Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132930 views
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section12.1Matrix Groups

SubsectionSome Facts from Linear Algebra

Before we study matrix groups, we must recall some basic facts from linear algebra. One of the most fundamental ideas of linear algebra is that of a linear transformation. A or T:RnRmT : {\mathbb R}^n \rightarrow {\mathbb R}^m is a map that preserves vector addition and scalar multiplication; that is, for vectors x{\mathbf x} and y{\mathbf y} in Rn{\mathbb R}^n and a scalar αR,\alpha \in {\mathbb R}\text{,}

T(x+y)=T(x)+T(y)T(αy)=αT(y).\begin{align*} T({\mathbf x}+{\mathbf y}) & = T({\mathbf x}) + T({\mathbf y})\\ T(\alpha {\mathbf y}) & = \alpha T({\mathbf y}). \end{align*}

An m×nm \times n matrix with entries in R{\mathbb R} represents a linear transformation from Rn{\mathbb R}^n to Rm.{\mathbb R}^m\text{.} If we write vectors x=(x1,,xn)t{\mathbf x} = (x_1, \ldots, x_n)^{\rm t} and y=(y1,,yn)t{\mathbf y} = (y_1, \ldots, y_n)^{\rm t} in Rn{\mathbb R}^n as column matrices, then an m×nm \times n matrix

A=(a11a12a1na21a22a2nam1am2amn)\begin{equation*} A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \end{equation*}

maps the vectors to Rm{\mathbb R}^m linearly by matrix multiplication. Observe that if α\alpha is a real number,

A(x+y)=Ax+AyandαAx=A(αx),\begin{equation*} A({\mathbf x} + {\mathbf y} ) = A {\mathbf x }+ A {\mathbf y} \qquad \text{and} \qquad \alpha A {\mathbf x} = A ( \alpha {\mathbf x}), \end{equation*}

where

x=(x1x2xn).\begin{equation*} {\mathbf x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}. \end{equation*}

We will often abbreviate the matrix AA by writing (aij).(a_{ij})\text{.}

Conversely, if T:RnRmT : {\mathbb R}^n \rightarrow {\mathbb R}^m is a linear map, we can associate a matrix AA with TT by considering what TT does to the vectors

e1=(1,0,,0)te2=(0,1,,0)ten=(0,0,,1)t.\begin{align*} {\mathbf e}_1 & = (1, 0, \ldots, 0)^{\rm t}\\ {\mathbf e}_2 & = (0, 1, \ldots, 0)^{\rm t}\\ & \vdots & \\ {\mathbf e}_n & = (0, 0, \ldots, 1)^{\rm t}. \end{align*}

We can write any vector x=(x1,,xn)t{\mathbf x} = (x_1, \ldots, x_n)^{\rm t} as

x1e1+x2e2++xnen.\begin{equation*} x_1 {\mathbf e}_1 + x_2 {\mathbf e}_2 + \cdots + x_n {\mathbf e}_n. \end{equation*}

Consequently, if

T(e1)=(a11,a21,,am1)t,T(e2)=(a12,a22,,am2)t,T(en)=(a1n,a2n,,amn)t,\begin{align*} T({\mathbf e}_1) & = (a_{11}, a_{21}, \ldots, a_{m1})^{\rm t},\\ T({\mathbf e}_2) & = (a_{12}, a_{22}, \ldots, a_{m2})^{\rm t},\\ & \vdots & \\ T({\mathbf e}_n) & = (a_{1n}, a_{2n}, \ldots, a_{mn})^{\rm t}, \end{align*}

then

T(x)=T(x1e1+x2e2++xnen)=x1T(e1)+x2T(e2)++xnT(en)=(k=1na1kxk,,k=1namkxk)t=Ax.\begin{align*} T({\mathbf x} ) & = T(x_1 {\mathbf e}_1 + x_2 {\mathbf e}_2 + \cdots + x_n {\mathbf e}_n)\\ & = x_1 T({\mathbf e}_1) + x_2 T({\mathbf e}_2) + \cdots + x_n T({\mathbf e}_n)\\ & = \left( \sum_{k=1}^{n} a_{1k} x_k, \ldots, \sum_{k=1}^{n} a_{mk} x_k \right)^{\rm t}\\ & = A {\mathbf x}. \end{align*}
Example12.1

If we let T:R2R2T : {\mathbb R}^2 \rightarrow {\mathbb R}^2 be the map given by

T(x1,x2)=(2x1+5x2,4x1+3x2),\begin{equation*} T(x_1, x_2) = (2 x_1 + 5 x_2, - 4 x_1 + 3 x_2), \end{equation*}

the axioms that TT must satisfy to be a linear transformation are easily verified. The column vectors Te1=(2,4)tT {\mathbf e}_1 = (2, -4)^{\rm t} and Te2=(5,3)tT {\mathbf e}_2 = (5,3)^{\rm t} tell us that TT is given by the matrix

