Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132937 views
License: OTHER
Kernel: Python 2

AlexNet in TensorFlow

Credits: Forked from TensorFlow-Examples by Aymeric Damien

Setup

Refer to the setup instructions

# Import MINST data import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
Extracting /tmp/data/train-images-idx3-ubyte.gz Extracting /tmp/data/train-labels-idx1-ubyte.gz Extracting /tmp/data/t10k-images-idx3-ubyte.gz Extracting /tmp/data/t10k-labels-idx1-ubyte.gz
import tensorflow as tf
# Parameters learning_rate = 0.001 training_iters = 300000 batch_size = 64 display_step = 100
# Network Parameters n_input = 784 # MNIST data input (img shape: 28*28) n_classes = 10 # MNIST total classes (0-9 digits) dropout = 0.8 # Dropout, probability to keep units
# tf Graph input x = tf.placeholder(tf.float32, [None, n_input]) y = tf.placeholder(tf.float32, [None, n_classes]) keep_prob = tf.placeholder(tf.float32) # dropout (keep probability)
# Create AlexNet model def conv2d(name, l_input, w, b): return tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(l_input, w, strides=[1, 1, 1, 1], padding='SAME'),b), name=name) def max_pool(name, l_input, k): return tf.nn.max_pool(l_input, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME', name=name) def norm(name, l_input, lsize=4): return tf.nn.lrn(l_input, lsize, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name=name) def alex_net(_X, _weights, _biases, _dropout): # Reshape input picture _X = tf.reshape(_X, shape=[-1, 28, 28, 1]) # Convolution Layer conv1 = conv2d('conv1', _X, _weights['wc1'], _biases['bc1']) # Max Pooling (down-sampling) pool1 = max_pool('pool1', conv1, k=2) # Apply Normalization norm1 = norm('norm1', pool1, lsize=4) # Apply Dropout norm1 = tf.nn.dropout(norm1, _dropout) # Convolution Layer conv2 = conv2d('conv2', norm1, _weights['wc2'], _biases['bc2']) # Max Pooling (down-sampling) pool2 = max_pool('pool2', conv2, k=2) # Apply Normalization norm2 = norm('norm2', pool2, lsize=4) # Apply Dropout norm2 = tf.nn.dropout(norm2, _dropout) # Convolution Layer conv3 = conv2d('conv3', norm2, _weights['wc3'], _biases['bc3']) # Max Pooling (down-sampling) pool3 = max_pool('pool3', conv3, k=2) # Apply Normalization norm3 = norm('norm3', pool3, lsize=4) # Apply Dropout norm3 = tf.nn.dropout(norm3, _dropout) # Fully connected layer # Reshape conv3 output to fit dense layer input dense1 = tf.reshape(norm3, [-1, _weights['wd1'].get_shape().as_list()[0]]) # Relu activation dense1 = tf.nn.relu(tf.matmul(dense1, _weights['wd1']) + _biases['bd1'], name='fc1') # Relu activation dense2 = tf.nn.relu(tf.matmul(dense1, _weights['wd2']) + _biases['bd2'], name='fc2') # Output, class prediction out = tf.matmul(dense2, _weights['out']) + _biases['out'] return out
# Store layers weight & bias weights = { 'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64])), 'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128])), 'wc3': tf.Variable(tf.random_normal([3, 3, 128, 256])), 'wd1': tf.Variable(tf.random_normal([4*4*256, 1024])), 'wd2': tf.Variable(tf.random_normal([1024, 1024])), 'out': tf.Variable(tf.random_normal([1024, 10])) } biases = { 'bc1': tf.Variable(tf.random_normal([64])), 'bc2': tf.Variable(tf.random_normal([128])), 'bc3': tf.Variable(tf.random_normal([256])), 'bd1': tf.Variable(tf.random_normal([1024])), 'bd2': tf.Variable(tf.random_normal([1024])), 'out': tf.Variable(tf.random_normal([n_classes])) }
# Construct model pred = alex_net(x, weights, biases, keep_prob)
# Define loss and optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables init = tf.global_variables_initializer()
# Launch the graph with tf.Session() as sess: sess.run(init) step = 1 # Keep training until reach max iterations while step * batch_size < training_iters: batch_xs, batch_ys = mnist.train.next_batch(batch_size) # Fit training using batch data sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout}) if step % display_step == 0: # Calculate batch accuracy acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.