Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132928 views
License: OTHER
%auto typeset_mode(True, display=False)

3+1 Einstein equations in the δ=2\delta=2 Tomimatsu-Sato spacetime

This worksheet is based on SageManifolds (version 0.7) and regards the 3+1 slicing of the δ=2\delta=2 Tomimatsu-Sato spacetime.

It is released under the GNU General Public License version 2.

(c) Claire Somé, Eric Gourgoulhon (2015)

The worksheet file in Sage notebook format is here.

Tomimatsu-Sato spacetime

The Tomimatsu-Sato solution is an exact stationary and axisymmetric  solution of the vaccum Einstein equation, which is asymptotically flat and has a non-zero angular momentum. It has been found in 1972 by A. Tomimatsu and H. Sato [Phys. Rev. Lett. 29, 1344 (1972)], as a solution of the Ernst equation. It is actually the member δ=2\delta=2 of a larger family of solutions parametrized by a positive integer δ\delta and exhibited by Tomimatsu and Sato in 1973 [Prog. Theor. Phys. 50, 95 (1973)], the member δ=1\delta=1 being nothing but the Kerr metric. We refer to [Manko, Prog. Theor. Phys. 127, 1057 (2012)] for a discussion of the properties of this solution. 

Spacelike hypersurface

We consider some hypersurface Σ\Sigma of a spacelike foliation (Σt)t∈R(\Sigma_t)_{t\in\mathbb{R}} of δ=2\delta=2 Tomimatsu-Sato spacetime; we declare Σt\Sigma_t as a 3-dimensional manifold:

Sig = Manifold(3, 'Sigma', r'\Sigma', start_index=1)

On Σ\Sigma, we consider the prolate spheroidal coordinates (x,y,ϕ)(x,y,\phi), with x∈(1,+∞)x\in(1,+\infty), y∈(−1,1)y\in(-1,1) and ϕ∈(0,2π)\phi\in(0,2\pi) :

X.<r,y,ph> = Sig.chart(r'x:(1,+oo) y:(-1,1) ph:(0,2*pi):\phi') print X ; X
chart (Sigma, (x, y, ph))
(Σ,(x,y,ϕ))\left(\Sigma,(x, y, {\phi})\right)

Riemannian metric on Σ\Sigma

The Tomimatsu-Sato metric depens on three parameters: the integer δ\delta, the real number p∈[0,1]p\in[0,1], and the total mass mm:

var('d, p, m') assume(m>0) assumptions()
(dd, pp, mm)
[x is real\text{\texttt{x{ }is{ }real}}, x>1x > 1, y is real\text{\texttt{y{ }is{ }real}}, y>(−1)y > \left(-1\right), y<1y < 1, ph is real\text{\texttt{ph{ }is{ }real}}, ϕ>0{\phi} > 0, ϕ<2 π{\phi} < 2 \, \pi, m>0m > 0]

We set δ=2\delta=2 and choose a specific value for p=1/5p=1/5:

d = 2 p = 1/5

Furthermore, without any loss of generality, we may set m=1m=1 (this simply fixes some length scale):

m = 1

The parameter qq is related to pp by p2+q2=1p^2+q^2=1:

q = sqrt(1-p^2)

Some shortcut notations:

AA2 = (p^2*(x^2-1)^2+q^2*(1-y^2)^2)^2-4*p^2*q^2*(x^2-1)*(1-y^2)*(x^2-y^2)^2 BB2 = (p^2*x^4+2*p*x^3-2*p*x+q^2*y^4-1)^2+4*q^2*y^2*(p*x^3-p*x*y^2-y^2+1)^2 CC2 = p^3*x*(1-x^2)*(2*(x^4-1)+(x^2+3)*(1-y^2))+p^2*(x^2-1)*((x^2-1)*(1-y^2)-4*x^2*(x^2-y^2))+q^2*(1-y^2)^3*(p*x+1)

The Riemannian metric γ\gamma induced by the spacetime metric gg on Σ\Sigma:

