Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132930 views
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section3.4Exercises

1

Find all xZx \in {\mathbb Z} satisfying each of the following equations.

  1. 3x2(mod7)3x \equiv 2 \pmod{7}

  2. 5x+113(mod23)5x + 1 \equiv 13 \pmod{23}

  3. 5x+113(mod26)5x + 1 \equiv 13 \pmod{26}

  4. 9x3(mod5)9x \equiv 3 \pmod{5}

  5. 5x1(mod6)5x \equiv 1 \pmod{6}

  6. 3x1(mod6)3x \equiv 1 \pmod{6}

Hint

(a) 3+7Z={,4,3,10,};3 + 7 \mathbb Z = \{ \ldots, -4, 3, 10, \ldots \}\text{;} (c) 18+26Z;18 + 26 \mathbb Z\text{;} (e) 5+6Z.5 + 6 \mathbb Z\text{.}

2

Which of the following multiplication tables defined on the set G={a,b,c,d}G = \{ a, b, c, d \} form a group? Support your answer in each case.

  1. abcdaacdabbbcdccdabddabc\begin{equation*} \begin{array}{c|cccc} \circ & a & b & c & d \\ \hline a & a & c & d & a \\ b & b & b & c & d \\ c & c & d & a & b \\ d & d & a & b & c \end{array} \end{equation*}
  2. abcdaabcdbbadcccdabddcba\begin{equation*} \begin{array}{c|cccc} \circ & a & b & c & d \\ \hline a & a & b & c & d \\ b & b & a & d & c \\ c & c & d & a & b \\ d & d & c & b & a \end{array} \end{equation*}
  3. abcdaabcdbbcdaccdabddabc\begin{equation*} \begin{array}{c|cccc} \circ & a & b & c & d \\ \hline a & a & b & c & d \\ b & b & c & d & a \\ c & c & d & a & b \\ d & d & a & b & c \end{array} \end{equation*}
  4. abcdaabcdbbacdccbaddddbc\begin{equation*} \begin{array}{c|cccc} \circ & a & b & c & d \\ \hline a & a & b & c & d \\ b & b & a & c & d \\ c & c & b & a & d \\ d & d & d & b & c \end{array} \end{equation*}
Hint

(a) Not a group; (c) a group.

3

Write out Cayley tables for groups formed by the symmetries of a rectangle and for (Z4,+).({\mathbb Z}_4, +)\text{.} How many elements are in each group? Are the groups the same? Why or why not?

4

Describe the symmetries of a rhombus and prove that the set of symmetries forms a group. Give Cayley tables for both the symmetries of a rectangle and the symmetries of a rhombus. Are the symmetries of a rectangle and those of a rhombus the same?

5

Describe the symmetries of a square and prove that the set of symmetries is a group. Give a Cayley table for the symmetries. How many ways can the vertices of a square be permuted? Is each permutation necessarily a symmetry of the square? The symmetry group of the square is denoted by D4.D_4\text{.}

6

Give a multiplication table for the group U(12).U(12)\text{.}

Hint
157111157115511177711151111751\begin{equation*} \begin{array}{c|cccc} \cdot & 1 & 5 & 7 & 11 \\ \hline 1 & 1 & 5 & 7 & 11 \\ 5 & 5 & 1 & 11 & 7 \\ 7 & 7 & 11 & 1 & 5 \\ 11 & 11 & 7 & 5 & 1 \end{array} \end{equation*}
7

Let S=R{1}S = {\mathbb R} \setminus \{ -1 \} and define a binary operation on SS by ab=a+b+ab.a \ast b = a + b + ab\text{.} Prove that (S,)(S, \ast) is an abelian group.

8

Give an example of two elements AA and BB in GL2(R)GL_2({\mathbb R}) with ABBA.AB \neq BA\text{.}

Hint

Pick two matrices. Almost any pair will work.

9

Prove that the product of two matrices in SL2(R)SL_2({\mathbb R}) has determinant one.

