Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132924 views
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section4.2Multiplicative Group of Complex Numbers

The are defined as

C={a+bi:a,bR},\begin{equation*} {\mathbb C} = \{ a + bi : a, b \in {\mathbb R} \}, \end{equation*}

where i2=1.i^2 = -1\text{.} If z=a+bi,z = a + bi\text{,} then aa is the of zz and bb is the of z.z\text{.}

To add two complex numbers z=a+biz=a+bi and w=c+di,w= c+di\text{,} we just add the corresponding real and imaginary parts:

z+w=(a+bi)+(c+di)=(a+c)+(b+d)i.\begin{equation*} z + w=(a + bi ) + (c + di) = (a + c) + (b + d)i. \end{equation*}

Remembering that i2=1,i^2 = -1\text{,} we multiply complex numbers just like polynomials. The product of zz and ww is

(a+bi)(c+di)=ac+bdi2+adi+bci=(acbd)+(ad+bc)i.\begin{equation*} (a + bi )(c + di) = ac + bdi^2 + adi + bci = (ac -bd) +(ad + bc)i. \end{equation*}

Every nonzero complex number z=a+biz = a +bi has a multiplicative inverse; that is, there exists a z1Cz^{-1} \in {\mathbb C}^\ast such that zz1=z1z=1.z z^{-1} = z^{-1} z = 1\text{.} If z=a+bi,z = a + bi\text{,} then

z1=abia2+b2.\begin{equation*} z^{-1} = \frac{a-bi}{ a^2 + b^2 }. \end{equation*}

The of a complex number z=a+biz = a + bi is defined to be z=abi.\overline{z} = a- bi\text{.} The or of z=a+biz = a + bi is z=a2+b2.|z| = \sqrt{a^2 + b^2}\text{.}

Example4.16

Let z=2+3iz = 2 + 3i and w=12i.w = 1-2i\text{.} Then

z+w=(2+3i)+(12i)=3+i\begin{equation*} z + w = (2 + 3i) + (1 - 2i) = 3 + i \end{equation*}

and

zw=(2+3i)(12i)=8i.\begin{equation*} z w = (2 + 3i)(1 - 2i ) = 8 - i. \end{equation*}

Also,

z1=213313iz=13z=23i.\begin{align*} z^{-1} & = \frac{2}{13} - \frac{3}{13}i\\ |z| & = \sqrt{13}\\ \overline{z} & = 2-3i. \end{align*}
Figure4.17Rectangular coordinates of a complex number

There are several ways of graphically representing complex numbers. We can represent a complex number z=a+biz = a +bi as an ordered pair on the xyxy plane where aa is the xx (or real) coordinate and bb is the yy (or imaginary) coordinate. This is called the or representation. The rectangular representations of z1=2+3i,z_1 = 2 + 3i\text{,} z2=12i,z_2 = 1 - 2i\text{,} and z3=3+2iz_3 = - 3 + 2i are depicted in Figure 4.17.

Figure4.18Polar coordinates of a complex number

Nonzero complex numbers can also be represented using . To specify any nonzero point on the plane, it suffices to give an angle θ\theta from the positive xx axis in the counterclockwise direction and a distance rr from the origin, as in Figure 4.18. We can see that

z=a+bi=r(cosθ+isinθ).\begin{equation*} z = a + bi = r( \cos \theta + i \sin \theta). \end{equation*}

Hence,

r=z=a2+b2\begin{equation*} r = |z| = \sqrt{a^2 + b^2} \end{equation*}

and

a=rcosθb=rsinθ.\begin{align*} a & = r \cos \theta\\ b & = r \sin \theta. \end{align*}

We sometimes abbreviate r(cosθ+isinθ)r( \cos \theta + i \sin \theta) as rcisθ.r \cis \theta\text{.} To assure that the representation of zz is well-defined, we also require that 0θ<360.0^{\circ} \leq \theta \lt 360^{\circ}\text{.} If the measurement is in radians, then 0θ<2π.0 \leq \theta \lt2 \pi\text{.}

Example4.19

Suppose that z=2cis60.z = 2 \cis 60^{\circ}\text{.} Then

a=2cos60=1\begin{equation*} a = 2 \cos 60^{\circ} = 1 \end{equation*}

and

b=2sin60=3.\begin{equation*} b = 2 \sin 60^{\circ} = \sqrt{3}. \end{equation*}

Hence, the rectangular representation is z=1+3i.z = 1+\sqrt{3}\, i\text{.}

Conversely, if we are given a rectangular representation of a complex number, it is often useful to know the number's polar representation. If z=3232i,z = 3 \sqrt{2} - 3 \sqrt{2}\, i\text{,} then

r=a2+b2=36=6\begin{equation*} r = \sqrt{a^2 + b^2} = \sqrt{36 } = 6 \end{equation*}

and

θ=arctan(ba)=arctan(1)=315,\begin{equation*} \theta = \arctan \left( \frac{b}{a} \right) = \arctan( - 1) = 315^{\circ}, \end{equation*}

so 3232i=6cis315.3 \sqrt{2} - 3 \sqrt{2}\, i=6 \cis 315^{\circ}\text{.}

The polar representation of a complex number makes it easy to find products and powers of complex numbers. The proof of the following proposition is straightforward and is left as an exercise.