gam = Sig.riemann_metric('gam', latex_name=r'\gamma') gam[1,1] = m^2*BB2/(p^2*d^2*(x^2-1)*(x^2-y^2)^3) gam[2,2] = m^2*BB2/(p^2*d^2*(y^2-1)*(-x^2+y^2)^3) gam[3,3] = - m^2*(y^2-1)*(p^2*BB2^2*(x^2-1)+4*q^2*d^2*CC2^2*(y^2-1))/(AA2*BB2*d^2) gam.display()
γ=(x8+576 y8+20 x7+96 (x2+10 x+25)y6+100 x6−20 x5−48 (3 x4+10 x3+30 x+125)y4−250 x4−500 x3+96 (x6+10 x3+25)y2+100 x2+500 x+625100 (x8−(x2−1)y6−x6+3 (x4−x2)y4−3 (x6−x4)y2))dx⊗dx+(x8+576 y8+20 x7+96 (x2+10 x+25)y6+100 x6−20 x5−48 (3 x4+10 x3+30 x+125)y4−250 x4−500 x3+96 (x6+10 x3+25)y2+100 x2+500 x+625100 (y8−(3 x2+1)y6+x6+3 (x4+x2)y4−(x6+3 x4)y2))dy⊗dy+(−576 (x2−1)y10−x10−40 x9+96 (x4+20 x3+168 x2+980 x+2431)y8−699 x8−7920 x7−48 (3 x6+20 x5−x4+80 x3+1273 x2+7900 x+19525)y6−39450 x6+960 x5+48 (2 x8+x6+60 x5−3 x4+1675 x2+11940 x+29525)y4+39450 x4+6000 x3+(x10+40 x9+603 x8+7920 x7+39546 x6−2880 x5−39450 x4−4080 x3−45675 x2−385000 x−953425)y2+9675 x2+97000 x+240625100 (x8+576 y8+20 x7+96 (x2+10 x+25)y6+100 x6−20 x5−48 (3 x4+10 x3+30 x+125)y4−250 x4−500 x3+96 (x6+10 x3+25)y2+100 x2+500 x+625))dϕ⊗dϕ\gamma = \left( \frac{x^{8} + 576 \, y^{8} + 20 \, x^{7} + 96 \, {\left(x^{2} + 10 \, x + 25\right)} y^{6} + 100 \, x^{6} - 20 \, x^{5} - 48 \, {\left(3 \, x^{4} + 10 \, x^{3} + 30 \, x + 125\right)} y^{4} - 250 \, x^{4} - 500 \, x^{3} + 96 \, {\left(x^{6} + 10 \, x^{3} + 25\right)} y^{2} + 100 \, x^{2} + 500 \, x + 625}{100 \, {\left(x^{8} - {\left(x^{2} - 1\right)} y^{6} - x^{6} + 3 \, {\left(x^{4} - x^{2}\right)} y^{4} - 3 \, {\left(x^{6} - x^{4}\right)} y^{2}\right)}} \right) \mathrm{d} x\otimes \mathrm{d} x + \left( \frac{x^{8} + 576 \, y^{8} + 20 \, x^{7} + 96 \, {\left(x^{2} + 10 \, x + 25\right)} y^{6} + 100 \, x^{6} - 20 \, x^{5} - 48 \, {\left(3 \, x^{4} + 10 \, x^{3} + 30 \, x + 125\right)} y^{4} - 250 \, x^{4} - 500 \, x^{3} + 96 \, {\left(x^{6} + 10 \, x^{3} + 25\right)} y^{2} + 100 \, x^{2} + 500 \, x + 625}{100 \, {\left(y^{8} - {\left(3 \, x^{2} + 1\right)} y^{6} + x^{6} + 3 \, {\left(x^{4} + x^{2}\right)} y^{4} - {\left(x^{6} + 3 \, x^{4}\right)} y^{2}\right)}} \right) \mathrm{d} y\otimes \mathrm{d} y + \left( -\frac{576 \, {\left(x^{2} - 1\right)} y^{10} - x^{10} - 40 \, x^{9} + 96 \, {\left(x^{4} + 20 \, x^{3} + 168 \, x^{2} + 980 \, x + 2431\right)} y^{8} - 699 \, x^{8} - 7920 \, x^{7} - 48 \, {\left(3 \, x^{6} + 20 \, x^{5} - x^{4} + 80 \, x^{3} + 1273 \, x^{2} + 7900 \, x + 19525\right)} y^{6} - 39450 \, x^{6} + 960 \, x^{5} + 48 \, {\left(2 \, x^{8} + x^{6} + 60 \, x^{5} - 3 \, x^{4} + 1675 \, x^{2} + 11940 \, x + 29525\right)} y^{4} + 39450 \, x^{4} + 6000 \, x^{3} + {\left(x^{10} + 40 \, x^{9} + 603 \, x^{8} + 7920 \, x^{7} + 39546 \, x^{6} - 2880 \, x^{5} - 39450 \, x^{4} - 4080 \, x^{3} - 45675 \, x^{2} - 385000 \, x - 953425\right)} y^{2} + 9675 \, x^{2} + 97000 \, x + 240625}{100 \, {\left(x^{8} + 576 \, y^{8} + 20 \, x^{7} + 96 \, {\left(x^{2} + 10 \, x + 25\right)} y^{6} + 100 \, x^{6} - 20 \, x^{5} - 48 \, {\left(3 \, x^{4} + 10 \, x^{3} + 30 \, x + 125\right)} y^{4} - 250 \, x^{4} - 500 \, x^{3} + 96 \, {\left(x^{6} + 10 \, x^{3} + 25\right)} y^{2} + 100 \, x^{2} + 500 \, x + 625\right)}} \right) \mathrm{d} {\phi}\otimes \mathrm{d} {\phi}

A matrix view of the components w.r.t. coordinates (x,y,Ï•)(x,y,\phi):

