Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132930 views
License: OTHER
{ "cells": [ {"cell_type": "code", "execution_count":null, "metadata":{}, "source":["%%html\n<link href=\"http://mathbook.pugetsound.edu/beta/mathbook-content.css\" rel=\"stylesheet\" type=\"text/css\" />\n<link href=\"https://aimath.org/mathbook/mathbook-add-on.css\" rel=\"stylesheet\" type=\"text/css\" />\n<style>.subtitle {font-size:medium; display:block}</style>\n<link href=\"https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic\" rel=\"stylesheet\" type=\"text/css\" />\n<link href=\"https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext\" rel=\"stylesheet\" type=\"text/css\" /><!-- Hide this cell. -->\n<script>\nvar cell = $(\".container .cell\").eq(0), ia = cell.find(\".input_area\")\nif (cell.find(\".toggle-button\").length == 0) {\nia.after(\n $('<button class=\"toggle-button\">Toggle hidden code</button>').click(\n function (){ ia.toggle() }\n )\n )\nia.hide()\n}\n</script>\n"], "outputs":[]}, {"cell_type":"markdown", "metadata":{}, "source":["**Important:** to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the \"Run\" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard."]}, {"cell_type":"markdown", "metadata":{}, "source":["$\\newcommand{\\identity}{\\mathrm{id}}\n\\newcommand{\\notdivide}{\\nmid}\n\\newcommand{\\notsubset}{\\not\\subset}\n\\newcommand{\\lcm}{\\operatorname{lcm}}\n\\newcommand{\\gf}{\\operatorname{GF}}\n\\newcommand{\\inn}{\\operatorname{Inn}}\n\\newcommand{\\aut}{\\operatorname{Aut}}\n\\newcommand{\\Hom}{\\operatorname{Hom}}\n\\newcommand{\\cis}{\\operatorname{cis}}\n\\newcommand{\\chr}{\\operatorname{char}}\n\\newcommand{\\Null}{\\operatorname{Null}}\n\\newcommand{\\lt}{<}\n\\newcommand{\\gt}{>}\n\\newcommand{\\amp}{&}\n$"]}, {"cell_type":"markdown", "metadata":{}, "source":["<div class=\"mathbook-content\"><h2 class=\"heading hide-type\" alt=\"Exercises 5.5 Sage Exercises\"><span class=\"type\">Section</span><span class=\"codenumber\">5.5</span><span class=\"title\">Sage Exercises</span></h2><a href=\"permute-sage-exercises.ipynb\" class=\"permalink\">¶</a></div>"]}, {"cell_type":"markdown", "metadata":{}, "source":["<div class=\"mathbook-content\"></div>"]}, {"cell_type":"markdown", "metadata":{}, "source":["<div class=\"mathbook-content\"><p id=\"p-943\">These exercises are designed to help you become familiar with permutation groups in Sage.</p></div>"]}, {"cell_type":"markdown", "metadata":{}, "source":["<div class=\"mathbook-content\"><article class=\"exercise-like\" id=\"exercise-224\"><h6 class=\"heading\"><span class=\"codenumber\">1</span></h6><p id=\"p-944\">Create the full symmetric group $S_{10}$ with the command <code class=\"code-inline tex2jax_ignore\">G = SymmetricGroup(10)</code>.</p></article></div>"]}, {"cell_type":"markdown", "metadata":{}, "source":["<div class=\"mathbook-content\"><article class=\"exercise-like\" id=\"exercise-225\"><h6 class=\"heading\"><span class=\"codenumber\">2</span></h6><p id=\"p-945\">Create elements of <code class=\"code-inline tex2jax_ignore\">G</code> with the following (varying) syntax. Pay attention to commas, quotes, brackets, parentheses. The first two use a string (characters) as input, mimicking the way we write permuations (but with commas). The second two use a list of tuples.</p><ul class=\"disc\"><li id=\"li-237\"><p id=\"p-946\"><code class=\"code-inline tex2jax_ignore\">a = G(\"(5,7,2,9,3,1,8)\")</code></p></li><li id=\"li-238\"><p id=\"p-947\"><code class=\"code-inline tex2jax_ignore\">b = G(\"(1,3)(4,5)\")</code></p></li><li id=\"li-239\"><p id=\"p-948\"><code class=\"code-inline tex2jax_ignore\">c = G([(1,2),(3,4)])</code></p></li><li id=\"li-240\"><p id=\"p-949\"><code class=\"code-inline tex2jax_ignore\">d = G([(1,3),(2,5,8),(4,6,7,9,10)])</code></p></li></ul><ol class=\"lower-alpha\"><li id=\"li-241\"><p id=\"p-950\">Compute $a^3\\text{,}$ $bc\\text{,}$ $ad^{-1}b\\text{.}$</p></li><li id=\"li-242\"><p id=\"p-951\">Compute the orders of each of these four individual elements (<code class=\"code-inline tex2jax_ignore\">a</code> through <code class=\"code-inline tex2jax_ignore\">d</code>) using a single permutation group element method.</p></li><li id=\"li-243\"><p id=\"p-952\">Use the permutation group element method <code class=\"code-inline tex2jax_ignore\">.sign()</code> to determine if $a,b,c,d$ are even or odd permutations.</p></li><li id=\"li-244\"><p id=\"p-953\">Create two cyclic subgroups of $G$ with the commands: </p><ul class=\"disc\"><li id=\"li-245\"><p id=\"p-954\"><code class=\"code-inline tex2jax_ignore\">H = G.subgroup([a])</code></p></li><li id=\"li-246\"><p id=\"p-955\"><code class=\"code-inline tex2jax_ignore\">K = G.subgroup([d])</code></p></li></ul><p> List, and study, the elements of each subgroup. Without using Sage, list the order of each subgroup of $K\\text{.