Proposition4.20

Let z=rcisθz = r \cis \theta and w=scisϕw = s \cis \phi be two nonzero complex numbers. Then

zw=rscis(θ+ϕ).\begin{equation*} zw = r s \cis( \theta + \phi). \end{equation*}
Example4.21

If z=3cis(π/3)z = 3 \cis( \pi / 3 ) and w=2cis(π/6),w = 2 \cis(\pi / 6 )\text{,} then zw=6cis(π/2)=6i.zw = 6 \cis( \pi / 2 ) = 6i\text{.}

Theorem4.22DeMoivre

Let z=rcisθz = r \cis \theta be a nonzero complex number. Then

[rcisθ]n=rncis(nθ)\begin{equation*} [r \cis \theta ]^n = r^n \cis( n \theta) \end{equation*}

for n=1,2,.n = 1, 2, \ldots\text{.}

Proof

We will use induction on n.n\text{.} For n=1n = 1 the theorem is trivial. Assume that the theorem is true for all kk such that 1kn.1 \leq k \leq n\text{.} Then

zn+1=znz=rn(cosnθ+isinnθ)r(cosθ+isinθ)=rn+1[(cosnθcosθsinnθsinθ)+i(sinnθcosθ+cosnθsinθ)]=rn+1[cos(nθ+θ)+isin(nθ+θ)]=rn+1[cos(n+1)θ+isin(n+1)θ].\begin{align*} z^{n+1} & = z^n z\\ & = r^n( \cos n \theta + i \sin n \theta ) r( \cos \theta + i\sin \theta )\\ & = r^{n+1} [( \cos n \theta \cos \theta - \sin n \theta \sin \theta ) + i ( \sin n \theta \cos \theta + \cos n \theta \sin \theta)]\\ & = r^{n+1} [ \cos( n \theta + \theta) + i \sin( n \theta + \theta) ]\\ & = r^{n+1} [ \cos( n +1) \theta + i \sin( n+1) \theta ]. \end{align*}
Example4.23

Suppose that z=1+iz= 1+i and we wish to compute z10.z^{10}\text{.} Rather than computing (1+i)10(1 + i)^{10} directly, it is much easier to switch to polar coordinates and calculate z10z^{10} using DeMoivre's Theorem:

z10=(1+i)10=(2cis(π4))10=(2)10cis(5π2)=32cis(π2)=32i.\begin{align*} z^{10} & = (1+i)^{10}\\ & = \left( \sqrt{2} \cis \left( \frac{\pi }{4} \right) \right)^{10}\\ & = ( \sqrt{2}\, )^{10} \cis \left( \frac{5\pi }{2} \right)\\ & = 32 \cis \left( \frac{\pi }{2} \right)\\ & = 32i. \end{align*}

SubsectionThe Circle Group and the Roots of Unity

The multiplicative group of the complex numbers, C,{\mathbb C}^*\text{,} possesses some interesting subgroups. Whereas Q{\mathbb Q}^* and R{\mathbb R}^* have no interesting subgroups of finite order, C{\mathbb C}^* has many. We first consider the ,

T={zC:z=1}.\begin{equation*} {\mathbb T} = \{ z \in {\mathbb C} : |z| = 1 \}. \end{equation*}

The following proposition is a direct result of Proposition 4.20.

Proposition4.24

The circle group is a subgroup of C.{\mathbb C}^*\text{.}

Although the circle group has infinite order, it has many interesting finite subgroups. Suppose that H={1,1,i,i}.H = \{ 1, -1, i, -i \}\text{.} Then HH is a subgroup of the circle group. Also, 1,1\text{,} 1,-1\text{,} i,i\text{,} and i-i are exactly those complex numbers that satisfy the equation z4=1.z^4 = 1\text{.} The complex numbers satisfying the equation zn=1z^n=1 are called the .

Theorem4.25

If zn=1,z^n = 1\text{,} then the nnth roots of unity are

z=cis(2kπn),\begin{equation*} z = \cis\left( \frac{2 k \pi}{n } \right), \end{equation*}

where k=0,1,,n1.k = 0, 1, \ldots, n-1\text{.} Furthermore, the nnth roots of unity form a cyclic subgroup of T{\mathbb T} of order nn

Proof

By DeMoivre's Theorem,

zn=cis(n2kπn)=cis(2kπ)=1.\begin{equation*} z^n = \cis \left( n \frac{2 k \pi}{n } \right) = \cis( 2 k \pi ) = 1. \end{equation*}

The zz's are distinct since the numbers 2kπ/n2 k \pi /n are all distinct and are greater than or equal to 0 but less than 2π.2 \pi\text{.} The fact that these are all of the roots of the equation zn=1z^n=1 follows from from Corollary 17.9, which states that a polynomial of degree nn can have at most nn roots. We will leave the proof that the nnth roots of unity form a cyclic subgroup of T{\mathbb T} as an exercise.

A generator for the group of the nnth roots of unity is called a .

Example4.26

The 8th roots of unity can be represented as eight equally spaced points on the unit circle (Figure 4.27). The primitive 8th roots of unity are

ω=22+22iω3=22+22iω5=2222iω7=2222i.\begin{align*} \omega & = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} i\\ \omega^3 & = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} i\\ \omega^5 & = -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} i\\ \omega^7 & = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i. \end{align*}
Figure4.278th roots of unity