Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

πŸ“š The CoCalc Library - books, templates and other resources

132928 views
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section20.3Linear Independence

ΒΆ

Let S={v1,v2,…,vn}S = \{v_1, v_2, \ldots, v_n\} be a set of vectors in a vector space V.V\text{.} If there exist scalars Ξ±1,Ξ±2…αn∈F\alpha_1, \alpha_2 \ldots \alpha_n \in F such that not all of the Ξ±i\alpha_i's are zero and

Ξ±1v1+Ξ±2v2+β‹―+Ξ±nvn=0,\begin{equation*} \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n = {\mathbf 0 }, \end{equation*}

then SS is said to be . If the set SS is not linearly dependent, then it is said to be . More specifically, SS is a linearly independent set if

Ξ±1v1+Ξ±2v2+β‹―+Ξ±nvn=0\begin{equation*} \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n = {\mathbf 0 } \end{equation*}

implies that

Ξ±1=Ξ±2=β‹―=Ξ±n=0\begin{equation*} \alpha_1 = \alpha_2 = \cdots = \alpha_n = 0 \end{equation*}

for any set of scalars {Ξ±1,Ξ±2…αn}.\{ \alpha_1, \alpha_2 \ldots \alpha_n \}\text{.}

Proposition20.9

Let {v1,v2,…,vn}\{ v_1, v_2, \ldots, v_n \} be a set of linearly independent vectors in a vector space. Suppose that

v=Ξ±1v1+Ξ±2v2+β‹―+Ξ±nvn=Ξ²1v1+Ξ²2v2+β‹―+Ξ²nvn.\begin{equation*} v = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n = \beta_1 v_1 + \beta_2 v_2 + \cdots + \beta_n v_n. \end{equation*}

Then Ξ±1=Ξ²1,Ξ±2=Ξ²2,…,Ξ±n=Ξ²n.\alpha_1 = \beta_1, \alpha_2 = \beta_2, \ldots, \alpha_n = \beta_n\text{.}

Proof

If

v=Ξ±1v1+Ξ±2v2+β‹―+Ξ±nvn=Ξ²1v1+Ξ²2v2+β‹―+Ξ²nvn,\begin{equation*} v = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n = \beta_1 v_1 + \beta_2 v_2 + \cdots + \beta_n v_n, \end{equation*}

then

(Ξ±1βˆ’Ξ²1)v1+(Ξ±2βˆ’Ξ²2)v2+β‹―+(Ξ±nβˆ’Ξ²n)vn=0.\begin{equation*} (\alpha_1 - \beta_1) v_1 + (\alpha_2 - \beta_2) v_2 + \cdots + (\alpha_n - \beta_n) v_n = {\mathbf 0}. \end{equation*}

Since v1,…,vnv_1, \ldots, v_n are linearly independent, Ξ±iβˆ’Ξ²i=0\alpha_i - \beta_i = 0 for i=1,…,n.i = 1, \ldots, n\text{.}

The definition of linear dependence makes more sense if we consider the following proposition.

Proposition20.10

A set {v1,v2,…,vn}\{ v_1, v_2, \dots, v_n \} of vectors in a vector space VV is linearly dependent if and only if one of the viv_i's is a linear combination of the rest.

Proof

Suppose that {v1,v2,…,vn}\{ v_1, v_2, \dots, v_n \} is a set of linearly dependent vectors. Then there exist scalars Ξ±1,…,Ξ±n\alpha_1, \ldots, \alpha_n such that

Ξ±1v1+Ξ±2v2+β‹―+Ξ±nvn=0,\begin{equation*} \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n = {\mathbf 0 }, \end{equation*}

with at least one of the αi\alpha_i's not equal to zero. Suppose that αk≠0.\alpha_k \neq 0\text{.} Then

vk=βˆ’Ξ±1Ξ±kv1βˆ’β‹―βˆ’Ξ±kβˆ’1Ξ±kvkβˆ’1βˆ’Ξ±k+1Ξ±kvk+1βˆ’β‹―βˆ’Ξ±nΞ±kvn.\begin{equation*} v_k = - \frac{\alpha_1}{\alpha_k} v_1 - \cdots - \frac{\alpha_{k - 1}}{\alpha_k} v_{k-1} - \frac{\alpha_{k + 1}}{\alpha_k} v_{k + 1} - \cdots - \frac{\alpha_n}{\alpha_k} v_n. \end{equation*}

Conversely, suppose that

vk=Ξ²1v1+β‹―+Ξ²kβˆ’1vkβˆ’1+Ξ²k+1vk+1+β‹―+Ξ²nvn.\begin{equation*} v_k = \beta_1 v_1 + \cdots + \beta_{k - 1} v_{k - 1} + \beta_{k + 1} v_{k + 1} + \cdots + \beta_n v_n. \end{equation*}

Then

Ξ²1v1+β‹―+Ξ²kβˆ’1vkβˆ’1βˆ’vk+Ξ²k+1vk+1+β‹―+Ξ²nvn=0.\begin{equation*} \beta_1 v_1 + \cdots + \beta_{k - 1} v_{k - 1} - v_k + \beta_{k + 1} v_{k + 1} + \cdots + \beta_n v_n = {\mathbf 0}. \end{equation*}

The following proposition is a consequence of the fact that any system of homogeneous linear equations with more unknowns than equations will have a nontrivial solution. We leave the details of the proof for the end-of-chapter exercises.