}$ Then use Sage to construct a subgroup of $K$ with order 10.</p></li><li id=\"li-247\"><p id=\"p-956\">More complicated subgroups can be formed by using two or more generators. Construct a subgroup $L$ of $G$ with the command <code class=\"code-inline tex2jax_ignore\">L = G.subgroup([b,c])</code>. Compute the order of $L$ and list all of the elements of $L\\text{.}$</p></li></ol></article></div>"]}, {"cell_type":"markdown", "metadata":{}, "source":["<div class=\"mathbook-content\"><article class=\"exercise-like\" id=\"exercise-226\"><h6 class=\"heading\"><span class=\"codenumber\">3</span></h6><p id=\"p-957\">Construct the group of symmetries of the tetrahedron (also the alternating group on 4 symbols, $A_4$) with the command <code class=\"code-inline tex2jax_ignore\">A=AlternatingGroup(4)</code>. Using tools such as orders of elements, and generators of subgroups, see if you can find <em class=\"emphasis\">all of</em> the subgroups of $A_4$ (each one exactly once). Do this without using the <code class=\"code-inline tex2jax_ignore\">.subgroups()</code> method to justify the correctness of your answer (though it might be a convenient way to check your work).</p><p id=\"p-958\">Provide a nice summary as your answer—not just piles of output. So use Sage as a tool, as needed, but basically your answer will be a concise paragraph and/or table. This is the one part of this assignment without clear, precise directions, so spend some time on this portion to get it right. Hint: no subgroup of $A_4$ requires more than two generators.</p></article></div>"]}, {"cell_type":"markdown", "metadata":{}, "source":["<div class=\"mathbook-content\"><article class=\"exercise-like\" id=\"exercise-cube-symmetry\"><h6 class=\"heading\"><span class=\"codenumber\">4</span></h6><p id=\"p-959\">The subsection <a href=\"permute-sage.ipynb#subsection-motion-group-cube\" class=\"xref\" alt=\"Subsection Motion Group of a Cube\" title=\"Subsection Motion Group of a Cube\">Motion Group of a Cube</a> describes the $24$ symmetries of a cube as a subgroup of the symmetric group $S_8$ generated by three quarter-turns. Answer the following questions about this symmetry group.</p><ol class=\"lower-alpha\"><li id=\"li-248\"><p id=\"p-960\">From the list of elements of the group, can you locate the ten rotations about axes? (Hint: the identity is easy, the other nine never send any symbol to itself.)</p></li><li id=\"li-249\"><p id=\"p-961\">Can you identify the six symmetries that are a transposition of diagonals? (Hint: <code class=\"code-inline tex2jax_ignore\">[g for g in cube if g.order() == 2]</code> is a good preliminary filter.)</p></li><li id=\"li-250\"><p id=\"p-962\">Verify that any two of the quarter-turns (<code class=\"code-inline tex2jax_ignore\">above</code>, <code class=\"code-inline tex2jax_ignore\">front</code>, <code class=\"code-inline tex2jax_ignore\">right</code>) are sufficient to generate the whole group. How do you know each pair generates the entire group?</p></li><li id=\"li-251\"><p id=\"p-963\">Can you express one of the diagonal transpositions as a product of quarter-turns? This can be a notoriously difficult problem, especially for software. It is known as the “word problem.”</p></li><li id=\"li-252\"><p id=\"p-964\">Number the six faces of the cube with the numbers $1$ through $6$ (any way you like). Now consider the same three symmetries we used before (quarter-turns about face-to-face axes), but now view them as permutations of the six faces. In this way, we construct each symmetry as an element of $S_6\\text{.}$ Verify that the subgroup generated by these symmetries is the whole symmetry group of the cube. Again, rather than using three generators, try using just two.</p></li></ol></article></div>"]}, {"cell_type":"markdown", "metadata":{}, "source":["<div class=\"mathbook-content\"><article class=\"exercise-like\" id=\"exercise-228\"><h6 class=\"heading\"><span class=\"codenumber\">5</span></h6><p id=\"p-965\">Save your work, and then see if you can crash your Sage session by building the subgroup of $S_{10}$ generated by the elements <code class=\"code-inline tex2jax_ignore\">b</code> and <code class=\"code-inline tex2jax_ignore\">d</code> of orders $2$ and $30$ from above. <em class=\"emphasis\">Do not submit</em> the list of elements of <code class=\"code-inline tex2jax_ignore\">N</code> as part of your submitted worksheet.</p>{"cell_type": "code", "execution_count":null, "metadata":{}, "source":["N = G.subgroup([b,d])\nN.list()"], "outputs":[]}<p id=\"p-966\">What is the order of $N\\text{?}$</p></article></div>"]} ], "nbformat": 4, "nbformat_minor": 0, "metadata": {"kernelspec": {"display_name": "", "name": "sagemath"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 2}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.8"}, "name": "permute-sage-exercises.ipynb"} }