Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132930 views
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section21.5References and Suggested Readings

¶
[1]
  
Dean, R. A. . Wiley, New York, 1966.
[2]
  
Dudley, U. . Springer-Verlag, New York, 1987. An interesting and entertaining account of how not to trisect an angle.
[3]
  
Fraleigh, J. B. . 7th ed. Pearson, Upper Saddle River, NJ, 2003.
[4]
  
Kaplansky, I. , 2nd ed. University of Chicago Press, Chicago, 1972.
[5]
  
Klein, F. . Chelsea, New York, 1955.
[6]
  
Martin, G. . Springer, New York, 1998.
[7]
  
H. Pollard and H. G. Diamond. , Dover, Mineola, NY, 2010.
[8]
  
Walker, E. A. . Random House, New York, 1987. This work contains a proof showing that every field has an algebraic closure.