need a few lemmas and definitions before we prove this result. Let BB be a finite Boolean algebra. An element a∈Ba \in B is an of BB if a≠Oa \neq O and a∧b=aa \wedge b = a for all nonzero b∈B.b \in B\text{.} Equivalently, aa is an atom of BB if there is no nonzero b∈Bb \in B distinct from aa such that O⪯b⪯a.O \preceq b \preceq a\text{.}

Lemma19.18

Let BB be a finite Boolean algebra. If bb is a nonzero element of B,B\text{,} then there is an atom aa in BB such that a⪯b.a \preceq b\text{.}

Proof

If bb is an atom, let a=b.a =b\text{.} Otherwise, choose an element b1,b_1\text{,} not equal to OO or b,b\text{,} such that b1⪯b.b_1 \preceq b\text{.} We are guaranteed that this is possible since bb is not an atom. If b1b_1 is an atom, then we are done. If not, choose b2,b_2\text{,} not equal to OO or b1,b_1\text{,} such that b2⪯b1.b_2 \preceq b_1\text{.} Again, if b2b_2 is an atom, let a=b2.a = b_2\text{.} Continuing this process, we can obtain a chain

O⪯⋯⪯b3⪯b2⪯b1⪯b.\begin{equation*} O \preceq \cdots \preceq b_3 \preceq b_2 \preceq b_1 \preceq b. \end{equation*}

Since BB is a finite Boolean algebra, this chain must be finite. That is, for some k,k\text{,} bkb_k is an atom. Let a=bk.a = b_k\text{.}

Lemma19.19

Let aa and bb be atoms in a finite Boolean algebra BB such that a≠b.a \neq b\text{.} Then a∧b=O.a \wedge b = O\text{.}

Proof

Since a∧ba \wedge b is the greatest lower bound of aa and b,b\text{,} we know that a∧b⪯a.a \wedge b \preceq a\text{.} Hence, either a∧b=aa \wedge b = a or a∧b=O.a \wedge b = O\text{.} However, if a∧b=a,a \wedge b = a\text{,} then either a⪯ba \preceq b or a=O.a = O\text{.} In either case we have a contradiction because aa and bb are both atoms; therefore, a∧b=O.a \wedge b = O\text{.}

Lemma19.20

Let BB be a Boolean algebra and a,b∈B.a, b \in B\text{.} The following statements are equivalent.

  1. a⪯b.a \preceq b\text{.}

  2. a∧b′=O.a \wedge b' = O\text{.}

  3. a′∨b=I.a' \vee b = I\text{.}

Proof

(1) ⇒\Rightarrow (2). If a⪯b,a \preceq b\text{,} then a∨b=b.a \vee b = b\text{.} Therefore,

a∧b′=a∧(a∨b)′=a∧(a′∧b′)=(a∧a′)∧b′=O∧b′=O.\begin{align*} a \wedge b' & = a \wedge (a \vee b)'\\ & = a \wedge ( a' \wedge b')\\ & = ( a \wedge a') \wedge b'\\ & = O \wedge b'\\ & = O. \end{align*}

(2) ⇒\Rightarrow (3). If a∧b′=O,a \wedge b' = O\text{,} then a′∨b=(a∧b′)′=O′=I.a' \vee b = (a \wedge b')' = O' = I\text{.}

(3) ⇒\Rightarrow (1). If a′∨b=I,a' \vee b = I\text{,} then

a=a∧(a′∨b)=(a∧a′)∨(a∧b)=O∨(a∧b)=a∧b.\begin{align*} a & = a \wedge (a' \vee b) \\ & = (a \wedge a') \vee (a \wedge b)\\ & = O \vee (a \wedge b)\\ & = a \wedge b. \end{align*}

Thus, a⪯b.a \preceq b\text{.}

Lemma19.21

Let BB be a Boolean algebra and bb and cc be elements in BB such that b⪯̸c.b \not\preceq c\text{.} Then there exists an atom a∈Ba \in B such that a⪯ba \preceq b and a⪯̸c.a \not\preceq c\text{.}

Proof

By Lemma 19.20, b∧c′≠O.b \wedge c' \neq O\text{.} Hence, there exists an atom aa such that a⪯b∧c′.a \preceq b \wedge c'\text{.} Consequently, a⪯ba \preceq b and a⪯̸c.a \not\preceq c\text{.}