gam[:]
(x8+576 y8+20 x7+96 (x2+10 x+25)y6+100 x6−20 x5−48 (3 x4+10 x3+30 x+125)y4−250 x4−500 x3+96 (x6+10 x3+25)y2+100 x2+500 x+625100 (x8−(x2−1)y6−x6+3 (x4−x2)y4−3 (x6−x4)y2)000x8+576 y8+20 x7+96 (x2+10 x+25)y6+100 x6−20 x5−48 (3 x4+10 x3+30 x+125)y4−250 x4−500 x3+96 (x6+10 x3+25)y2+100 x2+500 x+625100 (y8−(3 x2+1)y6+x6+3 (x4+x2)y4−(x6+3 x4)y2)000−576 (x2−1)y10−x10−40 x9+96 (x4+20 x3+168 x2+980 x+2431)y8−699 x8−7920 x7−48 (3 x6+20 x5−x4+80 x3+1273 x2+7900 x+19525)y6−39450 x6+960 x5+48 (2 x8+x6+60 x5−3 x4+1675 x2+11940 x+29525)y4+39450 x4+6000 x3+(x10+40 x9+603 x8+7920 x7+39546 x6−2880 x5−39450 x4−4080 x3−45675 x2−385000 x−953425)y2+9675 x2+97000 x+240625100 (x8+576 y8+20 x7+96 (x2+10 x+25)y6+100 x6−20 x5−48 (3 x4+10 x3+30 x+125)y4−250 x4−500 x3+96 (x6+10 x3+25)y2+100 x2+500 x+625))\left(\begin{array}{rrr} \frac{x^{8} + 576 \, y^{8} + 20 \, x^{7} + 96 \, {\left(x^{2} + 10 \, x + 25\right)} y^{6} + 100 \, x^{6} - 20 \, x^{5} - 48 \, {\left(3 \, x^{4} + 10 \, x^{3} + 30 \, x + 125\right)} y^{4} - 250 \, x^{4} - 500 \, x^{3} + 96 \, {\left(x^{6} + 10 \, x^{3} + 25\right)} y^{2} + 100 \, x^{2} + 500 \, x + 625}{100 \, {\left(x^{8} - {\left(x^{2} - 1\right)} y^{6} - x^{6} + 3 \, {\left(x^{4} - x^{2}\right)} y^{4} - 3 \, {\left(x^{6} - x^{4}\right)} y^{2}\right)}} & 0 & 0 \\ 0 & \frac{x^{8} + 576 \, y^{8} + 20 \, x^{7} + 96 \, {\left(x^{2} + 10 \, x + 25\right)} y^{6} + 100 \, x^{6} - 20 \, x^{5} - 48 \, {\left(3 \, x^{4} + 10 \, x^{3} + 30 \, x + 125\right)} y^{4} - 250 \, x^{4} - 500 \, x^{3} + 96 \, {\left(x^{6} + 10 \, x^{3} + 25\right)} y^{2} + 100 \, x^{2} + 500 \, x + 625}{100 \, {\left(y^{8} - {\left(3 \, x^{2} + 1\right)} y^{6} + x^{6} + 3 \, {\left(x^{4} + x^{2}\right)} y^{4} - {\left(x^{6} + 3 \, x^{4}\right)} y^{2}\right)}} & 0 \\ 0 & 0 & -\frac{576 \, {\left(x^{2} - 1\right)} y^{10} - x^{10} - 40 \, x^{9} + 96 \, {\left(x^{4} + 20 \, x^{3} + 168 \, x^{2} + 980 \, x + 2431\right)} y^{8} - 699 \, x^{8} - 7920 \, x^{7} - 48 \, {\left(3 \, x^{6} + 20 \, x^{5} - x^{4} + 80 \, x^{3} + 1273 \, x^{2} + 7900 \, x + 19525\right)} y^{6} - 39450 \, x^{6} + 960 \, x^{5} + 48 \, {\left(2 \, x^{8} + x^{6} + 60 \, x^{5} - 3 \, x^{4} + 1675 \, x^{2} + 11940 \, x + 29525\right)} y^{4} + 39450 \, x^{4} + 6000 \, x^{3} + {\left(x^{10} + 40 \, x^{9} + 603 \, x^{8} + 7920 \, x^{7} + 39546 \, x^{6} - 2880 \, x^{5} - 39450 \, x^{4} - 4080 \, x^{3} - 45675 \, x^{2} - 385000 \, x - 953425\right)} y^{2} + 9675 \, x^{2} + 97000 \, x + 240625}{100 \, {\left(x^{8} + 576 \, y^{8} + 20 \, x^{7} + 96 \, {\left(x^{2} + 10 \, x + 25\right)} y^{6} + 100 \, x^{6} - 20 \, x^{5} - 48 \, {\left(3 \, x^{4} + 10 \, x^{3} + 30 \, x + 125\right)} y^{4} - 250 \, x^{4} - 500 \, x^{3} + 96 \, {\left(x^{6} + 10 \, x^{3} + 25\right)} y^{2} + 100 \, x^{2} + 500 \, x + 625\right)}} \end{array}\right)

