Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132928 views
License: OTHER
1
import numpy as np
2
import matplotlib.pyplot as plt
3
4
from sklearn.metrics import euclidean_distances
5
from sklearn.neighbors import KNeighborsClassifier
6
7
from .datasets import make_forge
8
from .plot_helpers import discrete_scatter
9
10
11
def plot_knn_classification(n_neighbors=1):
12
X, y = make_forge()
13
14
X_test = np.array([[8.2, 3.66214339], [9.9, 3.2], [11.2, .5]])
15
dist = euclidean_distances(X, X_test)
16
closest = np.argsort(dist, axis=0)
17
18
for x, neighbors in zip(X_test, closest.T):
19
for neighbor in neighbors[:n_neighbors]:
20
plt.arrow(x[0], x[1], X[neighbor, 0] - x[0],
21
X[neighbor, 1] - x[1], head_width=0, fc='k', ec='k')
22
23
clf = KNeighborsClassifier(n_neighbors=n_neighbors).fit(X, y)
24
test_points = discrete_scatter(X_test[:, 0], X_test[:, 1], clf.predict(X_test), markers="*")
25
training_points = discrete_scatter(X[:, 0], X[:, 1], y)
26
plt.legend(training_points + test_points, ["training class 0", "training class 1",
27
"test pred 0", "test pred 1"])
28
29