Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

πŸ“š The CoCalc Library - books, templates and other resources

132928 views
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section13.2Solvable Groups

ΒΆ

A of a group GG is a finite sequence of subgroups

G=HnβŠƒHnβˆ’1βŠƒβ‹―βŠƒH1βŠƒH0={e},\begin{equation*} G = H_n \supset H_{n-1} \supset \cdots \supset H_1 \supset H_0 = \{ e \}, \end{equation*}

where HiH_i is a normal subgroup of Hi+1.H_{i+1}\text{.} If each subgroup HiH_i is normal in G,G\text{,} then the series is called a . The of a subnormal or normal series is the number of proper inclusions.

Example13.11

Any series of subgroups of an abelian group is a normal series. Consider the following series of groups:

ZβŠƒ9ZβŠƒ45ZβŠƒ180ZβŠƒ{0},Z24βŠƒβŸ¨2βŸ©βŠƒβŸ¨6βŸ©βŠƒβŸ¨12βŸ©βŠƒ{0}.\begin{gather*} {\mathbb Z} \supset 9{\mathbb Z} \supset 45{\mathbb Z} \supset 180{\mathbb Z} \supset \{0\},\\ {\mathbb Z}_{24} \supset \langle 2 \rangle \supset \langle 6 \rangle \supset \langle 12 \rangle \supset \{0\}. \end{gather*}
Example13.12

A subnormal series need not be a normal series. Consider the following subnormal series of the group D4:D_4\text{:}

D4βŠƒ{(1),(12)(34),(13)(24),(14)(23)}βŠƒ{(1),(12)(34)}βŠƒ{(1)}.\begin{equation*} D_4 \supset \{ (1), (12)(34), (13)(24), (14)(23) \} \supset \{ (1), (12)(34) \} \supset \{ (1) \}. \end{equation*}

The subgroup {(1),(12)(34)}\{ (1), (12)(34) \} is not normal in D4;D_4\text{;} consequently, this series is not a normal series.

A subnormal (normal) series {Kj}\{ K_j \} is a {Hi}\{ H_i \} if {Hi}βŠ‚{Kj}.\{ H_i \} \subset \{ K_j \}\text{.} That is, each HiH_i is one of the Kj.K_j\text{.}

Example13.13

The series

ZβŠƒ3ZβŠƒ9ZβŠƒ45ZβŠƒ90ZβŠƒ180ZβŠƒ{0}\begin{equation*} {\mathbb Z} \supset 3{\mathbb Z} \supset 9{\mathbb Z} \supset 45{\mathbb Z} \supset 90{\mathbb Z} \supset 180{\mathbb Z} \supset \{0\} \end{equation*}

is a refinement of the series

ZβŠƒ9ZβŠƒ45ZβŠƒ180ZβŠƒ{0}.\begin{equation*} {\mathbb Z} \supset 9{\mathbb Z} \supset 45{\mathbb Z} \supset 180{\mathbb Z} \supset \{0\}. \end{equation*}

The best way to study a subnormal or normal series of subgroups, {Hi}\{ H_i \} of G,G\text{,} is actually to study the factor groups Hi+1/Hi.H_{i+1}/H_i\text{.} We say that two subnormal (normal) series {Hi}\{H_i \} and {Kj}\{ K_j \} of a group GG are if there is a one-to-one correspondence between the collections of factor groups {Hi+1/Hi}\{H_{i+1}/H_i \} and {Kj+1/Kj}.\{ K_{j+1}/ K_j \}\text{.}

