Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

šŸ“š The CoCalc Library - books, templates and other resources

132930 views
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section10.1Factor Groups and Normal Subgroups

¶

SubsectionNormal Subgroups

¶

A subgroup HH of a group GG is in G if gH=HggH = Hg for all g∈G.g \in G\text{.} That is, a normal subgroup of a group GG is one in which the right and left cosets are precisely the same.

Example10.1

Let GG be an abelian group. Every subgroup HH of GG is a normal subgroup. Since gh=hggh = hg for all g∈Gg \in G and h∈H,h \in H\text{,} it will always be the case that gH=Hg.gH = Hg\text{.}

Example10.2

Let HH be the subgroup of S3S_3 consisting of elements (1)(1) and (12).(12)\text{.} Since

(123)H={(123),(13)}andH(123)={(123),(23)},\begin{equation*} (123) H = \{ (123), (13) \} \quad \text{and} \quad H (123) = \{ (123), (23) \}, \end{equation*}

HH cannot be a normal subgroup of S3.S_3\text{.} However, the subgroup N,N\text{,} consisting of the permutations (1),(1)\text{,} (123),(123)\text{,} and (132),(132)\text{,} is normal since the cosets of NN are

N={(1),(123),(132)}(12)N=N(12)={(12),(13),(23)}.\begin{gather*} N = \{ (1), (123), (132) \}\\ (12) N = N (12) = \{ (12), (13), (23) \}. \end{gather*}

The following theorem is fundamental to our understanding of normal subgroups.

Theorem10.3

Let GG be a group and NN be a subgroup of G.G\text{.} Then the following statements are equivalent.

  1. The subgroup NN is normal in G.G\text{.}

  2. For all g∈G,g \in G\text{,} gNgāˆ’1āŠ‚N.gNg^{-1} \subset N\text{.}

  3. For all g∈G,g \in G\text{,} gNgāˆ’1=N.gNg^{-1} = N\text{.}

Proof

(1) ⇒\Rightarrow (2). Since NN is normal in G,G\text{,} gN=NggN = Ng for all g∈G.g \in G\text{.} Hence, for a given g∈Gg \in G and n∈N,n \in N\text{,} there exists an n′n' in NN such that gn=n′g.g n = n' g\text{.} Therefore, gngāˆ’1=nā€²āˆˆNgng^{-1} = n' \in N or gNgāˆ’1āŠ‚N.gNg^{-1} \subset N\text{.}

(2) ⇒\Rightarrow (3). Let g∈G.g \in G\text{.} Since gNgāˆ’1āŠ‚N,gNg^{-1} \subset N\text{,} we need only show NāŠ‚gNgāˆ’1.N \subset gNg^{-1}\text{.} For n∈N,n \in N\text{,} gāˆ’1ng=gāˆ’1n(gāˆ’1)āˆ’1∈N.g^{-1}ng=g^{-1}n(g^{-1})^{-1} \in N\text{.} Hence, gāˆ’1ng=n′g^{-1}ng = n' for some nā€²āˆˆN.n' \in N\text{.} Therefore, n=gn′gāˆ’1n = g n' g^{-1} is in gNgāˆ’1.g N g^{-1}\text{.}

(3) ⇒\Rightarrow (1). Suppose that gNgāˆ’1=NgNg^{-1} = N for all g∈G.g \in G\text{.} Then for any n∈Nn \in N there exists an nā€²āˆˆNn' \in N such that gngāˆ’1=n′.gng^{-1} = n'\text{.} Consequently, gn=n′ggn = n' g or gNāŠ‚Ng.gN \subset Ng\text{.} Similarly, NgāŠ‚gN.Ng \subset gN\text{.}

SubsectionFactor Groups

¶

If NN is a normal subgroup of a group G,G\text{,} then the cosets of NN in GG form a group G/NG/N under the operation (aN)(bN)=abN.(aN) (bN) = abN\text{.} This group is called the or of GG and N.N\text{.} Our first task is to prove that G/NG/N is indeed a group.

Theorem10.4

Let NN be a normal subgroup of a group G.G\text{.} The cosets of NN in GG form a group G/NG/N of order [G:N].[G:N]\text{.}

Proof

The group operation on G/NG/N is (aN)(bN)=abN.(a N ) (b N)= a b N\text{.} This operation must be shown to be well-defined; that is, group multiplication must be independent of the choice of coset representative. Let aN=bNaN = bN and cN=dN.cN = dN\text{.} We must show that

(aN)(cN)=acN=bdN=(bN)(dN).\begin{equation*} (aN) (cN) = acN = bd N = (b N)(d N). \end{equation*}

Then a=bn1a = b n_1 and c=dn2c = d n_2 for some n1n_1 and n2n_2 in N.N\text{.} Hence,

acN=bn1dn2N=bn1dN=bn1Nd=bNd=bdN.\begin{align*} acN & = b n_1 d n_2 N\\ & = b n_1 d N\\ & = b n_1 N d\\ & = b N d\\ & = b d N. \end{align*}

The remainder of the theorem is easy: eN=NeN = N is the identity and gāˆ’1Ng^{-1} N is the inverse of gN.gN\text{.} The order of G/NG/N is, of course, the number of cosets of NN in G.G\text{.}

It is very important to remember that the elements in a factor group are sets of elements in the original group.