A=(2543).\begin{equation*} A = \begin{pmatrix} 2 & 5 \\ -4 & 3 \end{pmatrix}. \end{equation*}

Since we are interested in groups of matrices, we need to know which matrices have multiplicative inverses. Recall that an n×nn \times n matrix AA is exactly when there exists another matrix A1A^{-1} such that AA1=A1A=I,A A^{-1} = A^{-1} A = I\text{,} where

I=(100010001)\begin{equation*} I = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \end{equation*}

is the n×nn \times n identity matrix. From linear algebra we know that AA is invertible if and only if the determinant of AA is nonzero. Sometimes an invertible matrix is said to be .

Example12.2

If AA is the matrix

(2153),\begin{equation*} \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}, \end{equation*}

then the inverse of AA is

A1=(3152).\begin{equation*} A^{-1} = \begin{pmatrix} 3 & -1 \\ -5 & 2 \end{pmatrix}. \end{equation*}

We are guaranteed that A1A^{-1} exists, since det(A)=2351=1\det(A) = 2 \cdot 3 - 5 \cdot 1 = 1 is nonzero.

Some other facts about determinants will also prove useful in the course of this chapter. Let AA and BB be n×nn \times n matrices. From linear algebra we have the following properties of determinants.

  • The determinant is a homomorphism into the multiplicative group of real numbers; that is, det(AB)=(detA)(detB).\det( A B) = (\det A )(\det B)\text{.}

  • If AA is an invertible matrix, then det(A1)=1/detA.\det(A^{-1}) = 1 / \det A\text{.}

  • If we define the transpose of a matrix A=(aij)A = (a_{ij}) to be At=(aji),A^{\rm t} = (a_{ji})\text{,} then det(At)=detA.\det(A^{\rm t}) = \det A\text{.}

  • Let TT be the linear transformation associated with an n×nn \times n matrix A.A\text{.} Then TT multiplies volumes by a factor of detA.|\det A|\text{.} In the case of R2,{\mathbb R}^2\text{,} this means that TT multiplies areas by detA.|\det A|\text{.}

Linear maps, matrices, and determinants are covered in any elementary linear algebra text; however, if you have not had a course in linear algebra, it is a straightforward process to verify these properties directly for 2×22 \times 2 matrices, the case with which we are most concerned.

SubsectionThe General and Special Linear Groups

The set of all n×nn \times n invertible matrices forms a group called the . We will denote this group by GLn(R).GL_n({\mathbb R})\text{.} The general linear group has several important subgroups. The multiplicative properties of the determinant imply that the set of matrices with determinant one is a subgroup of the general linear group. Stated another way, suppose that det(A)=1\det(A) =1 and det(B)=1.\det(B) = 1\text{.} Then det(AB)=det(A)det(B)=1\det(AB) = \det(A) \det (B) = 1 and det(A1)=1/detA=1.\det(A^{-1}) = 1 / \det A = 1\text{.} This subgroup is called the and is denoted by SLn(R).SL_n({\mathbb R})\text{.}

Example12.3

Given a 2×22 \times 2 matrix

A=(abcd),\begin{equation*} A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \end{equation*}

the determinant of AA is adbc.ad-bc\text{.} The group GL2(R)GL_2({\mathbb R}) consists of those matrices in which adbc0.ad-bc \neq 0\text{.} The inverse of AA is

A1=1adbc(dbca).\begin{equation*} A^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}. \end{equation*}

If AA is in SL2(R),SL_2({\mathbb R})\text{,} then

A1=(dbca).\begin{equation*} A^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}. \end{equation*}

Geometrically, SL2(R)SL_2({\mathbb R}) is the group that preserves the areas of parallelograms. Let

A=(1101)\begin{equation*} A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \end{equation*}

be in SL2(R).SL_2({\mathbb R})\text{.} In Figure 12.4, the unit square corresponding to the vectors x=(1,0)t{\mathbf x} = (1,0)^{\rm t} and y=(0,1)t{\mathbf y} = (0,1)^{\rm t} is taken by AA to the parallelogram with sides (1,0)t(1,0)^{\rm t} and (1,1)t;(1, 1)^{\rm t}\text{;} that is, Ax=(1,0)tA {\mathbf x} = (1,0)^{\rm t} and Ay=(1,1)t.A {\mathbf y} = (1, 1)^{\rm t}\text{.} Notice that these two parallelograms have the same area.