Example13.14

The two normal series

Z60βŠƒβŸ¨3βŸ©βŠƒβŸ¨15βŸ©βŠƒ{0}Z60βŠƒβŸ¨4βŸ©βŠƒβŸ¨20βŸ©βŠƒ{0}\begin{gather*} {\mathbb Z}_{60} \supset \langle 3 \rangle \supset \langle 15 \rangle \supset \{ 0 \}\\ {\mathbb Z}_{60} \supset \langle 4 \rangle \supset \langle 20 \rangle \supset \{ 0 \} \end{gather*}

of the group Z60{\mathbb Z}_{60} are isomorphic since

Z60/⟨3βŸ©β‰…βŸ¨20⟩/{0}β‰…Z3⟨3⟩/⟨15βŸ©β‰…βŸ¨4⟩/⟨20βŸ©β‰…Z5⟨15⟩/{0}β‰…Z60/⟨4βŸ©β‰…Z4.\begin{gather*} {\mathbb Z}_{60} / \langle 3 \rangle \cong \langle 20 \rangle / \{ 0 \} \cong {\mathbb Z}_{3}\\ \langle 3 \rangle / \langle 15 \rangle \cong \langle 4 \rangle / \langle 20 \rangle \cong {\mathbb Z}_{5}\\ \langle 15 \rangle / \{ 0 \} \cong {\mathbb Z}_{60} / \langle 4 \rangle \cong {\mathbb Z}_4. \end{gather*}

A subnormal series {Hi}\{ H_i \} of a group GG is a if all the factor groups are simple; that is, if none of the factor groups of the series contains a normal subgroup. A normal series {Hi}\{ H_i \} of GG is a if all the factor groups are simple.

Example13.15

The group Z60{\mathbb Z}_{60} has a composition series

Z60βŠƒβŸ¨3βŸ©βŠƒβŸ¨15βŸ©βŠƒβŸ¨30βŸ©βŠƒ{0}\begin{equation*} {\mathbb Z}_{60} \supset \langle 3 \rangle \supset \langle 15 \rangle \supset \langle 30 \rangle \supset \{ 0 \} \end{equation*}

with factor groups

Z60/⟨3βŸ©β‰…Z3⟨3⟩/⟨15βŸ©β‰…Z5⟨15⟩/⟨30βŸ©β‰…Z2⟨30⟩/{0}β‰…Z2.\begin{align*} {\mathbb Z}_{60} / \langle 3 \rangle & \cong {\mathbb Z}_{3}\\ \langle 3 \rangle / \langle 15 \rangle & \cong {\mathbb Z}_{5}\\ \langle 15 \rangle / \langle 30 \rangle & \cong {\mathbb Z}_{2}\\ \langle 30 \rangle / \{ 0 \} & \cong {\mathbb Z}_2. \end{align*}

Since Z60{\mathbb Z}_{60} is an abelian group, this series is automatically a principal series. Notice that a composition series need not be unique. The series

Z60βŠƒβŸ¨2βŸ©βŠƒβŸ¨4βŸ©βŠƒβŸ¨20βŸ©βŠƒ{0}\begin{equation*} {\mathbb Z}_{60} \supset \langle 2 \rangle \supset \langle 4 \rangle \supset \langle 20 \rangle \supset \{ 0 \} \end{equation*}

is also a composition series.

Example13.16

For nβ‰₯5,n \geq 5\text{,} the series

SnβŠƒAnβŠƒ{(1)}\begin{equation*} S_n \supset A_n \supset \{ (1) \} \end{equation*}

is a composition series for SnS_n since Sn/An≅Z2S_n / A_n \cong {\mathbb Z}_2 and AnA_n is simple.

Example13.17

Not every group has a composition series or a principal series. Suppose that

{0}=H0βŠ‚H1βŠ‚β‹―βŠ‚Hnβˆ’1βŠ‚Hn=Z\begin{equation*} \{ 0 \} = H_0 \subset H_1 \subset \cdots \subset H_{n-1} \subset H_n = {\mathbb Z} \end{equation*}

is a subnormal series for the integers under addition. Then H1H_1 must be of the form kZk {\mathbb Z} for some k∈N.k \in {\mathbb N}\text{.} In this case H1/H0β‰…kZH_1 / H_0 \cong k {\mathbb Z} is an infinite cyclic group with many nontrivial proper normal subgroups.