Lapse function and shift vector

N2 = AA2/BB2 - 2*m*q*CC2*(y^2-1)/BB2*(2*m*q*CC2*(y^2-1)/(BB2*(m^2*(y^2-1)*(p^2*BB2^2*(x^2-1)+4*q^2*d^2*CC2^2*(y^2-1))/(AA2*BB2*d^2)))) N2.simplify_full()
x10+20 x9+576 (x2−1)y8+99 x8−40 x7+96 (x4+10 x3+24 x2−10 x−25)y6−350 x6−480 x5−48 (3 x6+10 x5−3 x4+20 x3+125 x2−30 x−125)y4+350 x4+1000 x3+96 (x8−x6+10 x5−10 x3+25 x2−25)y2+525 x2−500 x−625x10+40 x9+576 (x2−1)y8+699 x8+7920 x7+96 (x4+20 x3+174 x2+980 x+2425)y6+39450 x6−960 x5−48 (3 x6+20 x5−3 x4+40 x3+925 x2+5940 x+14675)y4−39450 x4−6000 x3+96 (x8−x6+20 x5−20 x3+375 x2+3000 x+7425)y2−9675 x2−97000 x−240625\frac{x^{10} + 20 \, x^{9} + 576 \, {\left(x^{2} - 1\right)} y^{8} + 99 \, x^{8} - 40 \, x^{7} + 96 \, {\left(x^{4} + 10 \, x^{3} + 24 \, x^{2} - 10 \, x - 25\right)} y^{6} - 350 \, x^{6} - 480 \, x^{5} - 48 \, {\left(3 \, x^{6} + 10 \, x^{5} - 3 \, x^{4} + 20 \, x^{3} + 125 \, x^{2} - 30 \, x - 125\right)} y^{4} + 350 \, x^{4} + 1000 \, x^{3} + 96 \, {\left(x^{8} - x^{6} + 10 \, x^{5} - 10 \, x^{3} + 25 \, x^{2} - 25\right)} y^{2} + 525 \, x^{2} - 500 \, x - 625}{x^{10} + 40 \, x^{9} + 576 \, {\left(x^{2} - 1\right)} y^{8} + 699 \, x^{8} + 7920 \, x^{7} + 96 \, {\left(x^{4} + 20 \, x^{3} + 174 \, x^{2} + 980 \, x + 2425\right)} y^{6} + 39450 \, x^{6} - 960 \, x^{5} - 48 \, {\left(3 \, x^{6} + 20 \, x^{5} - 3 \, x^{4} + 40 \, x^{3} + 925 \, x^{2} + 5940 \, x + 14675\right)} y^{4} - 39450 \, x^{4} - 6000 \, x^{3} + 96 \, {\left(x^{8} - x^{6} + 20 \, x^{5} - 20 \, x^{3} + 375 \, x^{2} + 3000 \, x + 7425\right)} y^{2} - 9675 \, x^{2} - 97000 \, x - 240625}
N = Sig.scalar_field(sqrt(N2.simplify_full()), name='N') print N N.display()
scalar field 'N' on the 3-dimensional manifold 'Sigma'
N:Σ⟶R(x,y,ϕ)⟼x10+20 x9+576 (x2−1)y8+99 x8−40 x7+96 (x4+10 x3+24 x2−10 x−25)y6−350 x6−480 x5−48 (3 x6+10 x5−3 x4+20 x3+125 x2−30 x−125)y4+350 x4+1000 x3+96 (x8−x6+10 x5−10 x3+25 x2−25)y2+525 x2−500 x−625x10+40 x9+576 (x2−1)y8+699 x8+7920 x7+96 (x4+20 x3+174 x2+980 x+2425)y6+39450 x6−960 x5−48 (3 x6+20 x5−3 x4+40 x3+925 x2+5940 x+14675)y4−39450 x4−6000 x3+96 (x8−x6+20 x5−20 x3+375 x2+3000 x+7425)y2−9675 x2−97000 x−240625\begin{array}{llcl} N:& \Sigma & \longrightarrow & \mathbb{R} \\ & \left(x, y, {\phi}\right) & \longmapsto & \sqrt{\frac{x^{10} + 20 \, x^{9} + 576 \, {\left(x^{2} - 1\right)} y^{8} + 99 \, x^{8} - 40 \, x^{7} + 96 \, {\left(x^{4} + 10 \, x^{3} + 24 \, x^{2} - 10 \, x - 25\right)} y^{6} - 350 \, x^{6} - 480 \, x^{5} - 48 \, {\left(3 \, x^{6} + 10 \, x^{5} - 3 \, x^{4} + 20 \, x^{3} + 125 \, x^{2} - 30 \, x - 125\right)} y^{4} + 350 \, x^{4} + 1000 \, x^{3} + 96 \, {\left(x^{8} - x^{6} + 10 \, x^{5} - 10 \, x^{3} + 25 \, x^{2} - 25\right)} y^{2} + 525 \, x^{2} - 500 \, x - 625}{x^{10} + 40 \, x^{9} + 576 \, {\left(x^{2} - 1\right)} y^{8} + 699 \, x^{8} + 7920 \, x^{7} + 96 \, {\left(x^{4} + 20 \, x^{3} + 174 \, x^{2} + 980 \, x + 2425\right)} y^{6} + 39450 \, x^{6} - 960 \, x^{5} - 48 \, {\left(3 \, x^{6} + 20 \, x^{5} - 3 \, x^{4} + 40 \, x^{3} + 925 \, x^{2} + 5940 \, x + 14675\right)} y^{4} - 39450 \, x^{4} - 6000 \, x^{3} + 96 \, {\left(x^{8} - x^{6} + 20 \, x^{5} - 20 \, x^{3} + 375 \, x^{2} + 3000 \, x + 7425\right)} y^{2} - 9675 \, x^{2} - 97000 \, x - 240625}} \end{array}
b3 = 2*m*q*CC2*(y^2-1)/(BB2*(m^2*(y^2-1)*(p^2*BB2^2*(x^2-1)+4*q^2*d^2*CC2^2*(y^2-1))/(AA2*BB2*d^2))) b = Sig.vector_field('beta', latex_name=r'\beta') b[3] = b3.simplify_full() # unset components are zero b.display()
β=(−400 (2 32x7+20 32x6+24 (32x+5 32)y6−32x5−25 32x4−72 (32x+5 32)y4+10 32x2−(32x5+15 32x4+2 32x3−10 32x2−75 32x−365 32)y2−25 32x−125 32)x10+40 x9+576 (x2−1)y8+699 x8+7920 x7+96 (x4+20 x3+174 x2+980 x+2425)y6+39450 x6−960 x5−48 (3 x6+20 x5−3 x4+40 x3+925 x2+5940 x+14675)y4−39450 x4−6000 x3+96 (x8−x6+20 x5−20 x3+375 x2+3000 x+7425)y2−9675 x2−97000 x−240625)∂∂ϕ\beta = \left( -\frac{400 \, {\left(2 \, \sqrt{3} \sqrt{2} x^{7} + 20 \, \sqrt{3} \sqrt{2} x^{6} + 24 \, {\left(\sqrt{3} \sqrt{2} x + 5 \, \sqrt{3} \sqrt{2}\right)} y^{6} - \sqrt{3} \sqrt{2} x^{5} - 25 \, \sqrt{3} \sqrt{2} x^{4} - 72 \, {\left(\sqrt{3} \sqrt{2} x + 5 \, \sqrt{3} \sqrt{2}\right)} y^{4} + 10 \, \sqrt{3} \sqrt{2} x^{2} - {\left(\sqrt{3} \sqrt{2} x^{5} + 15 \, \sqrt{3} \sqrt{2} x^{4} + 2 \, \sqrt{3} \sqrt{2} x^{3} - 10 \, \sqrt{3} \sqrt{2} x^{2} - 75 \, \sqrt{3} \sqrt{2} x - 365 \, \sqrt{3} \sqrt{2}\right)} y^{2} - 25 \, \sqrt{3} \sqrt{2} x - 125 \, \sqrt{3} \sqrt{2}\right)}}{x^{10} + 40 \, x^{9} + 576 \, {\left(x^{2} - 1\right)} y^{8} + 699 \, x^{8} + 7920 \, x^{7} + 96 \, {\left(x^{4} + 20 \, x^{3} + 174 \, x^{2} + 980 \, x + 2425\right)} y^{6} + 39450 \, x^{6} - 960 \, x^{5} - 48 \, {\left(3 \, x^{6} + 20 \, x^{5} - 3 \, x^{4} + 40 \, x^{3} + 925 \, x^{2} + 5940 \, x + 14675\right)} y^{4} - 39450 \, x^{4} - 6000 \, x^{3} + 96 \, {\left(x^{8} - x^{6} + 20 \, x^{5} - 20 \, x^{3} + 375 \, x^{2} + 3000 \, x + 7425\right)} y^{2} - 9675 \, x^{2} - 97000 \, x - 240625} \right) \frac{\partial}{\partial {\phi} }