Figure12.4SL2(R)SL_2(\mathbb R) acting on the unit square

SubsectionThe Orthogonal Group O(n)O(n)

Another subgroup of GLn(R)GL_n({\mathbb R}) is the orthogonal group. A matrix AA is if A1=At.A^{-1} = A^{\rm t}\text{.} The consists of the set of all orthogonal matrices. We write O(n)O(n) for the n×nn \times n orthogonal group. We leave as an exercise the proof that O(n)O(n) is a subgroup of GLn(R).GL_n( {\mathbb R})\text{.}

Example12.5

The following matrices are orthogonal:

(3/54/54/53/5),(1/23/23/21/2),(1/201/21/62/61/61/31/31/3).\begin{equation*} \begin{pmatrix} 3/5 & -4/5 \\ 4/5 & 3/5 \end{pmatrix}, \quad \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix}, \quad \begin{pmatrix} -1/\sqrt{2} & 0 & 1/ \sqrt{2} \\ 1/\sqrt{6} & -2/\sqrt{6} & 1/\sqrt{6} \\ 1/ \sqrt{3} & 1/ \sqrt{3} & 1/ \sqrt{3} \end{pmatrix}. \end{equation*}

There is a more geometric way of viewing the group O(n).O(n)\text{.} The orthogonal matrices are exactly those matrices that preserve the length of vectors. We can define the length of a vector using the , or , of two vectors. The Euclidean inner product of two vectors x=(x1,,xn)t{\mathbf x}=(x_1, \ldots, x_n)^{\rm t} and y=(y1,,yn)t{\mathbf y}=(y_1, \ldots, y_n)^{\rm t} is

x,y=xty=(x1,x2,,xn)(y1y2yn)=x1y1++xnyn.\begin{equation*} \langle {\mathbf x}, {\mathbf y} \rangle = {\mathbf x}^{\rm t} {\mathbf y} = (x_1, x_2, \ldots, x_n) \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = x_1 y_1 + \cdots + x_n y_n. \end{equation*}

We define the length of a vector x=(x1,,xn)t{\mathbf x}=(x_1, \ldots, x_n)^{\rm t} to be

x=x,x=x12++xn2.\begin{equation*} \| {\mathbf x} \| = \sqrt{\langle {\mathbf x}, {\mathbf x} \rangle} = \sqrt{x_1^2 + \cdots + x_n^2}. \end{equation*}

Associated with the notion of the length of a vector is the idea of the distance between two vectors. We define the between two vectors x{\mathbf x} and y{\mathbf y} to be xy.\| {\mathbf x}-{\mathbf y} \|\text{.} We leave as an exercise the proof of the following proposition about the properties of Euclidean inner products.

Proposition12.6

Let x,{\mathbf x}\text{,} y,{\mathbf y}\text{,} and w{\mathbf w} be vectors in Rn{\mathbb R}^n and αR.\alpha \in {\mathbb R}\text{.} Then

  1. x,y=y,x.\langle {\mathbf x}, {\mathbf y} \rangle = \langle {\mathbf y}, {\mathbf x} \rangle\text{.}

  2. x,y+w=x,y+x,w.\langle {\mathbf x}, {\mathbf y} + {\mathbf w} \rangle = \langle {\mathbf x}, {\mathbf y} \rangle + \langle {\mathbf x}, {\mathbf w} \rangle\text{.}

  3. αx,y=x,αy=αx,y.\langle \alpha {\mathbf x}, {\mathbf y} \rangle = \langle {\mathbf x}, \alpha {\mathbf y} \rangle = \alpha \langle {\mathbf x}, {\mathbf y} \rangle\text{.}

  4. x,x0\langle {\mathbf x}, {\mathbf x} \rangle \geq 0 with equality exactly when x=0.{\mathbf x} = 0\text{.}

  5. If x,y=0\langle {\mathbf x}, {\mathbf y} \rangle = 0 for all x{\mathbf x} in Rn,{\mathbb R}^n\text{,} then y=0.{\mathbf y} = 0\text{.}

Example12.7

The vector x=(3,4)t{\mathbf x} =(3,4)^{\rm t} has length 32+42=5.\sqrt{3^2 + 4^2} = 5\text{.} We can also see that the orthogonal matrix

A=(3/54/54/53/5)\begin{equation*} A= \begin{pmatrix} 3/5 & -4/5 \\ 4/5 & 3/5 \end{pmatrix} \end{equation*}

preserves the length of this vector. The vector Ax=(7/5,24/5)tA{\mathbf x} = (-7/5,24/5)^{\rm t} also has length 5.