10

Prove that the set of matrices of the form

(1xy01z001)\begin{equation*} \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} \end{equation*}

is a group under matrix multiplication. This group, known as the , is important in quantum physics. Matrix multiplication in the Heisenberg group is defined by

(1xy01z001)(1xy01z001)=(1x+xy+y+xz01z+z001).\begin{equation*} \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & x' & y' \\ 0 & 1 & z' \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & x+x' & y+y'+xz' \\ 0 & 1 & z+z' \\ 0 & 0 & 1 \end{pmatrix}. \end{equation*}
11

Prove that det(AB)=det(A)det(B)\det(AB) = \det(A) \det(B) in GL2(R).GL_2({\mathbb R})\text{.} Use this result to show that the binary operation in the group GL2(R)GL_2({\mathbb R}) is closed; that is, if AA and BB are in GL2(R),GL_2({\mathbb R})\text{,} then ABGL2(R).AB \in GL_2({\mathbb R})\text{.}

12

Let Z2n={(a1,a2,,an):aiZ2}.{\mathbb Z}_2^n = \{ (a_1, a_2, \ldots, a_n) : a_i \in {\mathbb Z}_2 \}\text{.} Define a binary operation on Z2n{\mathbb Z}_2^n by

(a1,a2,,an)+(b1,b2,,bn)=(a1+b1,a2+b2,,an+bn).\begin{equation*} (a_1, a_2, \ldots, a_n) + (b_1, b_2, \ldots, b_n) = (a_1 + b_1, a_2 + b_2, \ldots, a_n + b_n). \end{equation*}

Prove that Z2n{\mathbb Z}_2^n is a group under this operation. This group is important in algebraic coding theory.

13

Show that R=R{0}{\mathbb R}^{\ast} = {\mathbb R} \setminus \{0 \} is a group under the operation of multiplication.

14

Given the groups R{\mathbb R}^{\ast} and Z,{\mathbb Z}\text{,} let G=R×Z.G = {\mathbb R}^{\ast} \times {\mathbb Z}\text{.} Define a binary operation \circ on GG by (a,m)(b,n)=(ab,m+n).(a,m) \circ (b,n) = (ab, m + n)\text{.} Show that GG is a group under this operation.

15

Prove or disprove that every group containing six elements is abelian.

Hint

There is a nonabelian group containing six elements.

16

Give a specific example of some group GG and elements g,hGg, h \in G where (gh)ngnhn.(gh)^n \neq g^nh^n\text{.}

Hint

Look at the symmetry group of an equilateral triangle or a square.

17

Give an example of three different groups with eight elements. Why are the groups different?

Hint

The are five different groups of order 8.

18

Show that there are n!n! permutations of a set containing nn items.

Hint

Let

σ=(12na1a2an)\begin{equation*} \sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ a_1 & a_2 & \cdots & a_n \end{pmatrix} \end{equation*}

be in Sn.S_n\text{.} All of the aia_is must be distinct. There are nn ways to choose a1,a_1\text{,} n1n-1 ways to choose a2,a_2\text{,} ,\ldots\text{,} 2 ways to choose an1,a_{n - 1}\text{,} and only one way to choose an.a_n\text{.} Therefore, we can form σ\sigma in n(n1)21=n!n(n - 1) \cdots 2 \cdot 1 = n! ways.

19

Show that

0+aa+0a(modn)\begin{equation*} 0 + a \equiv a + 0 \equiv a \pmod{ n } \end{equation*}

for all aZn.a \in {\mathbb Z}_n\text{.}

20

Prove that there is a multiplicative identity for the integers modulo n:n\text{:}

a1a(modn).\begin{equation*} a \cdot 1 \equiv a \pmod{n}. \end{equation*}
21

For each aZna \in {\mathbb Z}_n find an element bZnb \in {\mathbb Z}_n such that

a+bb+a0(modn).\begin{equation*} a + b \equiv b + a \equiv 0 \pmod{ n}. \end{equation*}
22

Show that addition and multiplication mod nn are well defined operations. That is, show that the operations do not depend on the choice of the representative from the equivalence classes mod n.n\text{.}

23

Show that addition and multiplication mod nn are associative operations.