Example10.5

Consider the normal subgroup of S3,S_3\text{,} N={(1),(123),(132)}.N = \{ (1), (123), (132) \}\text{.} The cosets of NN in S3S_3 are NN and (12)N.(12) N\text{.} The factor group S3/NS_3 / N has the following multiplication table.

N(12)NNN(12)N(12)N(12)NN\begin{equation*} \begin{array}{c|cc} & N & (12) N \\ \hline N & N & (12) N \\ (12) N & (12) N & N \end{array} \end{equation*}

This group is isomorphic to Z2.{\mathbb Z}_2\text{.} At first, multiplying cosets seems both complicated and strange; however, notice that S3/NS_3 / N is a smaller group. The factor group displays a certain amount of information about S3.S_3\text{.} Actually, N=A3,N = A_3\text{,} the group of even permutations, and (12)N={(12),(13),(23)}(12) N = \{ (12), (13), (23) \} is the set of odd permutations. The information captured in G/NG/N is parity; that is, multiplying two even or two odd permutations results in an even permutation, whereas multiplying an odd permutation by an even permutation yields an odd permutation.

Example10.6

Consider the normal subgroup 3Z3 {\mathbb Z} of Z.{\mathbb Z}\text{.} The cosets of 3Z3 {\mathbb Z} in Z{\mathbb Z} are

0+3Z={…,āˆ’3,0,3,6,…}1+3Z={…,āˆ’2,1,4,7,…}2+3Z={…,āˆ’1,2,5,8,…}.\begin{align*} 0 + 3 {\mathbb Z} & = \{ \ldots, -3, 0, 3, 6, \ldots \}\\ 1 + 3 {\mathbb Z} & = \{ \ldots, -2, 1, 4, 7, \ldots \}\\ 2 + 3 {\mathbb Z} & = \{ \ldots, -1, 2, 5, 8, \ldots \}. \end{align*}

The group Z/3Z{\mathbb Z}/ 3 {\mathbb Z} is given by the multiplication table below.

+0+3Z1+3Z2+3Z0+3Z0+3Z1+3Z2+3Z1+3Z1+3Z2+3Z0+3Z2+3Z2+3Z0+3Z1+3Z\begin{equation*} \begin{array}{c|ccc} + & 0 + 3{\mathbb Z} & 1 + 3{\mathbb Z} & 2 + 3{\mathbb Z} \\\hline 0 + 3{\mathbb Z} & 0 + 3{\mathbb Z} & 1 + 3{\mathbb Z} & 2 + 3{\mathbb Z} \\ 1 + 3{\mathbb Z} & 1 + 3{\mathbb Z} & 2 + 3{\mathbb Z} & 0 + 3{\mathbb Z} \\ 2 + 3{\mathbb Z} & 2 + 3{\mathbb Z} & 0 + 3{\mathbb Z} & 1 + 3{\mathbb Z} \end{array} \end{equation*}

In general, the subgroup nZn {\mathbb Z} of Z{\mathbb Z} is normal. The cosets of Z/nZ{\mathbb Z } / n {\mathbb Z} are

nZ1+nZ2+nZā‹®(nāˆ’1)+nZ.\begin{gather*} n {\mathbb Z}\\ 1 + n {\mathbb Z}\\ 2 + n {\mathbb Z}\\ \vdots\\ (n-1) + n {\mathbb Z}. \end{gather*}

The sum of the cosets k+Zk + {\mathbb Z} and l+Zl + {\mathbb Z} is k+l+Z.k+l + {\mathbb Z}\text{.} Notice that we have written our cosets additively, because the group operation is integer addition.

Example10.7

Consider the dihedral group Dn,D_n\text{,} generated by the two elements rr and s,s\text{,} satisfying the relations

rn=ids2=idsrs=rāˆ’1.\begin{align*} r^n & = \identity\\ s^2 & = \identity\\ srs & = r^{-1}. \end{align*}

The element rr actually generates the cyclic subgroup of rotations, Rn,R_n\text{,} of Dn.D_n\text{.} Since srsāˆ’1=srs=rāˆ’1∈Rn,srs^{-1} = srs = r^{-1} \in R_n\text{,} the group of rotations is a normal subgroup of Dn;D_n\text{;} therefore, Dn/RnD_n / R_n is a group. Since there are exactly two elements in this group, it must be isomorphic to Z2.{\mathbb Z}_2\text{.}