Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132928 views
License: OTHER
Kernel: Python 2

Deep Learning with TensorFlow

Credits: Forked from TensorFlow by Google

Setup

Refer to the setup instructions.

Exercise 4

Previously in 2_fullyconnected.ipynb and 3_regularization.ipynb, we trained fully connected networks to classify notMNIST characters.

The goal of this exercise is make the neural network convolutional.

# These are all the modules we'll be using later. Make sure you can import them # before proceeding further. import cPickle as pickle import numpy as np import tensorflow as tf
pickle_file = 'notMNIST.pickle' with open(pickle_file, 'rb') as f: save = pickle.load(f) train_dataset = save['train_dataset'] train_labels = save['train_labels'] valid_dataset = save['valid_dataset'] valid_labels = save['valid_labels'] test_dataset = save['test_dataset'] test_labels = save['test_labels'] del save # hint to help gc free up memory print 'Training set', train_dataset.shape, train_labels.shape print 'Validation set', valid_dataset.shape, valid_labels.shape print 'Test set', test_dataset.shape, test_labels.shape
Training set (200000, 28, 28) (200000,) Validation set (10000, 28, 28) (10000,) Test set (18724, 28, 28) (18724,)

Reformat into a TensorFlow-friendly shape:

  • convolutions need the image data formatted as a cube (width by height by #channels)

  • labels as float 1-hot encodings.

image_size = 28 num_labels = 10 num_channels = 1 # grayscale import numpy as np def reformat(dataset, labels): dataset = dataset.reshape( (-1, image_size, image_size, num_channels)).astype(np.float32) labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32) return dataset, labels train_dataset, train_labels = reformat(train_dataset, train_labels) valid_dataset, valid_labels = reformat(valid_dataset, valid_labels) test_dataset, test_labels = reformat(test_dataset, test_labels) print 'Training set', train_dataset.shape, train_labels.shape print 'Validation set', valid_dataset.shape, valid_labels.shape print 'Test set', test_dataset.shape, test_labels.shape
Training set (200000, 28, 28, 1) (200000, 10) Validation set (10000, 28, 28, 1) (10000, 10) Test set (18724, 28, 28, 1) (18724, 10)
def accuracy(predictions, labels): return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) / predictions.shape[0])

Let's build a small network with two convolutional layers, followed by one fully connected layer. Convolutional networks are more expensive computationally, so we'll limit its depth and number of fully connected nodes.

batch_size = 16 patch_size = 5 depth = 16 num_hidden = 64 graph = tf.Graph() with graph.as_default(): # Input data. tf_train_dataset = tf.placeholder( tf.float32, shape=(batch_size, image_size, image_size, num_channels)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) # Variables. layer1_weights = tf.Variable(tf.truncated_normal( [patch_size, patch_size, num_channels, depth], stddev=0.1)) layer1_biases = tf.Variable(tf.zeros([depth])) layer2_weights = tf.Variable(tf.truncated_normal( [patch_size, patch_size, depth, depth], stddev=0.1)) layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth])) layer3_weights = tf.Variable(tf.truncated_normal( [image_size / 4 * image_size / 4 * depth, num_hidden], stddev=0.1)) layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden])) layer4_weights = tf.Variable(tf.truncated_normal( [num_hidden, num_labels], stddev=0.1)) layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels])) # Model. def model(data): conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME') hidden = tf.nn.relu(conv + layer1_biases) conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding='SAME') hidden = tf.nn.relu(conv + layer2_biases) shape = hidden.get_shape().as_list() reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]]) hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases) return tf.matmul(hidden, layer4_weights) + layer4_biases # Training computation. logits = model(tf_train_dataset) loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels)) # Optimizer. optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss) # Predictions for the training, validation, and test data. train_prediction = tf.nn.softmax(logits) valid_prediction = tf.nn.softmax(model(tf_valid_dataset)) test_prediction = tf.nn.softmax(model(tf_test_dataset))
num_steps = 1001 with tf.Session(graph=graph) as session: tf.global_variables_initializer().run() print "Initialized" for step in xrange(num_steps): offset = (step * batch_size) % (train_labels.shape[0] - batch_size) batch_data = train_dataset[offset:(offset + batch_size), :, :, :] batch_labels = train_labels[offset:(offset + batch_size), :] feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels} _, l, predictions = session.run( [optimizer, loss, train_prediction], feed_dict=feed_dict) if (step % 50 == 0): print "Minibatch loss at step", step, ":", l print "Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels) print "Validation accuracy: %.1f%%" % accuracy( valid_prediction.eval(), valid_labels) print "Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels)
Initialized Minibatch loss at step 0 : 3.51275 Minibatch accuracy: 6.2% Validation accuracy: 12.8% Minibatch loss at step 50 : 1.48703 Minibatch accuracy: 43.8% Validation accuracy: 50.4% Minibatch loss at step 100 : 1.04377 Minibatch accuracy: 68.8% Validation accuracy: 67.4% Minibatch loss at step 150 : 0.601682 Minibatch accuracy: 68.8% Validation accuracy: 73.0% Minibatch loss at step 200 : 0.898649 Minibatch accuracy: 75.0% Validation accuracy: 77.8% Minibatch loss at step 250 : 1.3637 Minibatch accuracy: 56.2% Validation accuracy: 75.4% Minibatch loss at step 300 : 1.41968 Minibatch accuracy: 62.5% Validation accuracy: 76.0% Minibatch loss at step 350 : 0.300648 Minibatch accuracy: 81.2% Validation accuracy: 80.2% Minibatch loss at step 400 : 1.32092 Minibatch accuracy: 56.2% Validation accuracy: 80.4% Minibatch loss at step 450 : 0.556701 Minibatch accuracy: 81.2% Validation accuracy: 79.4% Minibatch loss at step 500 : 1.65595 Minibatch accuracy: 43.8% Validation accuracy: 79.6% Minibatch loss at step 550 : 1.06995 Minibatch accuracy: 75.0% Validation accuracy: 81.2% Minibatch loss at step 600 : 0.223684 Minibatch accuracy: 100.0% Validation accuracy: 82.3% Minibatch loss at step 650 : 0.619602 Minibatch accuracy: 87.5% Validation accuracy: 81.8% Minibatch loss at step 700 : 0.812091 Minibatch accuracy: 75.0% Validation accuracy: 82.4% Minibatch loss at step 750 : 0.276302 Minibatch accuracy: 87.5% Validation accuracy: 82.3% Minibatch loss at step 800 : 0.450241 Minibatch accuracy: 81.2% Validation accuracy: 82.3% Minibatch loss at step 850 : 0.137139 Minibatch accuracy: 93.8% Validation accuracy: 82.3% Minibatch loss at step 900 : 0.52664 Minibatch accuracy: 75.0% Validation accuracy: 82.2% Minibatch loss at step 950 : 0.623835 Minibatch accuracy: 87.5% Validation accuracy: 82.1% Minibatch loss at step 1000 : 0.243114 Minibatch accuracy: 93.8% Validation accuracy: 82.9% Test accuracy: 90.0%

Problem 1

The convolutional model above uses convolutions with stride 2 to reduce the dimensionality. Replace the strides a max pooling operation (nn.max_pool()) of stride 2 and kernel size 2.



Problem 2

Try to get the best performance you can using a convolutional net. Look for example at the classic LeNet5 architecture, adding Dropout, and/or adding learning rate decay.