Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132935 views
License: OTHER
%auto %html(hide=True) <div class="mathbook-content"> <link rel="stylesheet" type="text/css" href="http://buzzard.ups.edu/mathbook-content.css"> <link rel="stylesheet" type="text/css" href="https://aimath.org/mathbook/mathbook-add-on.css"> </div>
%auto %html(hide=True) <div class="mathbook-content"><div class="hidden-content" style="display:none">\( \newcommand{\lt}{&lt;} \newcommand{\gt}{&gt;} \newcommand{\amp}{&amp;} \)</div></div>
%auto %html(hide=True) <div class="mathbook-content"><table width="90%" style="font-size: 200%;"><tr></tr></table></div>
%auto %html(hide=True) <div class="mathbook-content"><section class="article" id="ILT"></section></div>
%auto %html(hide=True) <div class="mathbook-content"><section class="frontmatter" id="frontmatter-1"></section></div>
%auto %html(hide=True) <div class="mathbook-content"> <h2 class="heading"> <span class="title">Sage and Linear Algebra Worksheet:</span> <span class="subtitle">FCLA Section ILT</span> </h2> <div class="author"> <div class="author-name">Robert Beezer</div> <div class="author-info">Department of Mathematics and Computer Science<br>University of Puget Sound</div> </div> <div class="date">Fall 2019</div> </div>
%auto %html(hide=True) <div class="mathbook-content"><section class="section" id="section-1"><h6 class="heading hide-type"> <span class="type">Section</span> <span class="codenumber">1</span> <span class="title">Injective Linear Transformations</span> </h6></section></div>
%auto %html(hide=True) <div class="mathbook-content"><p id="p-1">Two carefully-crafted linear transformations: <code class="code-inline tex2jax_ignore">T</code> is injective, <code class="code-inline tex2jax_ignore">S</code> is not.</p></div>
A = matrix(QQ, [[1, 2, 2], [3, 7, 6], [1, 2, 1], [2, 5, 7]]) T = linear_transformation(QQ^3, QQ^4, A, side='right')
T.is_injective()
T.kernel()
B = matrix(QQ, [[0, 1, -2], [-1, 1, 3], [-2, 5, 0], [0, 2, -4]]) S = linear_transformation(QQ^3, QQ^4, B, side='right')
S.is_injective()
K = S.kernel() K
%auto %html(hide=True) <div class="mathbook-content"><p id="p-2">We create two different inputs, which differ by a random vector from the kernel (which we hope is not simply the zero vector, a distinct possibility). We always get the same output from <code class="code-inline tex2jax_ignore">S</code>, predictably. If we try this with <code class="code-inline tex2jax_ignore">T</code> then the kernel vector is <em class="emphasis">always</em> the zero vector and the demonstration is very uninteresting.</p></div>
z = K.random_element() u = random_vector(QQ, 3) w = u + z u, w, S(u), S(w), S(u) == S(w)
%auto %html(hide=True) <div class="mathbook-content"><article class="conclusion" id="conclusion-1"><h5 class="heading"><span></span></h5></article></div>
%auto %html(hide=True) <div class="mathbook-content"><p id="p-3">This work is Copyright 2016–2019 by Robert A. Beezer. It is licensed under a <a class="external" href="https://creativecommons.org/licenses/by-sa/4.0/" target="_blank">Creative Commons Attribution-ShareAlike 4.0 International License</a>.</p></div>
%auto %html(hide=True) <div class="mathbook-content"><table width="90%" style="font-size: 200%;"><tr></tr></table></div>