Although composition series need not be unique as in the case of Z60,{\mathbb Z}_{60}\text{,} it turns out that any two composition series are related. The factor groups of the two composition series for Z60{\mathbb Z}_{60} are Z2,{\mathbb Z}_2\text{,} Z2,{\mathbb Z}_2\text{,} Z3,{\mathbb Z}_3\text{,} and Z5;{\mathbb Z}_5\text{;} that is, the two composition series are isomorphic. The Jordan-HΓΆlder Theorem says that this is always the case.

Theorem13.18Jordan-HΓΆlder

Any two composition series of GG are isomorphic.

Proof

We shall employ mathematical induction on the length of the composition series. If the length of a composition series is 1, then GG must be a simple group. In this case any two composition series are isomorphic.

Suppose now that the theorem is true for all groups having a composition series of length k,k\text{,} where 1≀k<n.1 \leq k \lt n\text{.} Let

G=HnβŠƒHnβˆ’1βŠƒβ‹―βŠƒH1βŠƒH0={e}G=KmβŠƒKmβˆ’1βŠƒβ‹―βŠƒK1βŠƒK0={e}\begin{gather*} G = H_n \supset H_{n-1} \supset \cdots \supset H_1 \supset H_0 = \{ e \}\\ G = K_m \supset K_{m-1} \supset \cdots \supset K_1 \supset K_0 = \{ e \} \end{gather*}

be two composition series for G.G\text{.} We can form two new subnormal series for GG since Hi∩Kmβˆ’1H_i \cap K_{m-1} is normal in Hi+1∩Kmβˆ’1H_{i+1} \cap K_{m-1} and Kj∩Hnβˆ’1K_j \cap H_{n-1} is normal in Kj+1∩Hnβˆ’1:K_{j+1} \cap H_{n-1}\text{:}

G=HnβŠƒHnβˆ’1βŠƒHnβˆ’1∩Kmβˆ’1βŠƒβ‹―βŠƒH0∩Kmβˆ’1={e}G=KmβŠƒKmβˆ’1βŠƒKmβˆ’1∩Hnβˆ’1βŠƒβ‹―βŠƒK0∩Hnβˆ’1={e}.\begin{gather*} G = H_n \supset H_{n-1} \supset H_{n-1} \cap K_{m-1} \supset \cdots \supset H_0 \cap K_{m-1} = \{ e \}\\ G = K_m \supset K_{m-1} \supset K_{m-1} \cap H_{n-1} \supset \cdots \supset K_0 \cap H_{n-1} = \{ e \}. \end{gather*}

Since Hi∩Kmβˆ’1H_i \cap K_{m-1} is normal in Hi+1∩Kmβˆ’1,H_{i+1} \cap K_{m-1}\text{,} the Second Isomorphism Theorem (TheoremΒ 11.12) implies that

(Hi+1∩Kmβˆ’1)/(Hi∩Kmβˆ’1)=(Hi+1∩Kmβˆ’1)/(Hi∩(Hi+1∩Kmβˆ’1))β‰…Hi(Hi+1∩Kmβˆ’1)/Hi,\begin{align*} (H_{i+1} \cap K_{m-1}) / (H_i \cap K_{m-1}) & = (H_{i+1} \cap K_{m-1}) / (H_i \cap ( H_{i+1} \cap K_{m-1} ))\\ & \cong H_i (H_{i+1} \cap K_{m-1})/ H_i, \end{align*}

where HiH_i is normal in Hi(Hi+1∩Kmβˆ’1).H_i (H_{i+1} \cap K_{m-1})\text{.} Since {Hi}\{ H_i \} is a composition series, Hi+1/HiH_{i+1} / H_i must be simple; consequently, Hi(Hi+1∩Kmβˆ’1)/HiH_i (H_{i+1} \cap K_{m-1})/ H_i is either Hi+1/HiH_{i+1}/H_i or Hi/Hi.H_i/H_i\text{.} That is, Hi(Hi+1∩Kmβˆ’1)H_i (H_{i+1} \cap K_{m-1}) must be either HiH_i or Hi+1.H_{i+1}\text{.} Removing any nonproper inclusions from the series