Since det(AAt)=det(I)=1\det(A A^{\rm t}) = \det(I) = 1 and det(A)=det(At),\det(A) = \det( A^{\rm t} )\text{,} the determinant of any orthogonal matrix is either 1 or 1.-1\text{.} Consider the column vectors

aj=(a1ja2janj)\begin{equation*} {\mathbf a}_j = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{pmatrix} \end{equation*}

of the orthogonal matrix A=(aij).A= (a_{ij})\text{.} Since AAt=I,AA^{\rm t} = I\text{,} ar,as=δrs,\langle {\mathbf a}_r, {\mathbf a}_s \rangle = \delta_{rs}\text{,} where

δrs={1r=s0rs\begin{equation*} \delta_{rs} = \left\{ \begin{array}{cc} 1 & r = s \\ 0 & r \neq s \end{array} \right. \end{equation*}

is the Kronecker delta. Accordingly, column vectors of an orthogonal matrix all have length 1; and the Euclidean inner product of distinct column vectors is zero. Any set of vectors satisfying these properties is called an . Conversely, given an n×nn \times n matrix AA whose columns form an orthonormal set, it follows that A1=At.A^{-1} = A^{\rm t}\text{.}

We say that a matrix AA is , , or when TxTy=xy,\| T{\mathbf x}- T{\mathbf y} \| =\| {\mathbf x}- {\mathbf y} \|\text{,} Tx=x,\| T{\mathbf x} \| =\| {\mathbf x} \|\text{,} or Tx,Ty=x,y,\langle T{\mathbf x}, T{\mathbf y} \rangle = \langle {\mathbf x},{\mathbf y} \rangle\text{,} respectively. The following theorem, which characterizes the orthogonal group, says that these notions are the same.

Theorem12.8

Let AA be an n×nn \times n matrix. The following statements are equivalent.

  1. The columns of the matrix AA form an orthonormal set.

  2. A1=At.A^{-1} = A^{\rm t}\text{.}

  3. For vectors x{\mathbf x} and y,{\mathbf y}\text{,} Ax,Ay=x,y.\langle A{\mathbf x}, A {\mathbf y} \rangle = \langle {\mathbf x}, {\mathbf y} \rangle\text{.}

  4. For vectors x{\mathbf x} and y,{\mathbf y}\text{,} AxAy=xy.\| A{\mathbf x}- A{\mathbf y} \| = \| {\mathbf x}- {\mathbf y} \|\text{.}

  5. For any vector x,{\mathbf x}\text{,} Ax=x.\| A{\mathbf x} \| = \| {\mathbf x}\|\text{.}

Proof

We have already shown (1) and (2) to be equivalent.

(2)(3).(2) \Rightarrow (3)\text{.}

Ax,Ay=(Ax)tAy=xtAtAy=xty=x,y.\begin{align*} \langle A{\mathbf x}, A{\mathbf y} \rangle & = (A {\mathbf x})^{\rm t} A {\mathbf y}\\ & = {\mathbf x}^{\rm t} A^{\rm t} A {\mathbf y}\\ & = {\mathbf x}^{\rm t} {\mathbf y}\\ & = \langle {\mathbf x}, {\mathbf y} \rangle. \end{align*}

(3)(2).(3) \Rightarrow (2)\text{.} Since

x,x=Ax,Ax=xtAtAx=x,AtAx,\begin{align*} \langle {\mathbf x}, {\mathbf x} \rangle & = \langle A{\mathbf x}, A{\mathbf x} \rangle\\ & = {\mathbf x}^{\rm t} A^{\rm t} A {\mathbf x}\\ & = \langle {\mathbf x}, A^{\rm t} A{\mathbf x} \rangle, \end{align*}

we know that x,(AtAI)x=0\langle {\mathbf x}, (A^{\rm t} A - I){\mathbf x} \rangle = 0 for all x.{\mathbf x}\text{.} Therefore, AtAI=0A^{\rm t} A -I = 0 or A1=At.A^{-1} = A^{\rm t}\text{.}

(3)(4).(3) \Rightarrow (4)\text{.} If AA is inner product-preserving, then AA is distance-preserving, since

AxAy2=A(xy)2=A(xy),A(xy)=xy,xy=xy2.\begin{align*} \| A{\mathbf x} - A{\mathbf y} \|^2 & = \| A({\mathbf x} - {\mathbf y}) \|^2\\ & = \langle A({\mathbf x} - {\mathbf y}), A({\mathbf x} - {\mathbf y}) \rangle\\ & = \langle {\mathbf x} - {\mathbf y}, {\mathbf x} - {\mathbf y} \rangle\\ & = \| {\mathbf x} - {\mathbf y} \|^2. \end{align*}