Proposition20.11

Suppose that a vector space VV is spanned by nn vectors. If m>n,m \gt n\text{,} then any set of mm vectors in VV must be linearly dependent.

A set {e1,e2,…,en}\{ e_1, e_2, \ldots, e_n \} of vectors in a vector space VV is called a for VV if {e1,e2,…,en}\{ e_1, e_2, \ldots, e_n \} is a linearly independent set that spans V.V\text{.}

Example20.12

The vectors e1=(1,0,0),e_1 = (1, 0, 0)\text{,} e2=(0,1,0),e_2 = (0, 1, 0)\text{,} and e3=(0,0,1)e_3 =(0, 0, 1) form a basis for R3.{\mathbb R}^3\text{.} The set certainly spans R3,{\mathbb R}^3\text{,} since any arbitrary vector (x1,x2,x3)(x_1, x_2, x_3) in R3{\mathbb R}^3 can be written as x1e1+x2e2+x3e3.x_1 e_1 + x_2 e_2 + x_3 e_3\text{.} Also, none of the vectors e1,e2,e3e_1, e_2, e_3 can be written as a linear combination of the other two; hence, they are linearly independent. The vectors e1,e2,e3e_1, e_2, e_3 are not the only basis of R3:{\mathbb R}^3\text{:} the set {(3,2,1),(3,2,0),(1,1,1)}\{ (3, 2, 1), (3, 2, 0), (1, 1, 1) \} is also a basis for R3.{\mathbb R}^3\text{.}

Example20.13

Let Q(2 )={a+b2:a,b∈Q}.{\mathbb Q}( \sqrt{2}\, ) = \{ a + b \sqrt{2} : a, b \in {\mathbb Q} \}\text{.} The sets {1,2 }\{1, \sqrt{2}\, \} and {1+2,1βˆ’2 }\{1 + \sqrt{2}, 1 - \sqrt{2}\, \} are both bases of Q(2 ).{\mathbb Q}( \sqrt{2}\, )\text{.}

From the last two examples it should be clear that a given vector space has several bases. In fact, there are an infinite number of bases for both of these examples. In general, there is no unique basis for a vector space. However, every basis of R3{\mathbb R}^3 consists of exactly three vectors, and every basis of Q(2 ){\mathbb Q}(\sqrt{2}\, ) consists of exactly two vectors. This is a consequence of the next proposition.

Proposition20.14

Let {e1,e2,…,em}\{ e_1, e_2, \ldots, e_m \} and {f1,f2,…,fn}\{ f_1, f_2, \ldots, f_n \} be two bases for a vector space V.V\text{.} Then m=n.m = n\text{.}

Proof

Since {e1,e2,…,em}\{ e_1, e_2, \ldots, e_m \} is a basis, it is a linearly independent set. By PropositionΒ 20.11, n≀m.n \leq m\text{.} Similarly, {f1,f2,…,fn}\{ f_1, f_2, \ldots, f_n \} is a linearly independent set, and the last proposition implies that m≀n.m \leq n\text{.} Consequently, m=n.m = n\text{.}

If {e1,e2,…,en}\{ e_1, e_2, \ldots, e_n \} is a basis for a vector space V,V\text{,} then we say that the of VV is nn and we write dim⁑V=n.\dim V =n\text{.} We will leave the proof of the following theorem as an exercise.

Theorem20.15

Let VV be a vector space of dimension n.n\text{.}

  1. If S={v1,…,vn}S = \{v_1, \ldots, v_n \} is a set of linearly independent vectors for V,V\text{,} then SS is a basis for V.V\text{.}

  2. If S={v1,…,vn}S = \{v_1, \ldots, v_n \} spans V,V\text{,} then SS is a basis for V.V\text{.}

  3. If S={v1,…,vk}S = \{v_1, \ldots, v_k \} is a set of linearly independent vectors for VV with k<n,k \lt n\text{,} then there exist vectors vk+1,…,vnv_{k + 1}, \ldots, v_n such that

    {v1,…,vk,vk+1,…,vn}\begin{equation*} \{v_1, \ldots, v_k, v_{k + 1}, \ldots, v_n \} \end{equation*}

    is a basis for V.V\text{.}