Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

πŸ“š The CoCalc Library - books, templates and other resources

132928 views
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section20.2Subspaces

ΒΆ

Just as groups have subgroups and rings have subrings, vector spaces also have substructures. Let VV be a vector space over a field F,F\text{,} and WW a subset of V.V\text{.} Then WW is a of VV if it is closed under vector addition and scalar multiplication; that is, if u,v∈Wu, v \in W and α∈F,\alpha \in F\text{,} it will always be the case that u+vu + v and αv\alpha v are also in W.W\text{.}

Example20.6

Let WW be the subspace of R3{\mathbb R}^3 defined by W={(x1,2x1+x2,x1βˆ’x2):x1,x2∈R}.W = \{ (x_1, 2 x_1 + x_2, x_1 - x_2) : x_1, x_2 \in {\mathbb R} \}\text{.} We claim that WW is a subspace of R3.{\mathbb R}^3\text{.} Since

Ξ±(x1,2x1+x2,x1βˆ’x2)=(Ξ±x1,Ξ±(2x1+x2),Ξ±(x1βˆ’x2))=(Ξ±x1,2(Ξ±x1)+Ξ±x2,Ξ±x1βˆ’Ξ±x2),\begin{align*} \alpha (x_1, 2 x_1 + x_2, x_1 - x_2) & = (\alpha x_1, \alpha(2 x_1 + x_2), \alpha( x_1 - x_2))\\ & = (\alpha x_1, 2(\alpha x_1) + \alpha x_2, \alpha x_1 -\alpha x_2), \end{align*}

WW is closed under scalar multiplication. To show that WW is closed under vector addition, let u=(x1,2x1+x2,x1βˆ’x2)u = (x_1, 2 x_1 + x_2, x_1 - x_2) and v=(y1,2y1+y2,y1βˆ’y2)v = (y_1, 2 y_1 + y_2, y_1 - y_2) be vectors in W.W\text{.} Then

u+v=(x1+y1,2(x1+y1)+(x2+y2),(x1+y1)βˆ’(x2+y2)).\begin{equation*} u + v = (x_1 + y_1, 2( x_1 + y_1) +( x_2 + y_2), (x_1 + y_1) - (x_2+ y_2)). \end{equation*}
Example20.7

Let WW be the subset of polynomials of F[x]F[x] with no odd-power terms. If p(x)p(x) and q(x)q(x) have no odd-power terms, then neither will p(x)+q(x).p(x) + q(x)\text{.} Also, αp(x)∈W\alpha p(x) \in W for α∈F\alpha \in F and p(x)∈W.p(x) \in W\text{.}

Let VV be any vector space over a field FF and suppose that v1,v2,…,vnv_1, v_2, \ldots, v_n are vectors in VV and Ξ±1,Ξ±2,…,Ξ±n\alpha_1, \alpha_2, \ldots, \alpha_n are scalars in F.F\text{.} Any vector ww in VV of the form

w=βˆ‘i=1nΞ±ivi=Ξ±1v1+Ξ±2v2+β‹―+Ξ±nvn\begin{equation*} w = \sum_{i=1}^n \alpha_i v_i = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n \end{equation*}

is called a of the vectors v1,v2,…,vn.v_1, v_2, \ldots, v_n\text{.} The of vectors v1,v2,…,vnv_1, v_2, \ldots, v_n is the set of vectors obtained from all possible linear combinations of v1,v2,…,vn.v_1, v_2, \ldots, v_n\text{.} If WW is the spanning set of v1,v2,…,vn,v_1, v_2, \ldots, v_n\text{,} then we say that WW is by v1,v2,…,vn.v_1, v_2, \ldots, v_n\text{.}

Proposition20.8

Let S={v1,v2,…,vn}S= \{v_1, v_2, \ldots, v_n \} be vectors in a vector space V.V\text{.} Then the span of SS is a subspace of V.V\text{.}

Proof

Let uu and vv be in S.S\text{.} We can write both of these vectors as linear combinations of the viv_i's:

u=Ξ±1v1+Ξ±2v2+β‹―+Ξ±nvnv=Ξ²1v1+Ξ²2v2+β‹―+Ξ²nvn.\begin{align*} u & = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n\\ v & = \beta_1 v_1 + \beta_2 v_2 + \cdots + \beta_n v_n. \end{align*}

Then

u+v=(Ξ±1+Ξ²1)v1+(Ξ±2+Ξ²2)v2+β‹―+(Ξ±n+Ξ²n)vn\begin{equation*} u + v =( \alpha_1 + \beta_1) v_1 + (\alpha_2+ \beta_2) v_2 + \cdots + (\alpha_n + \beta_n) v_n \end{equation*}

is a linear combination of the viv_i's. For α∈F,\alpha \in F\text{,}

Ξ±u=(Ξ±Ξ±1)v1+(Ξ±Ξ±2)v2+β‹―+(Ξ±Ξ±n)vn\begin{equation*} \alpha u = (\alpha \alpha_1) v_1 + ( \alpha \alpha_2) v_2 + \cdots + (\alpha \alpha_n ) v_n \end{equation*}

is in the span of S.S\text{.}