Hnβˆ’1βŠƒHnβˆ’1∩Kmβˆ’1βŠƒβ‹―βŠƒH0∩Kmβˆ’1={e},\begin{equation*} H_{n-1} \supset H_{n-1} \cap K_{m-1} \supset \cdots \supset H_0 \cap K_{m-1} = \{ e \}, \end{equation*}

we have a composition series for Hnβˆ’1.H_{n-1}\text{.} Our induction hypothesis says that this series must be equivalent to the composition series

Hnβˆ’1βŠƒβ‹―βŠƒH1βŠƒH0={e}.\begin{equation*} H_{n-1} \supset \cdots \supset H_1 \supset H_0 = \{ e \}. \end{equation*}

Hence, the composition series

G=HnβŠƒHnβˆ’1βŠƒβ‹―βŠƒH1βŠƒH0={e}\begin{equation*} G = H_n \supset H_{n-1} \supset \cdots \supset H_1 \supset H_0 = \{ e \} \end{equation*}

and

G=HnβŠƒHnβˆ’1βŠƒHnβˆ’1∩Kmβˆ’1βŠƒβ‹―βŠƒH0∩Kmβˆ’1={e}\begin{equation*} G = H_n \supset H_{n-1} \supset H_{n-1} \cap K_{m-1} \supset \cdots \supset H_0 \cap K_{m-1} = \{ e \} \end{equation*}

are equivalent. If Hnβˆ’1=Kmβˆ’1,H_{n-1} = K_{m-1}\text{,} then the composition series {Hi}\{H_i \} and {Kj}\{ K_j \} are equivalent and we are done; otherwise, Hnβˆ’1Kmβˆ’1H_{n-1} K_{m-1} is a normal subgroup of GG properly containing Hnβˆ’1.H_{n-1}\text{.} In this case Hnβˆ’1Kmβˆ’1=GH_{n-1} K_{m-1} = G and we can apply the Second Isomorphism Theorem once again; that is,

Kmβˆ’1/(Kmβˆ’1∩Hnβˆ’1)β‰…(Hnβˆ’1Kmβˆ’1)/Hnβˆ’1=G/Hnβˆ’1.\begin{equation*} K_{m-1} / (K_{m-1} \cap H_{n-1}) \cong (H_{n-1} K_{m-1}) / H_{n-1} = G/H_{n-1}. \end{equation*}

Therefore,

G=HnβŠƒHnβˆ’1βŠƒHnβˆ’1∩Kmβˆ’1βŠƒβ‹―βŠƒH0∩Kmβˆ’1={e}\begin{equation*} G = H_n \supset H_{n-1} \supset H_{n-1} \cap K_{m-1} \supset \cdots \supset H_0 \cap K_{m-1} = \{ e \} \end{equation*}

and

G=KmβŠƒKmβˆ’1βŠƒKmβˆ’1∩Hnβˆ’1βŠƒβ‹―βŠƒK0∩Hnβˆ’1={e}\begin{equation*} G = K_m \supset K_{m-1} \supset K_{m-1} \cap H_{n-1} \supset \cdots \supset K_0 \cap H_{n-1} = \{ e \} \end{equation*}

are equivalent and the proof of the theorem is complete.

A group GG is if it has a subnormal series {Hi}\{ H_i \} such that all of the factor groups Hi+1/HiH_{i+1} / H_i are abelian. Solvable groups will play a fundamental role when we study Galois theory and the solution of polynomial equations.

Example13.19

The group S4S_4 is solvable since

S4βŠƒA4βŠƒ{(1),(12)(34),(13)(24),(14)(23)}βŠƒ{(1)}\begin{equation*} S_4 \supset A_4 \supset \{ (1), (12)(34), (13)(24), (14)(23) \} \supset \{ (1) \} \end{equation*}

has abelian factor groups; however, for nβ‰₯5n \geq 5 the series

SnβŠƒAnβŠƒ{(1)}\begin{equation*} S_n \supset A_n \supset \{ (1) \} \end{equation*}

is a composition series for SnS_n with a nonabelian factor group. Therefore, SnS_n is not a solvable group for nβ‰₯5.n \geq 5\text{.}