Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

πŸ“š The CoCalc Library - books, templates and other resources

132930 views
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section11.3Exercises

ΒΆ
1

Prove that det⁑(AB)=det⁑(A)det⁑(B)\det( AB) = \det(A) \det(B) for A,B∈GL2(R).A, B \in GL_2( {\mathbb R} )\text{.} This shows that the determinant is a homomorphism from GL2(R)GL_2( {\mathbb R} ) to Rβˆ—.{\mathbb R}^*\text{.}

2

Which of the following maps are homomorphisms? If the map is a homomorphism, what is the kernel?

  1. Ο•:Rβˆ—β†’GL2(R)\phi : {\mathbb R}^\ast \rightarrow GL_2 ( {\mathbb R}) defined by

    Ο•(a)=(100a)\begin{equation*} \phi( a ) = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix} \end{equation*}
  2. ϕ:R→GL2(R)\phi : {\mathbb R} \rightarrow GL_2 ( {\mathbb R}) defined by

    Ο•(a)=(10a1)\begin{equation*} \phi( a ) = \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix} \end{equation*}
  3. Ο•:GL2(R)β†’R\phi : GL_2 ({\mathbb R}) \rightarrow {\mathbb R} defined by

    Ο•((abcd))=a+d\begin{equation*} \phi \left( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = a + d \end{equation*}
  4. Ο•:GL2(R)β†’Rβˆ—\phi : GL_2 ( {\mathbb R}) \rightarrow {\mathbb R}^\ast defined by

    Ο•((abcd))=adβˆ’bc\begin{equation*} \phi \left( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = ad - bc \end{equation*}
  5. Ο•:M2(R)β†’R\phi : {\mathbb M}_2( {\mathbb R}) \rightarrow {\mathbb R} defined by

    Ο•((abcd))=b,\begin{equation*} \phi \left( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = b, \end{equation*}

    where M2(R){\mathbb M}_2( {\mathbb R}) is the additive group of 2Γ—22 \times 2 matrices with entries in R.{\mathbb R}\text{.}

Hint

(a) is a homomorphism with kernel {1};\{ 1 \}\text{;} (c) is not a homomorphism.

3

Let AA be an mΓ—nm \times n matrix. Show that matrix multiplication, x↦Ax,x \mapsto Ax\text{,} defines a homomorphism Ο•:Rnβ†’Rm.\phi : {\mathbb R}^n \rightarrow {\mathbb R}^m\text{.}

4

Let ϕ:Z→Z\phi : {\mathbb Z} \rightarrow {\mathbb Z} be given by ϕ(n)=7n.\phi(n) = 7n\text{.} Prove that ϕ\phi is a group homomorphism. Find the kernel and the image of ϕ.\phi\text{.}

Hint

Since Ο•(m+n)=7(m+n)=7m+7n=Ο•(m)+Ο•(n),\phi(m + n) = 7(m+n) = 7m + 7n = \phi(m) + \phi(n)\text{,} Ο•\phi is a homomorphism.

5

Describe all of the homomorphisms from Z24{\mathbb Z}_{24} to Z18.{\mathbb Z}_{18}\text{.}

Hint

For any homomorphism Ο•:Z24β†’Z18,\phi : {\mathbb Z}_{24} \rightarrow {\mathbb Z}_{18}\text{,} the kernel of Ο•\phi must be a subgroup of Z24{\mathbb Z}_{24} and the image of Ο•\phi must be a subgroup of Z18.{\mathbb Z}_{18}\text{.} Now use the fact that a generator must map to a generator.

6

Describe all of the homomorphisms from Z{\mathbb Z} to Z12.{\mathbb Z}_{12}\text{.}

7

In the group Z24,{\mathbb Z}_{24}\text{,} let H=⟨4⟩H = \langle 4 \rangle and N=⟨6⟩.N = \langle 6 \rangle\text{.}

  1. List the elements in HNHN (we usually write H+NH + N for these additive groups) and H∩N.H \cap N\text{.}

  2. List the cosets in HN/N,HN/N\text{,} showing the elements in each coset.

  3. List the cosets in H/(H∩N),H/(H \cap N)\text{,} showing the elements in each coset.

  4. Give the correspondence between HN/NHN/N and H/(H∩N)H/(H \cap N) described in the proof of the Second Isomorphism Theorem.

8

If GG is an abelian group and n∈N,n \in {\mathbb N}\text{,} show that Ο•:Gβ†’G\phi : G \rightarrow G defined by g↦gng \mapsto g^n is a group homomorphism.

9

If ϕ:G→H\phi : G \rightarrow H is a group homomorphism and GG is abelian, prove that ϕ(G)\phi(G) is also abelian.

Hint

Let a,b∈G.a, b \in G\text{.} Then Ο•(a)Ο•(b)=Ο•(ab)=Ο•(ba)=Ο•(b)Ο•(a).\phi(a) \phi(b) = \phi(ab) = \phi(ba) = \phi(b)\phi(a)\text{.}

10

If ϕ:G→H\phi : G \rightarrow H is a group homomorphism and GG is cyclic, prove that ϕ(G)\phi(G) is also cyclic.

11

Show that a homomorphism defined on a cyclic group is completely determined by its action on the generator of the group.

12

If a group GG has exactly one subgroup HH of order k,k\text{,} prove that HH is normal in G.G\text{.}

13

Prove or disprove: Q/Z≅Q.{\mathbb Q} / {\mathbb Z} \cong {\mathbb Q}\text{.}

14

Let GG be a finite group and NN a normal subgroup of G.G\text{.} If HH is a subgroup of G/N,G/N\text{,} prove that Ο•βˆ’1(H)\phi^{-1}(H) is a subgroup in GG of order ∣Hβˆ£β‹…βˆ£N∣,|H| \cdot |N|\text{,} where Ο•:Gβ†’G/N\phi : G \rightarrow G/N is the canonical homomorphism.

15

Let G1G_1 and G2G_2 be groups, and let H1H_1 and H2H_2 be normal subgroups of G1G_1 and G2G_2 respectively. Let Ο•:G1β†’G2\phi : G_1 \rightarrow G_2 be a homomorphism. Show that Ο•\phi induces a natural homomorphism Ο•β€Ύ:(G1/H1)β†’(G2/H2)\overline{\phi} : (G_1/H_1) \rightarrow (G_2/H_2) if Ο•(H1)βŠ‚H2.\phi(H_1) \subset H_2\text{.}

16

If HH and KK are normal subgroups of GG and H∩K={e},H \cap K = \{ e \}\text{,} prove that GG is isomorphic to a subgroup of G/HΓ—G/K.G/H \times G/K\text{.}

17

Let Ο•:G1β†’G2\phi : G_1 \rightarrow G_2 be a surjective group homomorphism. Let H1H_1 be a normal subgroup of G1G_1 and suppose that Ο•(H1)=H2.\phi(H_1) = H_2\text{.} Prove or disprove that G1/H1β‰…G2/H2.G_1/H_1 \cong G_2/H_2\text{.}

Hint

Find a counterexample.

18

Let Ο•:Gβ†’H\phi : G \rightarrow H be a group homomorphism. Show that Ο•\phi is one-to-one if and only if Ο•βˆ’1(e)={e}.\phi^{-1}(e) = \{ e \}\text{.}

19

Given a homomorphism Ο•:Gβ†’H\phi :G \rightarrow H define a relation ∼\sim on GG by a∼ba \sim b if Ο•(a)=Ο•(b)\phi(a) = \phi(b) for a,b∈G.a, b \in G\text{.} Show this relation is an equivalence relation and describe the equivalence classes.