}) # Calculate batch loss loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.}) print "Iter " + str(step*batch_size) + ", Minibatch Loss= " \ + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc) step += 1 print "Optimization Finished!" # Calculate accuracy for 256 mnist test images print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images[:256], y: mnist.test.labels[:256], keep_prob: 1.})
Iter 6400, Minibatch Loss= 29666.185547, Training Accuracy= 0.59375 Iter 12800, Minibatch Loss= 22125.562500, Training Accuracy= 0.60938 Iter 19200, Minibatch Loss= 22631.134766, Training Accuracy= 0.59375 Iter 25600, Minibatch Loss= 18498.414062, Training Accuracy= 0.62500 Iter 32000, Minibatch Loss= 11318.283203, Training Accuracy= 0.70312 Iter 38400, Minibatch Loss= 12076.280273, Training Accuracy= 0.70312 Iter 44800, Minibatch Loss= 8195.520508, Training Accuracy= 0.82812 Iter 51200, Minibatch Loss= 5176.181641, Training Accuracy= 0.84375 Iter 57600, Minibatch Loss= 8951.896484, Training Accuracy= 0.81250 Iter 64000, Minibatch Loss= 10096.946289, Training Accuracy= 0.78125 Iter 70400, Minibatch Loss= 11466.641602, Training Accuracy= 0.68750 Iter 76800, Minibatch Loss= 7469.824219, Training Accuracy= 0.78125 Iter 83200, Minibatch Loss= 4147.449219, Training Accuracy= 0.89062 Iter 89600, Minibatch Loss= 5904.782227, Training Accuracy= 0.82812 Iter 96000, Minibatch Loss= 718.493713, Training Accuracy= 0.93750 Iter 102400, Minibatch Loss= 2184.151367, Training Accuracy= 0.93750 Iter 108800, Minibatch Loss= 2354.463135, Training Accuracy= 0.89062 Iter 115200, Minibatch Loss= 8612.959961, Training Accuracy= 0.81250 Iter 121600, Minibatch Loss= 2225.773926, Training Accuracy= 0.84375 Iter 128000, Minibatch Loss= 160.583618, Training Accuracy= 0.96875 Iter 134400, Minibatch Loss= 1524.846069, Training Accuracy= 0.93750 Iter 140800, Minibatch Loss= 3501.871094, Training Accuracy= 0.89062 Iter 147200, Minibatch Loss= 661.977051, Training Accuracy= 0.96875 Iter 153600, Minibatch Loss= 367.857788, Training Accuracy= 0.98438 Iter 160000, Minibatch Loss= 1735.458740, Training Accuracy= 0.90625 Iter 166400, Minibatch Loss= 209.320374, Training Accuracy= 0.95312 Iter 172800, Minibatch Loss= 1788.553955, Training Accuracy= 0.90625 Iter 179200, Minibatch Loss= 912.995544, Training Accuracy= 0.93750 Iter 185600, Minibatch Loss= 2534.074463, Training Accuracy= 0.87500 Iter 192000, Minibatch Loss= 73.052612, Training Accuracy= 0.96875 Iter 198400, Minibatch Loss= 1609.606323, Training Accuracy= 0.93750 Iter 204800, Minibatch Loss= 1823.219727, Training Accuracy= 0.96875 Iter 211200, Minibatch Loss= 578.051086, Training Accuracy= 0.96875 Iter 217600, Minibatch Loss= 1532.326172, Training Accuracy= 0.89062 Iter 224000, Minibatch Loss= 769.775269, Training Accuracy= 0.95312 Iter 230400, Minibatch Loss= 2614.737793, Training Accuracy= 0.92188 Iter 236800, Minibatch Loss= 938.664368, Training Accuracy= 0.95312 Iter 243200, Minibatch Loss= 1520.495605, Training Accuracy= 0.93750 Iter 249600, Minibatch Loss= 657.419739, Training Accuracy= 0.95312 Iter 256000, Minibatch Loss= 522.802124, Training Accuracy= 0.90625 Iter 262400, Minibatch Loss= 211.188477, Training Accuracy= 0.96875 Iter 268800, Minibatch Loss= 520.451172, Training Accuracy= 0.92188 Iter 275200, Minibatch Loss= 1418.759155, Training Accuracy= 0.89062 Iter 281600, Minibatch Loss= 241.748596, Training Accuracy= 0.96875 Iter 288000, Minibatch Loss= 0.000000, Training Accuracy= 1.00000 Iter 294400, Minibatch Loss= 1535.772827, Training Accuracy= 0.92188 Optimization Finished! Testing Accuracy: 0.980469