Lemma19.22

Let b∈Bb \in B and a1,…,ana_1, \ldots, a_n be the atoms of BB such that ai⪯b.a_i \preceq b\text{.} Then b=a1∨⋯∨an.b = a_1 \vee \cdots \vee a_n\text{.} Furthermore, if a,a1,…,ana, a_1, \ldots, a_n are atoms of BB such that a⪯b,a \preceq b\text{,} ai⪯b,a_i \preceq b\text{,} and b=a∨a1∨⋯∨an,b = a \vee a_1 \vee \cdots \vee a_n\text{,} then a=aia = a_i for some i=1,…,n.i = 1, \ldots, n\text{.}

Proof

Let b1=a1∨⋯∨an.b_1 = a_1 \vee \cdots \vee a_n\text{.} Since ai⪯ba_i \preceq b for each i,i\text{,} we know that b1⪯b.b_1 \preceq b\text{.} If we can show that b⪯b1,b \preceq b_1\text{,} then the lemma is true by antisymmetry. Assume b⪯̸b1.b \not\preceq b_1\text{.} Then there exists an atom aa such that a⪯ba \preceq b and a⪯̸b1.a \not\preceq b_1\text{.} Since aa is an atom and a⪯b,a \preceq b\text{,} we can deduce that a=aia = a_i for some ai.a_i\text{.} However, this is impossible since a⪯b1.a \preceq b_1\text{.} Therefore, b⪯b1.b \preceq b_1\text{.}

Now suppose that b=a1∨⋯∨an.b = a_1 \vee \cdots \vee a_n\text{.} If aa is an atom less than b,b\text{,}

a=a∧b=a∧(a1∨⋯∨an)=(a∧a1)∨⋯∨(a∧an).\begin{equation*} a = a \wedge b = a \wedge( a_1 \vee \cdots \vee a_n ) = (a \wedge a_1) \vee \cdots \vee ( a \wedge a_n ). \end{equation*}

But each term is OO or aa with a∧aia \wedge a_i occurring for only one ai.a_i\text{.} Hence, by Lemma 19.19, a=aia = a_i for some i.i\text{.}

Theorem19.23

Let BB be a finite Boolean algebra. Then there exists a set XX such that BB is isomorphic to P(X).{\mathcal P}(X)\text{.}

Proof

We will show that BB is isomorphic to P(X),{\mathcal P}(X)\text{,} where XX is the set of atoms of B.B\text{.} Let a∈B.a \in B\text{.} By Lemma 19.22, we can write aa uniquely as a=a1∨⋯∨ana = a_1 \vee \cdots \vee a_n for a1,…,an∈X.a_1, \ldots, a_n \in X\text{.} Consequently, we can define a map ϕ:B→P(X)\phi : B \rightarrow {\mathcal P}(X) by

ϕ(a)=ϕ(a1∨⋯∨an)={a1,…,an}.\begin{equation*} \phi(a) = \phi( a_1 \vee \cdots \vee a_n ) = \{a_1, \ldots, a_n \}. \end{equation*}

Clearly, Ï•\phi is onto.

Now let a=a1∨⋯∨ana = a_1 \vee \cdots \vee a_n and b=b1∨⋯∨bmb = b_1 \vee \cdots \vee b_m be elements in B,B\text{,} where each aia_i and each bib_i is an atom. If ϕ(a)=ϕ(b),\phi(a) = \phi(b)\text{,} then {a1,…,an}={b1,…,bm}\{a_1, \ldots, a_n \} = \{b_1, \ldots, b_m \} and a=b.a = b\text{.} Consequently, ϕ\phi is injective.

The join of aa and bb is preserved by Ï•\phi since

ϕ(a∨b)=ϕ(a1∨⋯∨an∨b1∨⋯∨bm)={a1,…,an,b1,…,bm}={a1,…,an}∪{b1,…,bm}=ϕ(a1∨⋯∨an)∪ϕ(b1∧⋯∨bm)=ϕ(a)∪ϕ(b).\begin{align*} \phi(a \vee b) & = \phi( a_1 \vee \cdots \vee a_n \vee b_1 \vee \cdots \vee b_m )\\ & = \{ a_1, \ldots, a_n, b_1, \ldots, b_m \}\\ & = \{ a_1, \ldots, a_n \} \cup \{ b_1, \ldots, b_m \}\\ & = \phi( a_1 \vee \cdots \vee a_n ) \cup \phi( b_1 \wedge \cdots \vee b_m )\\ & = \phi(a) \cup \phi(b). \end{align*}

Similarly, ϕ(a∧b)=ϕ(a)∩ϕ(b).\phi( a \wedge b ) = \phi(a) \cap \phi(b)\text{.}

We leave the proof of the following corollary as an exercise.

Corollary19.24

The order of any finite Boolean algebra must be 2n2^n for some positive integer n.n\text{.}