Extrinsic curvature of Σ\Sigma

We use the formula Kij=12NLβγij, K_{ij} = \frac{1}{2N} \mathcal{L}_{\beta} \gamma_{ij}, which is valid for any stationary spacetime:

K = gam.lie_der(b) / (2*N) K.set_name('K') print K
field of symmetric bilinear forms 'K' on the 3-dimensional manifold 'Sigma'

The component K13=KxϕK_{13} = K_{x\phi}:

K[1,3]
2 (6 32x16−13824 (32x2+10 32x+32)y16+240 32x15+3793 32x14−6912 (32x4+20 32x3+150 32x2+500 32x+817 32)y14+27650 32x13+72403 32x12+576 (27 32x6+310 32x5+1033 32x4+1060 32x3+10493 32x2+44870 32x+69503 32)y12−81820 32x11−374975 32x10−96 (109 32x8+520 32x7+1504 32x6+19360 32x5+92770 32x4+157960 32x3+148264 32x2+731920 32x+1256425 32)y10−313810 32x9+669975 32x8+24 (9 32x10+250 32x9+6873 32x8+40920 32x7+63402 32x6+146220 32x5+1047426 32x4+2249400 32x3+876525 32x2+4308810 32x+8401925 32)y8+1617000 32x7+999675 32x6+96 (20 32x11−179 32x10−50 32x9−2897 32x8−28400 32x7−57446 32x6−9020 32x5−237650 32x4−731060 32x3−267175 32x2−1037250 32x−2111325 32)y6−2277250 32x5−4979375 32x4−(187 32x14+3590 32x13−5207 32x12−73540 32x11−454637 32x10−1150150 32x9+199401 32x8−1059000 32x7−7811175 32x6+2899610 32x5+1675075 32x4−32834500 32x3−24681575 32x2−69684250 32x−122823125 32)y4−4037500 32x3+3461875 32x2−6 (32x16+40 32x15+601 32x14+4010 32x13+12935 32x12−1060 32x11+10449 32x10+139590 32x9+57825 32x8+146960 32x7+781475 32x6−702250 32x5−2108075 32x4−348500 32x3+2381875 32x2+5456250 32x+6941250 32)y2+7231250 32x+6109375 32)x10+40 x9+576 (x2−1)y8+699 x8+7920 x7+96 (x4+20 x3+174 x2+980 x+2425)y6+39450 x6−960 x5−48 (3 x6+20 x5−3 x4+40 x3+925 x2+5940 x+14675)y4−39450 x4−6000 x3+96 (x8−x6+20 x5−20 x3+375 x2+3000 x+7425)y2−9675 x2−97000 x−240625(x18+60 x17+331776 (x2−1)y16+1599 x16+25880 x15+110592 (x4+15 x3+99 x2+485 x+1200)y14+266700 x14+1555560 x13−9216 (17 x6+60 x5−417 x4−3040 x3−13425 x2−31020 x−16975)y12+3533300 x12−4005000 x11+9216 (9 x8−60 x7−509 x6−2430 x5−9525 x4−24260 x3−71775 x2−227250 x−290600)y10−17787450 x10−18420000 x9+5760 (7 x10+90 x9+473 x8+2460 x7+10050 x6+15200 x5+53790 x4+120900 x3+198455 x2+741350 x+1103625)y8+15656250 x8+31485000 x7−192 (143 x12+675 x11−1043 x10−7575 x9−52650 x8−224850 x7−156150 x6+1001250 x5+3726075 x4+6217375 x3+4145625 x2+19413125 x+33330000)y6+3527500 x6+12975000 x5+96 (93 x14−105 x13−1693 x12−13470 x11−99575 x10−222675 x9−149025 x8−1024500 x7−2270025 x6+2366625 x5+9545625 x4+11931250 x3+451875 x2+11346875 x+28273125)y4+80032500 x4+102025000 x3+192 (x16+30 x15+399 x14+3955 x13+19950 x12+3765 x11+19850 x10+197000 x9+47025 x8+77000 x7+646875 x6−598125 x5−2642500 x4−2896875 x3+1117500 x2+1581250 x−687500)y2−78609375 x2−180937500 x−150390625)x8+576 y8+20 x7+96 (x2+10 x+25)y6+100 x6−20 x5−48 (3 x4+10 x3+30 x+125)y4−250 x4−500 x3+96 (x6+10 x3+25)y2+100 x2+500 x+625x+1x−1\frac{2 \, {\left(6 \, \sqrt{3} \sqrt{2} x^{16} - 13824 \, {\left(\sqrt{3} \sqrt{2} x^{2} + 10 \, \sqrt{3} \sqrt{2} x + \sqrt{3} \sqrt{2}\right)} y^{16} + 240 \, \sqrt{3} \sqrt{2} x^{15} + 3793 \, \sqrt{3} \sqrt{2} x^{14} - 