24

Show that multiplication distributes over addition modulo n:n\text{:}

a(b+c)ab+ac(modn).\begin{equation*} a(b + c) \equiv ab + ac \pmod{n}. \end{equation*}
25

Let aa and bb be elements in a group G.G\text{.} Prove that abna1=(aba1)nab^na^{-1} = (aba^{-1})^n for nZ.n \in \mathbb Z\text{.}

Hint
(aba1)n=(aba1)(aba1)(aba1)=ab(aa1)b(aa1)bb(aa1)ba1=abna1.\begin{align*} (aba^{-1})^n & = (aba^{-1})(aba^{-1}) \cdots (aba^{-1})\\ & = ab(aa^{-1})b(aa^{-1})b \cdots b(aa^{-1})ba^{-1}\\ & = ab^na^{-1}. \end{align*}
26

Let U(n)U(n) be the group of units in Zn.{\mathbb Z}_n\text{.} If n>2,n \gt 2\text{,} prove that there is an element kU(n)k \in U(n) such that k2=1k^2 = 1 and k1.k \neq 1\text{.}

27

Prove that the inverse of g1g2gng _1 g_2 \cdots g_n is gn1gn11g11.g_n^{-1} g_{n-1}^{-1} \cdots g_1^{-1}\text{.}

28

Prove the remainder of Proposition 3.21: if GG is a group and a,bG,a, b \in G\text{,} then the equation xa=bxa = b has a unique solution in G.G\text{.}

29

Prove Theorem 3.23.

30

Prove the right and left cancellation laws for a group G;G\text{;} that is, show that in the group G,G\text{,} ba=caba = ca implies b=cb = c and ab=acab = ac implies b=cb = c for elements a,b,cG.a, b, c \in G\text{.}

31

Show that if a2=ea^2 = e for all elements aa in a group G,G\text{,} then GG must be abelian.

Hint

Since abab=(ab)2=e=a2b2=aabb,abab = (ab)^2 = e = a^2 b^2 = aabb\text{,} we know that ba=ab.ba = ab\text{.}

32

Show that if GG is a finite group of even order, then there is an aGa \in G such that aa is not the identity and a2=e.a^2 = e\text{.}

33

Let GG be a group and suppose that (ab)2=a2b2(ab)^2 = a^2b^2 for all aa and bb in G.G\text{.} Prove that GG is an abelian group.

34

Find all the subgroups of Z3×Z3.{\mathbb Z}_3 \times {\mathbb Z}_3\text{.} Use this information to show that Z3×Z3{\mathbb Z}_3 \times {\mathbb Z}_3 is not the same group as Z9.{\mathbb Z}_9\text{.} (See Example 3.28 for a short description of the product of groups.)

35

Find all the subgroups of the symmetry group of an equilateral triangle.

Hint

H1={id},H_1 = \{ \identity \}\text{,} H2={id,ρ1,ρ2},H_2 = \{ \identity, \rho_1, \rho_2 \}\text{,} H3={id,μ1},H_3 = \{ \identity, \mu_1 \}\text{,} H4={id,μ2},H_4 = \{ \identity, \mu_2 \}\text{,} H5={id,μ3},H_5 = \{ \identity, \mu_3 \}\text{,} S3.S_3\text{.}

36

Compute the subgroups of the symmetry group of a square.

