Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132930 views
License: OTHER
1
import numpy as np
2
import pymc as pm
3
4
5
challenger_data = np.genfromtxt(
6
"../../Chapter2_MorePyMC/data/challenger_data.csv",
7
skip_header=1, usecols=[1, 2], missing_values="NA", delimiter=",")
8
# drop the NA values
9
challenger_data = challenger_data[~np.isnan(challenger_data[:, 1])]
10
11
12
temperature = challenger_data[:, 0]
13
D = challenger_data[:, 1] # defect or not?
14
15
beta = pm.Normal("beta", 0, 0.001, value=0)
16
alpha = pm.Normal("alpha", 0, 0.001, value=0)
17
18
19
@pm.deterministic
20
def p(temp=temperature, alpha=alpha, beta=beta):
21
return 1.0 / (1. + np.exp(beta * temperature + alpha))
22
23
24
observed = pm.Bernoulli("bernoulli_obs", p, value=D, observed=True)
25
26
model = pm.Model([observed, beta, alpha])
27
28
# mysterious code to be explained in Chapter 3
29
map_ = pm.MAP(model)
30
map_.fit()
31
mcmc = pm.MCMC(model)
32
mcmc.sample(260000, 220000, 2)
33
34