6912 \, {\left(\sqrt{3} \sqrt{2} x^{4} + 20 \, \sqrt{3} \sqrt{2} x^{3} + 150 \, \sqrt{3} \sqrt{2} x^{2} + 500 \, \sqrt{3} \sqrt{2} x + 817 \, \sqrt{3} \sqrt{2}\right)} y^{14} + 27650 \, \sqrt{3} \sqrt{2} x^{13} + 72403 \, \sqrt{3} \sqrt{2} x^{12} + 576 \, {\left(27 \, \sqrt{3} \sqrt{2} x^{6} + 310 \, \sqrt{3} \sqrt{2} x^{5} + 1033 \, \sqrt{3} \sqrt{2} x^{4} + 1060 \, \sqrt{3} \sqrt{2} x^{3} + 10493 \, \sqrt{3} \sqrt{2} x^{2} + 44870 \, \sqrt{3} \sqrt{2} x + 69503 \, \sqrt{3} \sqrt{2}\right)} y^{12} - 81820 \, \sqrt{3} \sqrt{2} x^{11} - 374975 \, \sqrt{3} \sqrt{2} x^{10} - 96 \, {\left(109 \, \sqrt{3} \sqrt{2} x^{8} + 520 \, \sqrt{3} \sqrt{2} x^{7} + 1504 \, \sqrt{3} \sqrt{2} x^{6} + 19360 \, \sqrt{3} \sqrt{2} x^{5} + 92770 \, \sqrt{3} \sqrt{2} x^{4} + 157960 \, \sqrt{3} \sqrt{2} x^{3} + 148264 \, \sqrt{3} \sqrt{2} x^{2} + 731920 \, \sqrt{3} \sqrt{2} x + 1256425 \, \sqrt{3} \sqrt{2}\right)} y^{10} - 313810 \, \sqrt{3} \sqrt{2} x^{9} + 669975 \, \sqrt{3} \sqrt{2} x^{8} + 24 \, {\left(9 \, \sqrt{3} \sqrt{2} x^{10} + 250 \, \sqrt{3} \sqrt{2} x^{9} + 6873 \, \sqrt{3} \sqrt{2} x^{8} + 40920 \, \sqrt{3} \sqrt{2} x^{7} + 63402 \, \sqrt{3} \sqrt{2} x^{6} + 146220 \, \sqrt{3} \sqrt{2} x^{5} + 1047426 \, \sqrt{3} \sqrt{2} x^{4} + 2249400 \, \sqrt{3} \sqrt{2} x^{3} + 876525 \, \sqrt{3} \sqrt{2} x^{2} + 4308810 \, \sqrt{3} \sqrt{2} x + 8401925 \, \sqrt{3} \sqrt{2}\right)} y^{8} + 1617000 \, \sqrt{3} \sqrt{2} x^{7} + 999675 \, \sqrt{3} \sqrt{2} x^{6} + 96 \, {\left(20 \, \sqrt{3} \sqrt{2} x^{11} - 179 \, \sqrt{3} \sqrt{2} x^{10} - 50 \, \sqrt{3} \sqrt{2} x^{9} - 2897 \, \sqrt{3} \sqrt{2} x^{8} - 28400 \, \sqrt{3} \sqrt{2} x^{7} - 57446 \, \sqrt{3} \sqrt{2} x^{6} - 9020 \, \sqrt{3} \sqrt{2} x^{5} - 237650 \, \sqrt{3} \sqrt{2} x^{4} - 731060 \, \sqrt{3} \sqrt{2} x^{3} - 267175 \, \sqrt{3} \sqrt{2} x^{2} - 1037250 \, \sqrt{3} \sqrt{2} x - 2111325 \, \sqrt{3} \sqrt{2}\right)} y^{6} - 2277250 \, \sqrt{3} \sqrt{2} x^{5} - 4979375 \, \sqrt{3} \sqrt{2} x^{4} - {\left(187 \, \sqrt{3} \sqrt{2} x^{14} + 3590 \, \sqrt{3} \sqrt{2} x^{13} - 5207 \, \sqrt{3} \sqrt{2} x^{12} - 73540 \, \sqrt{3} \sqrt{2} x^{11} - 454637 \, \sqrt{3} \sqrt{2} x^{10} - 1150150 \, \sqrt{3} \sqrt{2} x^{9} + 199401 \, \sqrt{3} \sqrt{2} x^{8} - 1059000 \, \sqrt{3} \sqrt{2} x^{7} - 7811175 \, \sqrt{3} \sqrt{2} x^{6} + 2899610 \, \sqrt{3} \sqrt{2} x^{5} + 1675075 \, \sqrt{3} \sqrt{2} x^{4} - 32834500 \, \sqrt{3} \sqrt{2} x^{3} - 24681575 \, \sqrt{3} \sqrt{2} x^{2} - 69684250 \, \sqrt{3} \sqrt{2} x - 122823125 \, \sqrt{3} \sqrt{2}\right)} y^{4} - 4037500 \, \sqrt{3} \sqrt{2} x^{3} + 3461875 \, \sqrt{3} \sqrt{2} x^{2} - 6 \, {\left(\sqrt{3} \sqrt{2} x^{16} + 40 \, \sqrt{3} \sqrt{2} x^{15} + 601 \, \sqrt{3} \sqrt{2} x^{14} + 4010 \, \sqrt{3} \sqrt{2} x^{13} + 12935 \, \sqrt{3} \sqrt{2} x^{12} - 1060 \, \sqrt{3} \sqrt{2} x^{11} + 10449 \, \sqrt{3} \sqrt{2} x^{10} + 139590 \, \sqrt{3} \sqrt{2} x^{9} + 57825 \, \sqrt{3} \sqrt{2} x^{8} + 146960 \, \sqrt{3} \sqrt{2} x^{7} + 781475 \, \sqrt{3} \sqrt{2} x^{6} - 702250 \, \sqrt{3} \sqrt{2} x^{5} - 2108075 \, \sqrt{3} \sqrt{2} x^{4} - 348500 \, \sqrt{3} \sqrt{2} x^{3} + 2381875 \, \sqrt{3} \sqrt{2} x^{2} + 5456250 \, \sqrt{3} \sqrt{2} x + 6941250 \, \sqrt{3} \sqrt{2}\right)} y^{2} + 7231250 \, \sqrt{3} \sqrt{2} x + 6109375 \, \sqrt{3} \sqrt{2}\right)} \sqrt{x^{10} + 40 \, x^{9} + 576 \, {\left(x^{2} - 1\right)} y^{8} + 699 \, x^{8} + 7920 \, x^{7} + 96 \, {\left(x^{4} + 20 \, x^{3} + 174 \, x^{2} + 980 \, x + 2425\right)} y^{6} + 39450 \, x^{6} - 960 \, x^{5} - 48 \, {\left(3 \, x^{6} + 20 \, x^{5} - 3 \, x^{4} + 40 \, x^{3} + 925 \, x^{2} + 5940 \, x + 14675\right)} y^{4} - 39450 \, x^{4} - 6000 \, x^{3} + 96 \, {\left(x^{8} - x^{6} + 20 \, x^{5} - 20 \, x^{3} + 375 \, x^{2} + 3000 \, x + 7425\right)} y^{2} - 9675 \, x^{2} - 97000 \, x - 240625}}{{\left(x^{18} + 60 \, x^{17} + 331776 \, {\left(x^{2} - 1\right)} y^{16} + 1599 \, x^{16} + 25880 \, x^{15} + 110592 \, {\left(x^{4} + 15 \, x^{3} + 99 \, x^{2} + 485 \, x + 1200\right)} y^{14} + 266700 \, x^{14} + 1555560 \, x^{13} - 9216 \, {\left(17 \, x^{6} + 60 \, x^{5} - 417 \, x^{4} - 3040 \, x^{3} - 13425 \, x^{2} - 31020 \, x - 16975\right)} y^{12} + 3533300 \, x^{12} - 4005000 \, x^{11} + 9216 \, {\left(9 \, x^{8} - 60 \, x^{7} - 509 \, x^{6} - 2430 \, x^{5} - 9525 \, x^{4} - 24260 \, x^{3} - 71775 \, x^{2} - 227250 \, x - 290600\right)} y^{10} - 17787450 \, x^{10} - 18420000 \, x^{9} + 5760 \, {\left(7 \, x^{10} + 90 \, x^{9} + 473 \, x^{8} + 2460 \, x^{7} + 10050 \, x^{6} + 15200 \, x^{5} + 53790 \, x^{4} + 120900 \, x^{3} + 198455 \, x^{2} + 741350 \, x + 1103625\right)} y^{8} + 15656250 \, x^{8} + 31485000 \, x^{7} - 192 \, {\left(143 \, x^{12} + 675 \, x^{11} - 1043 \, x^{10} - 7575 \, x^{9} - 52650 \, x^{8} - 224850 \, x^{7} - 156150 \, x^{6} + 1001250 \, x^{5} + 3726075 \, x^{4} + 6217375 \, x^{3} + 4145625 \, x^{2} + 19413125 \, x + 33330000\right)} y^{6} + 3527500 \, x^{6} + 12975000 \, x^{5} + 96 \, {\left(93 \, x^{14} - 105 \, x^{13} - 1693 \, x^{12} - 13470 \, x^{11} - 99575 \, x^{10} - 222675 \, x^{9} - 149025 \, x^{8} - 1024500 \, x^{7} - 2270025 \, x^{6} + 2366625 \, x^{5} + 9545625 \, x^{4} + 11931250 \, x^{3} + 451875 \, x^{2} + 11346875 \, x + 28273125\right)} y^{4} + 80032500 \, x^{4} + 102025000 \, x^{3} + 192 \, {\left(x^{16} + 30 \, x^{15} + 399 \, x^{14} + 3955 \, x^{13} + 19950 \, x^{12} + 3765 \, x^{11} + 19850 \, x^{10} + 197000 \, x^{9} + 47025 \, x^{8} + 77000 \, x^{7} + 646875 \, x^{6} - 598125 \, x^{5} - 2642500 \, x^{4} - 2896875 \, x^{3} + 1117500 \, x^{2} + 1581250 \, x - 687500\right)} y^{2} - 78609375 \, x^{2} - 180937500 \, x - 150390625\right)} \sqrt{x^{8} + 576 \, y^{8} + 20 \, x^{7} + 96 \, {\left(x^{2} + 10 \, x + 25\right)} y^{6} + 100 \, x^{6} - 20 \, x^{5} - 48 \, {\left(3 \, x^{4} + 10 \, x^{3} + 30 \, x + 125\right)} y^{4} - 250 \, x^{4} - 500 \, x^{3} + 96 \, {\left(x^{6} + 10 \, x^{3} + 25\right)} y^{2} + 100 \, x^{2} + 500 \, x + 625} \sqrt{x + 1} \sqrt{x - 1}}