(4)(5).(4) \Rightarrow (5)\text{.} If AA is distance-preserving, then AA is length-preserving. Letting y=0,{\mathbf y} = 0\text{,} we have

Ax=AxAy=xy=x.\begin{equation*} \| A{\mathbf x}\| = \| A{\mathbf x}- A{\mathbf y} \| = \| {\mathbf x}- {\mathbf y} \| = \| {\mathbf x} \|. \end{equation*}

(5)(3).(5) \Rightarrow (3)\text{.} We use the following identity to show that length-preserving implies inner product-preserving:

x,y=12[x+y2x2y2].\begin{equation*} \langle {\mathbf x}, {\mathbf y} \rangle = \frac{1}{2} \left[ \|{\mathbf x} +{\mathbf y}\|^2 - \|{\mathbf x}\|^2 - \|{\mathbf y}\|^2 \right]. \end{equation*}

Observe that

Ax,Ay=12[Ax+Ay2Ax2Ay2]=12[A(x+y)2Ax2Ay2]=12[x+y2x2y2]=x,y.\begin{align*} \langle A {\mathbf x}, A {\mathbf y} \rangle & = \frac{1}{2} \left[ \|A {\mathbf x} + A {\mathbf y} \|^2 - \|A {\mathbf x} \|^2 - \|A {\mathbf y} \|^2 \right]\\ & = \frac{1}{2} \left[ \|A ( {\mathbf x} + {\mathbf y} ) \|^2 - \|A {\mathbf x} \|^2 - \|A {\mathbf y} \|^2 \right]\\ & = \frac{1}{2} \left[ \|{\mathbf x} + {\mathbf y}\|^2 - \|{\mathbf x}\|^2 - \|{\mathbf y}\|^2 \right]\\ & = \langle {\mathbf x}, {\mathbf y} \rangle. \end{align*}
Figure12.9O(2)O(2) acting on R2\mathbb R^2
Example12.10

Let us examine the orthogonal group on R2{\mathbb R}^2 a bit more closely. An element TO(2)T \in O(2) is determined by its action on e1=(1,0)t{\mathbf e}_1 = (1, 0)^{\rm t} and e2=(0,1)t.{\mathbf e}_2 = (0, 1)^{\rm t}\text{.} If T(e1)=(a,b)t,T({\mathbf e}_1) = (a,b)^{\rm t}\text{,} then a2+b2=1a^2 + b^2 = 1 and T(e2)=(b,a)t.T({\mathbf e}_2) = (-b, a)^{\rm t}\text{.} Hence, TT can be represented by

A=(abba)=(cosθsinθsinθcosθ),\begin{equation*} A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} = \begin{pmatrix} \cos \theta & - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \end{equation*}

where 0θ<2π.0 \leq \theta \lt 2 \pi\text{.} A matrix TT in O(2)O(2) either reflects or rotates a vector in R2{\mathbb R}^2 (Figure 12.9). A reflection about the horizontal axis is given by the matrix

(1001),\begin{equation*} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \end{equation*}

whereas a rotation by an angle θ\theta in a counterclockwise direction must come from a matrix of the form

(cosθsinθsinθcosθ).\begin{equation*} \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}. \end{equation*}

A reflection about a line \ell is simply a reflection about the horizontal axis followed by a rotation. If detA=1,\det A =-1\text{,} then AA gives a reflection.

Two of the other matrix or matrix-related groups that we will consider are the special orthogonal group and the group of Euclidean motions. The , SO(n),SO(n)\text{,} is just the intersection of O(n)O(n) and SLn(R);SL_n({\mathbb R})\text{;} that is, those elements in O(n)O(n) with determinant one. The , E(n),E(n)\text{,} can be written as ordered pairs (A,x),(A, {\mathbf x})\text{,} where AA is in O(n)O(n) and x{\mathbf x} is in Rn.{\mathbb R}^n\text{.} We define multiplication by

(A,x)(B,y)=(AB,Ay+x).\begin{equation*} (A, {\mathbf x}) (B, {\mathbf y}) = (AB, A {\mathbf y} +{\mathbf x}). \end{equation*}

The identity of the group is (I,0);(I,{\mathbf 0})\text{;} the inverse of (A,x)(A, {\mathbf x}) is (A1,A1x).(A^{-1}, -A^{-1} {\mathbf x})\text{.} In Exercise 12.3.6, you are asked to check that E(n)E(n) is indeed a group under this operation.

Figure12.11Translations in R2\mathbb R^2