37

Let H={2k:kZ}.H = \{2^k : k \in {\mathbb Z} \}\text{.} Show that HH is a subgroup of Q.{\mathbb Q}^*\text{.}

38

Let n=0,1,2,n = 0, 1, 2, \ldots and nZ={nk:kZ}.n {\mathbb Z} = \{ nk : k \in {\mathbb Z} \}\text{.} Prove that nZn {\mathbb Z} is a subgroup of Z.{\mathbb Z}\text{.} Show that these subgroups are the only subgroups of Z.\mathbb{Z}\text{.}

39

Let T={zC:z=1}.{\mathbb T} = \{ z \in {\mathbb C}^* : |z| =1 \}\text{.} Prove that T{\mathbb T} is a subgroup of C.{\mathbb C}^*\text{.}

40

Let GG consist of the 2×22 \times 2 matrices of the form

(cosθsinθsinθcosθ),\begin{equation*} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \end{equation*}

where θR.\theta \in {\mathbb R}\text{.} Prove that GG is a subgroup of SL2(R).SL_2({\mathbb R})\text{.}

41

Prove that

G={a+b2:a,bQ and a and b are not both zero}\begin{equation*} G = \{ a + b \sqrt{2} : a, b \in {\mathbb Q} \text{ and } a \text{ and } b \text{ are not both zero} \} \end{equation*}

is a subgroup of R{\mathbb R}^{\ast} under the group operation of multiplication.

Hint

The identity of GG is 1=1+02.1 = 1 + 0 \sqrt{2}\text{.} Since (a+b2)(c+d2)=(ac+2bd)+(ad+bc)2,(a + b \sqrt{2}\, )(c + d \sqrt{2}\, ) = (ac + 2bd) + (ad + bc)\sqrt{2}\text{,} GG is closed under multiplication. Finally, (a+b2)1=a/(a22b2)b2/(a22b2).(a + b \sqrt{2}\, )^{-1} = a/(a^2 - 2b^2) - b\sqrt{2}/(a^2 - 2 b^2)\text{.}

42

Let GG be the group of 2×22 \times 2 matrices under addition and

H={(abcd):a+d=0}.\begin{equation*} H = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a + d = 0 \right\}. \end{equation*}

Prove that HH is a subgroup of G.G\text{.}

43

Prove or disprove: SL2(Z),SL_2( {\mathbb Z} )\text{,} the set of 2×22 \times 2 matrices with integer entries and determinant one, is a subgroup of SL2(R).SL_2( {\mathbb R} )\text{.}

44

List the subgroups of the quaternion group, Q8.Q_8\text{.}

45

Prove that the intersection of two subgroups of a group GG is also a subgroup of G.G\text{.}

46

Prove or disprove: If HH and KK are subgroups of a group G,G\text{,} then HKH \cup K is a subgroup of G.G\text{.}

Hint

Look at S3.S_3\text{.}

47

Prove or disprove: If HH and KK are subgroups of a group G,G\text{,} then HK={hk:hH and kK}H K = \{hk : h \in H \text{ and } k \in K \} is a subgroup of G.G\text{.} What if GG is abelian?

48

Let GG be a group and gG.g \in G\text{.} Show that

Z(G)={xG:gx=xg for all gG}\begin{equation*} Z(G) = \{ x \in G : gx = xg \text{ for all } g \in G \} \end{equation*}

is a subgroup of G.G\text{.} This subgroup is called the of G.G\text{.}

49

Let aa and bb be elements of a group G.G\text{.} If a4b=baa^4 b = ba and a3=e,a^3 = e\text{,} prove that ab=ba.ab = ba\text{.}

Hint

ba=a4b=a3ab=abb a = a^4 b = a^3 a b = ab

50

Give an example of an infinite group in which every nontrivial subgroup is infinite.

51

If xy=x1y1xy = x^{-1} y^{-1} for all xx and yy in G,G\text{,} prove that GG must be abelian.

52

Prove or disprove: Every proper subgroup of an nonabelian group is nonabelian.

53

Let HH be a subgroup of GG and

C(H)={gG:gh=hg for all hH}.\begin{equation*} C(H) = \{ g \in G : gh = hg \text{ for all } h \in H \}. \end{equation*}

Prove C(H)C(H) is a subgroup of G.G\text{.} This subgroup is called the of HH in G.G\text{.}

54

Let HH be a subgroup of G.G\text{.} If gG,g \in G\text{,} show that gHg1={ghg1:hH}gHg^{-1} = \{ghg^{-1} : h\in H\} is also a subgroup of G.G\text{.}