The type-(1,1) tensor K♯K^\sharp of components K  ji=γikKkjK^i_{\ \, j} = \gamma^{ik} K_{kj}:

Ku = K.up(gam, 0) print Ku
tensor field of type (1,1) on the 3-dimensional manifold 'Sigma'

We may check that the hypersurface Σ\Sigma is maximal, i.e. that K  kk=0K^k_{\ \, k} = 0:

trK = Ku.trace() print trK
scalar field on the 3-dimensional manifold 'Sigma'

Connection and curvature

Let us call DD the Levi-Civita connection associated with γ\gamma:

D = gam.connection(name='D') print D
Levi-Civita connection 'D' associated with the Riemannian metric 'gam' on the 3-dimensional manifold 'Sigma'

The Ricci tensor associated with γ\gamma:

Ric = gam.ricci() print Ric
field of symmetric bilinear forms 'Ric(gam)' on the 3-dimensional manifold 'Sigma'

The scalar curvature R=γijRijR = \gamma^{ij} R_{ij}:

R = gam.ricci_scalar(name='R') print R
scalar field 'R' on the 3-dimensional manifold 'Sigma'

3+1 Einstein equations

Let us check that the vacuum 3+1 Einstein equations are satisfied.

We start by the constraint equations:

Hamiltonian constraint

Let us first evaluate the term KijKijK_{ij} K^{ij}:

The vacuum Hamiltonian constraint equation is R+K2−KijKij=0R + K^2 -K_{ij} K^{ij} = 0

︠ Ham = R + trK^2 - trKK print Ham ; Ham.display()
a052a2f-06d2-45a2-89c6-bf636d976684i︠ %html <p>Hence the Hamiltonian constraint is satisfied.</p> <h3>Momentum constraint</h3> <p>In vaccum, the momentum constraint is \[ D_j K^j_{\ \, i} - D_i K = 0 \]</p>
︠ mom = D(Ku).trace(0,2) - D(trK) print mom mom.display()
1166208-11ab-4fcd-950d-093b3c394055i︠ %html <p>Hence the momentum constraint is satisfied.</p> <h3>Dynamical Einstein equations</h3> <p>Let us first evaluate the symmetric bilinear form $k_{ij} := K_{ik} K^k_{\ \, j}$:</p>
KK = K['_ik']*Ku['^k_j'] print KK
tensor field of type (0,2) on the 3-dimensional manifold 'Sigma'
KK1 = KK.symmetrize() KK == KK1
True\mathrm{True}
KK = KK1 print KK
field of symmetric bilinear forms on the 3-dimensional manifold 'Sigma'

In vacuum and for stationary spacetimes, the dynamical Einstein equations are LβKij−DiDjN+N(Rij+KKij−2KikK  jk)=0 \mathcal{L}_\beta K_{ij} - D_i D_j N + N \left( R_{ij} + K K_{ij} - 2 K_{ik} K^k_{\ \, j}\right) = 0

Hence the dynamical Einstein equations are satisfied.

Finally we have checked that all the 3+1 Einstein equations are satisfied by the δ=2\delta=2 Tomimatsu-Sato solution.